73abf253d5
https://source.android.com/docs/security/bulletin/2024-06-01 CVE-2024-26926 * tag 'ASB-2024-06-05_11-5.4' of https://android.googlesource.com/kernel/common: ANDROID: ABI fixup for abi break in struct dst_ops BACKPORT: net: fix __dst_negative_advice() race UPSTREAM: selftests: timers: Fix valid-adjtimex signed left-shift undefined behavior Revert "timers: Rename del_timer_sync() to timer_delete_sync()" Reapply "media: ttpci: fix two memleaks in budget_av_attach" Revert "media: rename VFL_TYPE_GRABBER to _VIDEO" Revert "media: media/pci: rename VFL_TYPE_GRABBER to _VIDEO" Revert "media: ttpci: fix two memleaks in budget_av_attach" Revert "net: ip_tunnel: make sure to pull inner header in ip_tunnel_rcv()" Revert "regmap: allow to define reg_update_bits for no bus configuration" Revert "regmap: Add bulk read/write callbacks into regmap_config" Revert "serial: max310x: fix IO data corruption in batched operations" Revert "geneve: make sure to pull inner header in geneve_rx()" Linux 5.4.274 firmware: meson_sm: fix to avoid potential NULL pointer dereference ip_gre: do not report erspan version on GRE interface erspan: Check IFLA_GRE_ERSPAN_VER is set. VMCI: Fix possible memcpy() run-time warning in vmci_datagram_invoke_guest_handler() Bluetooth: btintel: Fixe build regression x86/alternative: Don't call text_poke() in lazy TLB mode drm/i915/gt: Reset queue_priority_hint on parking x86/mm/pat: fix VM_PAT handling in COW mappings virtio: reenable config if freezing device failed drm/vkms: call drm_atomic_helper_shutdown before drm_dev_put() tty: n_gsm: require CAP_NET_ADMIN to attach N_GSM0710 ldisc netfilter: nf_tables: discard table flag update with pending basechain deletion netfilter: nf_tables: release mutex after nft_gc_seq_end from abort path netfilter: nf_tables: release batch on table validation from abort path netfilter: nf_tables: reject new basechain after table flag update fbmon: prevent division by zero in fb_videomode_from_videomode() fbdev: viafb: fix typo in hw_bitblt_1 and hw_bitblt_2 usb: sl811-hcd: only defined function checkdone if QUIRK2 is defined usb: typec: tcpci: add generic tcpci fallback compatible tools: iio: replace seekdir() in iio_generic_buffer ktest: force $buildonly = 1 for 'make_warnings_file' test type Input: allocate keycode for Display refresh rate toggle block: prevent division by zero in blk_rq_stat_sum() Revert "ACPI: PM: Block ASUS B1400CEAE from suspend to idle by default" SUNRPC: increase size of rpc_wait_queue.qlen from unsigned short to unsigned int drm/amd/display: Fix nanosec stat overflow media: sta2x11: fix irq handler cast isofs: handle CDs with bad root inode but good Joliet root directory scsi: lpfc: Fix possible memory leak in lpfc_rcv_padisc() sysv: don't call sb_bread() with pointers_lock held Input: synaptics-rmi4 - fail probing if memory allocation for "phys" fails Bluetooth: btintel: Fix null ptr deref in btintel_read_version btrfs: send: handle path ref underflow in header iterate_inode_ref() btrfs: export: handle invalid inode or root reference in btrfs_get_parent() btrfs: handle chunk tree lookup error in btrfs_relocate_sys_chunks() tools/power x86_energy_perf_policy: Fix file leak in get_pkg_num() ionic: set adminq irq affinity arm64: dts: rockchip: fix rk3399 hdmi ports node arm64: dts: rockchip: fix rk3328 hdmi ports node panic: Flush kernel log buffer at the end VMCI: Fix memcpy() run-time warning in dg_dispatch_as_host() wifi: ath9k: fix LNA selection in ath_ant_try_scan() s390/entry: align system call table on 8 bytes x86/mce: Make sure to grab mce_sysfs_mutex in set_bank() ALSA: hda/realtek: Update Panasonic CF-SZ6 quirk to support headset with microphone ata: sata_mv: Fix PCI device ID table declaration compilation warning scsi: mylex: Fix sysfs buffer lengths ata: sata_sx4: fix pdc20621_get_from_dimm() on 64-bit ASoC: ops: Fix wraparound for mask in snd_soc_get_volsw net: ravb: Always process TX descriptor ring erspan: make sure erspan_base_hdr is present in skb->head erspan: Add type I version 0 support. init: open /initrd.image with O_LARGEFILE initramfs: switch initramfs unpacking to struct file based APIs fs: add a vfs_fchmod helper fs: add a vfs_fchown helper staging: vc04_services: fix information leak in create_component() staging: vc04_services: changen strncpy() to strscpy_pad() staging: mmal-vchiq: Fix client_component for 64 bit kernel staging: mmal-vchiq: Allocate and free components as required i40e: fix vf may be used uninitialized in this function warning ipv6: Fix infinite recursion in fib6_dump_done(). selftests: reuseaddr_conflict: add missing new line at the end of the output net: stmmac: fix rx queue priority assignment net/sched: act_skbmod: prevent kernel-infoleak bpf, sockmap: Prevent lock inversion deadlock in map delete elem netfilter: nf_tables: Fix potential data-race in __nft_flowtable_type_get() netfilter: nf_tables: flush pending destroy work before exit_net release mm, vmscan: prevent infinite loop for costly GFP_NOIO | __GFP_RETRY_MAYFAIL allocations Revert "x86/mm/ident_map: Use gbpages only where full GB page should be mapped." vfio/platform: Create persistent IRQ handlers vfio/pci: Create persistent INTx handler vfio: Introduce interface to flush virqfd inject workqueue vfio/pci: Lock external INTx masking ops vfio/pci: Disable auto-enable of exclusive INTx IRQ net/rds: fix possible cp null dereference netfilter: nf_tables: disallow timeout for anonymous sets Bluetooth: Fix TOCTOU in HCI debugfs implementation Bluetooth: hci_event: set the conn encrypted before conn establishes x86/cpufeatures: Add new word for scattered features r8169: fix issue caused by buggy BIOS on certain boards with RTL8168d dm integrity: fix out-of-range warning tcp: properly terminate timers for kernel sockets ixgbe: avoid sleeping allocation in ixgbe_ipsec_vf_add_sa() nfc: nci: Fix uninit-value in nci_dev_up and nci_ntf_packet USB: core: Fix deadlock in usb_deauthorize_interface() scsi: lpfc: Correct size for wqe for memset() x86/cpu: Enable STIBP on AMD if Automatic IBRS is enabled scsi: qla2xxx: Fix command flush on cable pull usb: udc: remove warning when queue disabled ep usb: dwc2: gadget: LPM flow fix usb: dwc2: host: Fix ISOC flow in DDMA mode usb: dwc2: host: Fix hibernation flow usb: dwc2: host: Fix remote wakeup from hibernation scsi: core: Fix unremoved procfs host directory regression ALSA: sh: aica: reorder cleanup operations to avoid UAF bugs usb: cdc-wdm: close race between read and workqueue mmc: core: Avoid negative index with array access mmc: core: Initialize mmc_blk_ioc_data exec: Fix NOMMU linux_binprm::exec in transfer_args_to_stack() wifi: mac80211: check/clear fast rx for non-4addr sta VLAN changes mm/migrate: set swap entry values of THP tail pages properly. mm/memory-failure: fix an incorrect use of tail pages vt: fix memory overlapping when deleting chars in the buffer bounds: support non-power-of-two CONFIG_NR_CPUS powerpc: xor_vmx: Add '-mhard-float' to CFLAGS efivarfs: Request at most 512 bytes for variable names perf/core: Fix reentry problem in perf_output_read_group() loop: loop_set_status_from_info() check before assignment loop: Check for overflow while configuring loop loop: Factor out configuring loop from status loop: Refactor loop_set_status() size calculation loop: Factor out setting loop device size loop: Remove sector_t truncation checks loop: Call loop_config_discard() only after new config is applied Revert "loop: Check for overflow while configuring loop" btrfs: allocate btrfs_ioctl_defrag_range_args on stack printk: Update @console_may_schedule in console_trylock_spinning() xen/events: close evtchn after mapping cleanup x86/speculation: Support intra-function call validation objtool: Add support for intra-function calls objtool: is_fentry_call() crashes if call has no destination fs/aio: Check IOCB_AIO_RW before the struct aio_kiocb conversion vt: fix unicode buffer corruption when deleting characters tty: serial: fsl_lpuart: avoid idle preamble pending if CTS is enabled usb: port: Don't try to peer unused USB ports based on location usb: gadget: ncm: Fix handling of zero block length packets USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command ALSA: hda/realtek - Fix headset Mic no show at resume back for Lenovo ALC897 platform xfrm: Avoid clang fortify warning in copy_to_user_tmpl() netfilter: nf_tables: reject constant set with timeout netfilter: nf_tables: disallow anonymous set with timeout flag netfilter: nf_tables: mark set as dead when unbinding anonymous set with timeout comedi: comedi_test: Prevent timers rescheduling during deletion dm snapshot: fix lockup in dm_exception_table_exit ahci: asm1064: asm1166: don't limit reported ports ahci: asm1064: correct count of reported ports x86/CPU/AMD: Update the Zenbleed microcode revisions nilfs2: prevent kernel bug at submit_bh_wbc() nilfs2: use a more common logging style nilfs2: fix failure to detect DAT corruption in btree and direct mappings memtest: use {READ,WRITE}_ONCE in memory scanning drm/vc4: hdmi: do not return negative values from .get_modes() drm/imx/ipuv3: do not return negative values from .get_modes() drm/exynos: do not return negative values from .get_modes() s390/zcrypt: fix reference counting on zcrypt card objects soc: fsl: qbman: Use raw spinlock for cgr_lock soc: fsl: qbman: Add CGR update function soc: fsl: qbman: Add helper for sanity checking cgr ops soc: fsl: qbman: Always disable interrupts when taking cgr_lock ring-buffer: Fix full_waiters_pending in poll ring-buffer: Fix resetting of shortest_full vfio/platform: Disable virqfds on cleanup kbuild: Move -Wenum-{compare-conditional,enum-conversion} into W=1 speakup: Fix 8bit characters from direct synth slimbus: core: Remove usage of the deprecated ida_simple_xx() API nvmem: meson-efuse: fix function pointer type mismatch firmware: meson_sm: Rework driver as a proper platform driver ext4: fix corruption during on-line resize hwmon: (amc6821) add of_match table mmc: core: Fix switch on gp3 partition dm-raid: fix lockdep waring in "pers->hot_add_disk" Revert "Revert "md/raid5: Wait for MD_SB_CHANGE_PENDING in raid5d"" PCI/PM: Drain runtime-idle callbacks before driver removal PCI: Drop pci_device_remove() test of pci_dev->driver btrfs: fix off-by-one chunk length calculation at contains_pending_extent() fuse: don't unhash root mmc: tmio: avoid concurrent runs of mmc_request_done() PM: sleep: wakeirq: fix wake irq warning in system suspend USB: serial: cp210x: add pid/vid for TDK NC0110013M and MM0110113M USB: serial: option: add MeiG Smart SLM320 product USB: serial: cp210x: add ID for MGP Instruments PDS100 USB: serial: add device ID for VeriFone adapter USB: serial: ftdi_sio: add support for GMC Z216C Adapter IR-USB powerpc/fsl: Fix mfpmr build errors with newer binutils clk: qcom: mmcc-msm8974: fix terminating of frequency table arrays clk: qcom: mmcc-apq8084: fix terminating of frequency table arrays clk: qcom: gcc-ipq8074: fix terminating of frequency table arrays PM: suspend: Set mem_sleep_current during kernel command line setup parisc: Strip upper 32 bit of sum in csum_ipv6_magic for 64-bit builds parisc: Fix csum_ipv6_magic on 64-bit systems parisc: Fix csum_ipv6_magic on 32-bit systems parisc: Fix ip_fast_csum parisc: Do not hardcode registers in checksum functions mtd: rawnand: meson: fix scrambling mode value in command macro ubi: correct the calculation of fastmap size ubi: Check for too small LEB size in VTBL code ubifs: Set page uptodate in the correct place fat: fix uninitialized field in nostale filehandles ext4: correct best extent lstart adjustment logic selftests/mqueue: Set timeout to 180 seconds crypto: qat - resolve race condition during AER recovery crypto: qat - fix double free during reset sparc: vDSO: fix return value of __setup handler sparc64: NMI watchdog: fix return value of __setup handler KVM: Always flush async #PF workqueue when vCPU is being destroyed media: xc4000: Fix atomicity violation in xc4000_get_frequency serial: max310x: fix NULL pointer dereference in I2C instantiation arm: dts: marvell: Fix maxium->maxim typo in brownstone dts ARM: dts: mmp2-brownstone: Don't redeclare phandle references smack: Handle SMACK64TRANSMUTE in smack_inode_setsecurity() smack: Set SMACK64TRANSMUTE only for dirs in smack_inode_setxattr() clk: qcom: gcc-sdm845: Add soft dependency on rpmhpd media: staging: ipu3-imgu: Set fields before media_entity_pads_init() wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach timers: Rename del_timer_sync() to timer_delete_sync() timers: Use del_timer_sync() even on UP timers: Update kernel-doc for various functions x86/bugs: Use sysfs_emit() x86/cpu: Support AMD Automatic IBRS Documentation/hw-vuln: Update spectre doc amdkfd: use calloc instead of kzalloc to avoid integer overflow Linux 5.4.273 regmap: Add missing map->bus check spi: spi-mt65xx: Fix NULL pointer access in interrupt handler bpf: report RCU QS in cpumap kthread rcu: add a helper to report consolidated flavor QS netfilter: nf_tables: do not compare internal table flags on updates ARM: dts: sun8i-h2-plus-bananapi-m2-zero: add regulator nodes vcc-dram and vcc1v2 octeontx2-af: Use separate handlers for interrupts net/bnx2x: Prevent access to a freed page in page_pool hsr: Handle failures in module init rds: introduce acquire/release ordering in acquire/release_in_xmit() packet: annotate data-races around ignore_outgoing hsr: Fix uninit-value access in hsr_get_node() s390/vtime: fix average steal time calculation octeontx2-af: Use matching wake_up API variant in CGX command interface usb: gadget: net2272: Use irqflags in the call to net2272_probe_fin staging: greybus: fix get_channel_from_mode() failure path serial: 8250_exar: Don't remove GPIO device on suspend rtc: mt6397: select IRQ_DOMAIN instead of depending on it kconfig: fix infinite loop when expanding a macro at the end of file tty: serial: samsung: fix tx_empty() to return TIOCSER_TEMT serial: max310x: fix syntax error in IRQ error message tty: vt: fix 20 vs 0x20 typo in EScsiignore afs: Revert "afs: Hide silly-rename files from userspace" NFS: Fix an off by one in root_nfs_cat() watchdog: stm32_iwdg: initialize default timeout net: sunrpc: Fix an off by one in rpc_sockaddr2uaddr() scsi: bfa: Fix function pointer type mismatch for hcb_qe->cbfn RDMA/device: Fix a race between mad_client and cm_client init scsi: csiostor: Avoid function pointer casts ALSA: usb-audio: Stop parsing channels bits when all channels are found. clk: Fix clk_core_get NULL dereference sparc32: Fix section mismatch in leon_pci_grpci backlight: lp8788: Fully initialize backlight_properties during probe backlight: lm3639: Fully initialize backlight_properties during probe backlight: da9052: Fully initialize backlight_properties during probe backlight: lm3630a: Don't set bl->props.brightness in get_brightness backlight: lm3630a: Initialize backlight_properties on init powerpc/embedded6xx: Fix no previous prototype for avr_uart_send() etc. drm/msm/dpu: add division of drm_display_mode's hskew parameter powerpc/hv-gpci: Fix the H_GET_PERF_COUNTER_INFO hcall return value checks drm/mediatek: Fix a null pointer crash in mtk_drm_crtc_finish_page_flip media: ttpci: fix two memleaks in budget_av_attach media: media/pci: rename VFL_TYPE_GRABBER to _VIDEO media: rename VFL_TYPE_GRABBER to _VIDEO media: v4l2-core: correctly validate video and metadata ioctls media: go7007: fix a memleak in go7007_load_encoder media: dvb-frontends: avoid stack overflow warnings with clang media: pvrusb2: fix uaf in pvr2_context_set_notify drm/amdgpu: Fix missing break in ATOM_ARG_IMM Case of atom_get_src_int() ASoC: meson: axg-tdm-interface: fix mclk setup without mclk-fs mtd: rawnand: lpc32xx_mlc: fix irq handler prototype mtd: maps: physmap-core: fix flash size larger than 32-bit crypto: arm/sha - fix function cast warnings mfd: altera-sysmgr: Call of_node_put() only when of_parse_phandle() takes a ref mfd: syscon: Call of_node_put() only when of_parse_phandle() takes a ref drm/tegra: put drm_gem_object ref on error in tegra_fb_create clk: hisilicon: hi3519: Release the correct number of gates in hi3519_clk_unregister() PCI: Mark 3ware-9650SE Root Port Extended Tags as broken drm/mediatek: dsi: Fix DSI RGB666 formats and definitions clk: qcom: dispcc-sdm845: Adjust internal GDSC wait times media: pvrusb2: fix pvr2_stream_callback casts media: pvrusb2: remove redundant NULL check media: go7007: add check of return value of go7007_read_addr() media: imx: csc/scaler: fix v4l2_ctrl_handler memory leak perf stat: Avoid metric-only segv ALSA: seq: fix function cast warnings drm/radeon/ni: Fix wrong firmware size logging in ni_init_microcode() perf thread_map: Free strlist on normal path in thread_map__new_by_tid_str() PCI: switchtec: Fix an error handling path in switchtec_pci_probe() quota: Fix rcu annotations of inode dquot pointers quota: Fix potential NULL pointer dereference quota: simplify drop_dquot_ref() clk: qcom: reset: Ensure write completion on reset de/assertion clk: qcom: reset: Commonize the de/assert functions clk: qcom: reset: support resetting multiple bits clk: qcom: reset: Allow specifying custom reset delay media: edia: dvbdev: fix a use-after-free media: v4l2-mem2mem: fix a memleak in v4l2_m2m_register_entity media: v4l2-tpg: fix some memleaks in tpg_alloc media: em28xx: annotate unchecked call to media_device_register() perf evsel: Fix duplicate initialization of data->id in evsel__parse_sample() drm/amd/display: Fix potential NULL pointer dereferences in 'dcn10_set_output_transfer_func()' perf record: Fix possible incorrect free in record__switch_output() PCI/DPC: Print all TLP Prefixes, not just the first media: tc358743: register v4l2 async device only after successful setup dmaengine: tegra210-adma: Update dependency to ARCH_TEGRA drm/rockchip: lvds: do not overwrite error code drm: Don't treat 0 as -1 in drm_fixp2int_ceil drm/rockchip: inno_hdmi: Fix video timing drm/tegra: output: Fix missing i2c_put_adapter() in the error handling paths of tegra_output_probe() drm/tegra: dsi: Fix missing pm_runtime_disable() in the error handling path of tegra_dsi_probe() drm/tegra: dsi: Fix some error handling paths in tegra_dsi_probe() drm/tegra: dsi: Make use of the helper function dev_err_probe() gpu: host1x: mipi: Update tegra_mipi_request() to be node based drm/tegra: dsi: Add missing check for of_find_device_by_node dm: call the resume method on internal suspend dm raid: fix false positive for requeue needed during reshape nfp: flower: handle acti_netdevs allocation failure net/x25: fix incorrect parameter validation in the x25_getsockopt() function net: kcm: fix incorrect parameter validation in the kcm_getsockopt) function udp: fix incorrect parameter validation in the udp_lib_getsockopt() function l2tp: fix incorrect parameter validation in the pppol2tp_getsockopt() function tcp: fix incorrect parameter validation in the do_tcp_getsockopt() function net: hns3: fix port duplex configure error in IMP reset net: ip_tunnel: make sure to pull inner header in ip_tunnel_rcv() ipv6: fib6_rules: flush route cache when rule is changed bpf: Fix stackmap overflow check on 32-bit arches bpf: Fix hashtab overflow check on 32-bit arches sr9800: Add check for usbnet_get_endpoints Bluetooth: hci_core: Fix possible buffer overflow Bluetooth: Remove superfluous call to hci_conn_check_pending() igb: Fix missing time sync events igb: move PEROUT and EXTTS isr logic to separate functions mmc: wmt-sdmmc: remove an incorrect release_mem_region() call in the .remove function SUNRPC: fix some memleaks in gssx_dec_option_array x86, relocs: Ignore relocations in .notes section ACPI: scan: Fix device check notification handling ARM: dts: imx6dl-yapp4: Move the internal switch PHYs under the switch node ARM: dts: imx6dl-yapp4: Fix typo in the QCA switch register address ARM: dts: imx6dl-yapp4: Move phy reset into switch node ARM: dts: arm: realview: Fix development chip ROM compatible value net: ena: Remove ena_select_queue net: ena: cosmetic: fix line break issues wifi: brcmsmac: avoid function pointer casts iommu/amd: Mark interrupt as managed bus: tegra-aconnect: Update dependency to ARCH_TEGRA ACPI: processor_idle: Fix memory leak in acpi_processor_power_exit() arm64: dts: qcom: msm8996: Pad addresses arm64: dts: qcom: msm8996: Move regulator consumers to db820c arm64: dts: qcom: msm8996: Use node references in db820c arm64: dts: qcom: db820c: Move non-soc entries out of /soc bpf: Mark bpf_spin_{lock,unlock}() helpers with notrace correctly bpf: Factor out bpf_spin_lock into helpers. bpf: Add typecast to bpf helpers to help BTF generation arm64: dts: mediatek: mt7622: add missing "device_type" to memory nodes wifi: libertas: fix some memleaks in lbs_allocate_cmd_buffer() net: blackhole_dev: fix build warning for ethh set but not used af_unix: Annotate data-race of gc_in_progress in wait_for_unix_gc(). sock_diag: annotate data-races around sock_diag_handlers[family] wifi: mwifiex: debugfs: Drop unnecessary error check for debugfs_create_dir() wifi: wilc1000: fix RCU usage in connect path wifi: wilc1000: fix declarations ordering wifi: b43: Disable QoS for bcm4331 wifi: b43: Stop correct queue in DMA worker when QoS is disabled b43: main: Fix use true/false for bool type wifi: b43: Stop/wake correct queue in PIO Tx path when QoS is disabled wifi: b43: Stop/wake correct queue in DMA Tx path when QoS is disabled b43: dma: Fix use true/false for bool type variable wifi: ath10k: fix NULL pointer dereference in ath10k_wmi_tlv_op_pull_mgmt_tx_compl_ev() timekeeping: Fix cross-timestamp interpolation for non-x86 timekeeping: Fix cross-timestamp interpolation corner case decision timekeeping: Fix cross-timestamp interpolation on counter wrap aoe: fix the potential use-after-free problem in aoecmd_cfg_pkts fs/select: rework stack allocation hack for clang nbd: null check for nla_nest_start do_sys_name_to_handle(): use kzalloc() to fix kernel-infoleak ASoC: wm8962: Fix up incorrect error message in wm8962_set_fll ASoC: wm8962: Enable both SPKOUTR_ENA and SPKOUTL_ENA in mono mode ASoC: wm8962: Enable oscillator if selecting WM8962_FLL_OSC Input: gpio_keys_polled - suppress deferred probe error for gpio ASoC: Intel: bytcr_rt5640: Add an extra entry for the Chuwi Vi8 tablet firewire: core: use long bus reset on gap count error Bluetooth: rfcomm: Fix null-ptr-deref in rfcomm_check_security scsi: mpt3sas: Prevent sending diag_reset when the controller is ready btrfs: fix data race at btrfs_use_block_rsv() when accessing block reserve dm-verity, dm-crypt: align "struct bvec_iter" correctly block: sed-opal: handle empty atoms when parsing response parisc/ftrace: add missing CONFIG_DYNAMIC_FTRACE check net/iucv: fix the allocation size of iucv_path_table array RDMA/mlx5: Relax DEVX access upon modify commands HID: multitouch: Add required quirk for Synaptics 0xcddc device MIPS: Clear Cause.BD in instruction_pointer_set x86/xen: Add some null pointer checking to smp.c ASoC: rt5645: Make LattePanda board DMI match more precise selftests: tls: use exact comparison in recv_partial io_uring: drop any code related to SCM_RIGHTS io_uring/unix: drop usage of io_uring socket UPSTREAM: arm64: dts: qcom: sdm845: fix USB DP/DM HS PHY interrupts UPSTREAM: arm64: dts: qcom: add PDC interrupt controller for SDM845 Linux 5.4.272 arm64: dts: qcom: sdm845: fix USB DP/DM HS PHY interrupts arm64: dts: qcom: add PDC interrupt controller for SDM845 serial: max310x: fix IO data corruption in batched operations serial: max310x: implement I2C support serial: max310x: make accessing revision id interface-agnostic regmap: Add bulk read/write callbacks into regmap_config regmap: allow to define reg_update_bits for no bus configuration serial: max310x: Unprepare and disable clock in error path getrusage: use sig->stats_lock rather than lock_task_sighand() getrusage: use __for_each_thread() getrusage: move thread_group_cputime_adjusted() outside of lock_task_sighand() getrusage: add the "signal_struct *sig" local variable y2038: rusage: use __kernel_old_timeval hv_netvsc: Register VF in netvsc_probe if NET_DEVICE_REGISTER missed hv_netvsc: use netif_is_bond_master() instead of open code hv_netvsc: Make netvsc/VF binding check both MAC and serial number Input: i8042 - fix strange behavior of touchpad on Clevo NS70PU serial: max310x: prevent infinite while() loop in port startup serial: max310x: use a separate regmap for each port serial: max310x: use regmap methods for SPI batch operations serial: max310x: Make use of device properties serial: max310x: fail probe if clock crystal is unstable serial: max310x: Try to get crystal clock rate from property serial: max310x: Use devm_clk_get_optional() to get the input clock um: allow not setting extra rpaths in the linux binary selftests: mm: fix map_hugetlb failure on 64K page size systems netrom: Fix data-races around sysctl_net_busy_read netrom: Fix a data-race around sysctl_netrom_link_fails_count netrom: Fix a data-race around sysctl_netrom_routing_control netrom: Fix a data-race around sysctl_netrom_transport_no_activity_timeout netrom: Fix a data-race around sysctl_netrom_transport_requested_window_size netrom: Fix a data-race around sysctl_netrom_transport_busy_delay netrom: Fix a data-race around sysctl_netrom_transport_acknowledge_delay netrom: Fix a data-race around sysctl_netrom_transport_maximum_tries netrom: Fix a data-race around sysctl_netrom_transport_timeout netrom: Fix data-races around sysctl_netrom_network_ttl_initialiser netrom: Fix a data-race around sysctl_netrom_obsolescence_count_initialiser netrom: Fix a data-race around sysctl_netrom_default_path_quality netfilter: nf_conntrack_h323: Add protection for bmp length out of range netfilter: nft_ct: fix l3num expectations with inet pseudo family net/rds: fix WARNING in rds_conn_connect_if_down net/ipv6: avoid possible UAF in ip6_route_mpath_notify() net: ice: Fix potential NULL pointer dereference in ice_bridge_setlink() geneve: make sure to pull inner header in geneve_rx() ixgbe: {dis, en}able irqs in ixgbe_txrx_ring_{dis, en}able net: lan78xx: fix runtime PM count underflow on link stop lan78xx: Fix race conditions in suspend/resume handling lan78xx: Fix partial packet errors on suspend/resume lan78xx: Add missing return code checks lan78xx: Fix white space and style issues Linux 5.4.271 gpio: 74x164: Enable output pins after registers are reset fs,hugetlb: fix NULL pointer dereference in hugetlbs_fill_super cachefiles: fix memory leak in cachefiles_add_cache() x86/cpu/intel: Detect TME keyid bits before setting MTRR mask registers mmc: core: Fix eMMC initialization with 1-bit bus connection dmaengine: fsl-qdma: init irq after reg initialization dmaengine: fsl-qdma: fix SoC may hang on 16 byte unaligned read btrfs: dev-replace: properly validate device names wifi: nl80211: reject iftype change with mesh ID change gtp: fix use-after-free and null-ptr-deref in gtp_newlink() afs: Fix endless loop in directory parsing ALSA: Drop leftover snd-rtctimer stuff from Makefile power: supply: bq27xxx-i2c: Do not free non existing IRQ efi/capsule-loader: fix incorrect allocation size rtnetlink: fix error logic of IFLA_BRIDGE_FLAGS writing back netfilter: nf_tables: allow NFPROTO_INET in nft_(match/target)_validate() Bluetooth: Enforce validation on max value of connection interval Bluetooth: hci_event: Fix handling of HCI_EV_IO_CAPA_REQUEST Bluetooth: Avoid potential use-after-free in hci_error_reset net: usb: dm9601: fix wrong return value in dm9601_mdio_read lan78xx: enable auto speed configuration for LAN7850 if no EEPROM is detected ipv6: fix potential "struct net" leak in inet6_rtm_getaddr() tun: Fix xdp_rxq_info's queue_index when detaching net: ip_tunnel: prevent perpetual headroom growth netlink: Fix kernel-infoleak-after-free in __skb_datagram_iter ANDROID: GKI: update .xml file due to USB changes in 5.4.270 Revert "bpf: Add map and need_defer parameters to .map_fd_put_ptr()" Revert "hrtimer: Report offline hrtimer enqueue" Revert "drm/mipi-dsi: Fix detach call without attach" Linux 5.4.270 scripts/bpf: Fix xdp_md forward declaration typo fs/aio: Restrict kiocb_set_cancel_fn() to I/O submitted via libaio drm/syncobj: call drm_syncobj_fence_add_wait when WAIT_AVAILABLE flag is set drm/syncobj: make lockdep complain on WAIT_FOR_SUBMIT v3 netfilter: nf_tables: set dormant flag on hook register failure tls: stop recv() if initial process_rx_list gave us non-DATA tls: rx: drop pointless else after goto tls: rx: jump to a more appropriate label s390: use the correct count for __iowrite64_copy() packet: move from strlcpy with unused retval to strscpy ipv6: sr: fix possible use-after-free and null-ptr-deref afs: Increase buffer size in afs_update_volume_status() ipv6: properly combine dev_base_seq and ipv6.dev_addr_genid ipv4: properly combine dev_base_seq and ipv4.dev_addr_genid nouveau: fix function cast warnings scsi: jazz_esp: Only build if SCSI core is builtin bpf, scripts: Correct GPL license name scripts/bpf: teach bpf_helpers_doc.py to dump BPF helper definitions RDMA/srpt: fix function pointer cast warnings RDMA/srpt: Make debug output more detailed RDMA/bnxt_re: Return error for SRQ resize IB/hfi1: Fix a memleak in init_credit_return usb: roles: don't get/set_role() when usb_role_switch is unregistered usb: gadget: ncm: Avoid dropping datagrams of properly parsed NTBs usb: cdns3: fix memory double free when handle zero packet usb: cdns3: fixed memory use after free at cdns3_gadget_ep_disable() ARM: ep93xx: Add terminator to gpiod_lookup_table l2tp: pass correct message length to ip6_append_data PCI/MSI: Prevent MSI hardware interrupt number truncation gtp: fix use-after-free and null-ptr-deref in gtp_genl_dump_pdp() dm-crypt: don't modify the data when using authenticated encryption IB/hfi1: Fix sdma.h tx->num_descs off-by-one error PCI: tegra: Fix OF node reference leak PCI: tegra: Fix reporting GPIO error value arm64: dts: qcom: msm8916: Fix typo in pronto remoteproc node drm/amdgpu: Fix type of second parameter in trans_msg() callback iomap: Set all uptodate bits for an Uptodate page dm-integrity: don't modify bio's immutable bio_vec in integrity_metadata() x86/alternatives: Disable KASAN in apply_alternatives() drm/amdgpu: Check for valid number of registers to read Revert "drm/sun4i: dsi: Change the start delay calculation" ALSA: hda/realtek - Enable micmute LED on and HP system selftests/bpf: Avoid running unprivileged tests with alignment requirements net: bridge: clear bridge's private skb space on xmit spi: mt7621: Fix an error message in mt7621_spi_probe() pinctrl: rockchip: Fix refcount leak in rockchip_pinctrl_parse_groups pinctrl: pinctrl-rockchip: Fix a bunch of kerneldoc misdemeanours tcp: add annotations around sk->sk_shutdown accesses tcp: return EPOLLOUT from tcp_poll only when notsent_bytes is half the limit tcp: factor out __tcp_close() helper pmdomain: renesas: r8a77980-sysc: CR7 must be always on s390/qeth: Fix potential loss of L3-IP@ in case of network issues virtio-blk: Ensure no requests in virtqueues before deleting vqs. firewire: core: send bus reset promptly on gap count error scsi: lpfc: Use unsigned type for num_sge hwmon: (coretemp) Enlarge per package core count limit nvmet-fc: abort command when there is no binding netfilter: conntrack: check SCTP_CID_SHUTDOWN_ACK for vtag setting in sctp_new ASoC: sunxi: sun4i-spdif: Add support for Allwinner H616 nvmet-tcp: fix nvme tcp ida memory leak regulator: pwm-regulator: Add validity checks in continuous .get_voltage ext4: avoid allocating blocks from corrupted group in ext4_mb_find_by_goal() ext4: avoid allocating blocks from corrupted group in ext4_mb_try_best_found() ahci: add 43-bit DMA address quirk for ASMedia ASM1061 controllers ahci: asm1166: correct count of reported ports fbdev: sis: Error out if pixclock equals zero fbdev: savage: Error out if pixclock equals zero wifi: mac80211: fix race condition on enabling fast-xmit wifi: cfg80211: fix missing interfaces when dumping dmaengine: fsl-qdma: increase size of 'irq_name' dmaengine: shdma: increase size of 'dev_id' scsi: target: core: Add TMF to tmr_list handling sched/rt: Disallow writing invalid values to sched_rt_period_us sched/rt: Fix sysctl_sched_rr_timeslice intial value userfaultfd: fix mmap_changing checking in mfill_atomic_hugetlb nilfs2: replace WARN_ONs for invalid DAT metadata block requests memcg: add refcnt for pcpu stock to avoid UAF problem in drain_all_stock() sched/rt: sysctl_sched_rr_timeslice show default timeslice after reset net/sched: Retire dsmark qdisc net/sched: Retire ATM qdisc net/sched: Retire CBQ qdisc KVM: arm64: vgic-its: Test for valid IRQ in MOVALL handler KVM: arm64: vgic-its: Test for valid IRQ in its_sync_lpi_pending_table() Linux 5.4.269 of: gpio unittest kfree() wrong object of: unittest: fix EXPECT text for gpio hog errors net: bcmgenet: Fix EEE implementation Revert "Revert "mtd: rawnand: gpmi: Fix setting busy timeout setting"" netfilter: nf_tables: fix pointer math issue in nft_byteorder_eval() lsm: new security_file_ioctl_compat() hook drm/msm/dsi: Enable runtime PM PM: runtime: Have devm_pm_runtime_enable() handle pm_runtime_dont_use_autosuspend() PM: runtime: add devm_pm_runtime_enable helper nilfs2: fix potential bug in end_buffer_async_write sched/membarrier: reduce the ability to hammer on sys_membarrier net: prevent mss overflow in skb_segment() netfilter: ipset: Missing gc cancellations fixed netfilter: ipset: fix performance regression in swap operation KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache mips: Fix max_mapnr being uninitialized on early stages arch, mm: remove stale mentions of DISCONIGMEM bus: moxtet: Add spi device table Revert "md/raid5: Wait for MD_SB_CHANGE_PENDING in raid5d" tracing: Inform kmemleak of saved_cmdlines allocation pmdomain: core: Move the unused cleanup to a _sync initcall can: j1939: Fix UAF in j1939_sk_match_filter during setsockopt(SO_J1939_FILTER) irqchip/irq-brcmstb-l2: Add write memory barrier before exit nfp: flower: prevent re-adding mac index for bonded port nfp: use correct macro for LengthSelect in BAR config nilfs2: fix hang in nilfs_lookup_dirty_data_buffers() nilfs2: fix data corruption in dsync block recovery for small block sizes ALSA: hda/conexant: Add quirk for SWS JS201D mmc: slot-gpio: Allow non-sleeping GPIO ro x86/mm/ident_map: Use gbpages only where full GB page should be mapped. x86/Kconfig: Transmeta Crusoe is CPU family 5, not 6 serial: max310x: improve crystal stable clock detection serial: max310x: set default value when reading clock ready bit ring-buffer: Clean ring_buffer_poll_wait() error return iio: magnetometer: rm3100: add boundary check for the value read from RM3100_REG_TMRC staging: iio: ad5933: fix type mismatch regression tracing: Fix wasted memory in saved_cmdlines logic ext4: fix double-free of blocks due to wrong extents moved_len misc: fastrpc: Mark all sessions as invalid in cb_remove binder: signal epoll threads of self-work ALSA: hda/realtek: Enable headset mic on Vaio VJFE-ADL xen-netback: properly sync TX responses nfc: nci: free rx_data_reassembly skb on NCI device cleanup kbuild: Fix changing ELF file type for output of gen_btf for big endian firewire: core: correct documentation of fw_csr_string() kernel API scsi: Revert "scsi: fcoe: Fix potential deadlock on &fip->ctlr_lock" i2c: i801: Fix block process call transactions i2c: i801: Remove i801_set_block_buffer_mode usb: f_mass_storage: forbid async queue when shutdown happen USB: hub: check for alternate port before enabling A_ALT_HNP_SUPPORT HID: wacom: Do not register input devices until after hid_hw_start HID: wacom: generic: Avoid reporting a serial of '0' to userspace mm/writeback: fix possible divide-by-zero in wb_dirty_limits(), again tracing/trigger: Fix to return error if failed to alloc snapshot i40e: Fix waiting for queues of all VSIs to be disabled MIPS: Add 'memory' clobber to csum_ipv6_magic() inline assembler ASoC: rt5645: Fix deadlock in rt5645_jack_detect_work() spi: ppc4xx: Drop write-only variable of: unittest: Fix compile in the non-dynamic case of: unittest: add overlay gpio test to catch gpio hog problem btrfs: send: return EOPNOTSUPP on unknown flags btrfs: forbid deleting live subvol qgroup btrfs: forbid creating subvol qgroups netfilter: nft_set_rbtree: skip end interval element from gc net: stmmac: xgmac: fix a typo of register name in DPP safety handling net: stmmac: xgmac: use #define for string constants vhost: use kzalloc() instead of kmalloc() followed by memset() Input: atkbd - skip ATKBD_CMD_SETLEDS when skipping ATKBD_CMD_GETID hrtimer: Report offline hrtimer enqueue USB: serial: cp210x: add ID for IMST iM871A-USB USB: serial: option: add Fibocom FM101-GL variant USB: serial: qcserial: add new usb-id for Dell Wireless DW5826e net/af_iucv: clean up a try_then_request_module() netfilter: nft_ct: reject direction for ct id netfilter: nft_compat: restrict match/target protocol to u16 netfilter: nft_compat: reject unused compat flag ppp_async: limit MRU to 64K tipc: Check the bearer type before calling tipc_udp_nl_bearer_add() rxrpc: Fix response to PING RESPONSE ACKs to a dead call inet: read sk->sk_family once in inet_recv_error() hwmon: (coretemp) Fix bogus core_id to attr name mapping hwmon: (coretemp) Fix out-of-bounds memory access hwmon: (aspeed-pwm-tacho) mutex for tach reading atm: idt77252: fix a memleak in open_card_ubr0 selftests: net: avoid just another constant wait net: stmmac: xgmac: fix handling of DPP safety error for DMA channels phy: ti: phy-omap-usb2: Fix NULL pointer dereference for SRP dmaengine: fix is_slave_direction() return false when DMA_DEV_TO_DEV phy: renesas: rcar-gen3-usb2: Fix returning wrong error code dmaengine: fsl-qdma: Fix a memory leak related to the queue command DMA dmaengine: fsl-qdma: Fix a memory leak related to the status queue DMA bonding: remove print in bond_verify_device_path HID: apple: Add 2021 magic keyboard FN key mapping HID: apple: Swap the Fn and Left Control keys on Apple keyboards HID: apple: Add support for the 2021 Magic Keyboard net: sysfs: Fix /sys/class/net/<iface> path af_unix: fix lockdep positive in sk_diag_dump_icons() net: ipv4: fix a memleak in ip_setup_cork netfilter: nft_ct: sanitize layer 3 and 4 protocol number in custom expectations netfilter: nf_log: replace BUG_ON by WARN_ON_ONCE when putting logger llc: call sock_orphan() at release time ipv6: Ensure natural alignment of const ipv6 loopback and router addresses ixgbe: Fix an error handling path in ixgbe_read_iosf_sb_reg_x550() ixgbe: Refactor overtemp event handling ixgbe: Refactor returning internal error codes ixgbe: Remove non-inclusive language net: remove unneeded break scsi: isci: Fix an error code problem in isci_io_request_build() wifi: cfg80211: fix RCU dereference in __cfg80211_bss_update perf: Fix the nr_addr_filters fix drm/amdgpu: Release 'adev->pm.fw' before return in 'amdgpu_device_need_post()' ceph: fix deadlock or deadcode of misusing dget() blk-mq: fix IO hang from sbitmap wakeup race virtio_net: Fix "‘%d’ directive writing between 1 and 11 bytes into a region of size 10" warnings libsubcmd: Fix memory leak in uniq() PCI/AER: Decode Requester ID when no error info found fs/kernfs/dir: obey S_ISGID usb: hub: Replace hardcoded quirk value with BIT() macro PCI: switchtec: Fix stdev_release() crash after surprise hot remove PCI: Only override AMD USB controller if required mfd: ti_am335x_tscadc: Fix TI SoC dependencies i3c: master: cdns: Update maximum prescaler value for i2c clock um: net: Fix return type of uml_net_start_xmit() um: Don't use vfprintf() for os_info() um: Fix naming clash between UML and scheduler leds: trigger: panic: Don't register panic notifier if creating the trigger failed drm/amdgpu: Drop 'fence' check in 'to_amdgpu_amdkfd_fence()' drm/amdgpu: Let KFD sync with VM fences clk: mmp: pxa168: Fix memory leak in pxa168_clk_init() clk: hi3620: Fix memory leak in hi3620_mmc_clk_init() drm/msm/dpu: Ratelimit framedone timeout msgs media: ddbridge: fix an error code problem in ddb_probe IB/ipoib: Fix mcast list locking drm/exynos: Call drm_atomic_helper_shutdown() at shutdown/unbind time ALSA: hda: Intel: add HDA_ARL PCI ID support PCI: add INTEL_HDA_ARL to pci_ids.h media: rockchip: rga: fix swizzling for RGB formats media: stk1160: Fixed high volume of stk1160_dbg messages drm/mipi-dsi: Fix detach call without attach drm/framebuffer: Fix use of uninitialized variable drm/drm_file: fix use of uninitialized variable RDMA/IPoIB: Fix error code return in ipoib_mcast_join fast_dput(): handle underflows gracefully ASoC: doc: Fix undefined SND_SOC_DAPM_NOPM argument f2fs: fix to check return value of f2fs_reserve_new_block() wifi: cfg80211: free beacon_ies when overridden from hidden BSS wifi: rtlwifi: rtl8723{be,ae}: using calculate_bit_shift() wifi: rtl8xxxu: Add additional USB IDs for RTL8192EU devices arm64: dts: qcom: msm8998: Fix 'out-ports' is a required property arm64: dts: qcom: msm8996: Fix 'in-ports' is a required property md: Whenassemble the array, consult the superblock of the freshest device block: prevent an integer overflow in bvec_try_merge_hw_page ARM: dts: imx23/28: Fix the DMA controller node name ARM: dts: imx23-sansa: Use preferred i2c-gpios properties ARM: dts: imx27-apf27dev: Fix LED name ARM: dts: imx25/27: Pass timing0 ARM: dts: imx1: Fix sram node ARM: dts: imx27: Fix sram node ARM: dts: imx: Use flash@0,0 pattern ARM: dts: imx25/27-eukrea: Fix RTC node name ARM: dts: rockchip: fix rk3036 hdmi ports node scsi: libfc: Fix up timeout error in fc_fcp_rec_error() scsi: libfc: Don't schedule abort twice bpf: Add map and need_defer parameters to .map_fd_put_ptr() wifi: ath9k: Fix potential array-index-out-of-bounds read in ath9k_htc_txstatus() ARM: dts: imx7s: Fix nand-controller #size-cells ARM: dts: imx7s: Fix lcdif compatible ARM: dts: imx7d: Fix coresight funnel ports bonding: return -ENOMEM instead of BUG in alb_upper_dev_walk PCI: Add no PM reset quirk for NVIDIA Spectrum devices scsi: lpfc: Fix possible file string name overflow when updating firmware selftests/bpf: Fix pyperf180 compilation failure with clang18 selftests/bpf: satisfy compiler by having explicit return in btf test wifi: rt2x00: restart beacon queue when hardware reset ext4: avoid online resizing failures due to oversized flex bg ext4: remove unnecessary check from alloc_flex_gd() ext4: unify the type of flexbg_size to unsigned int ext4: fix inconsistent between segment fstrim and full fstrim ecryptfs: Reject casefold directory inodes SUNRPC: Fix a suspicious RCU usage warning KVM: s390: fix setting of fpc register s390/ptrace: handle setting of fpc register correctly jfs: fix array-index-out-of-bounds in diNewExt rxrpc_find_service_conn_rcu: fix the usage of read_seqbegin_or_lock() afs: fix the usage of read_seqbegin_or_lock() in afs_find_server*() crypto: stm32/crc32 - fix parsing list of devices pstore/ram: Fix crash when setting number of cpus to an odd number jfs: fix uaf in jfs_evict_inode jfs: fix array-index-out-of-bounds in dbAdjTree jfs: fix slab-out-of-bounds Read in dtSearch UBSAN: array-index-out-of-bounds in dtSplitRoot FS:JFS:UBSAN:array-index-out-of-bounds in dbAdjTree ACPI: extlog: fix NULL pointer dereference check PNP: ACPI: fix fortify warning ACPI: video: Add quirk for the Colorful X15 AT 23 Laptop audit: Send netlink ACK before setting connection in auditd_set regulator: core: Only increment use_count when enable_count changes perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file x86/mce: Mark fatal MCE's page as poison to avoid panic in the kdump kernel powerpc/lib: Validate size for vector operations powerpc: pmd_move_must_withdraw() is only needed for CONFIG_TRANSPARENT_HUGEPAGE powerpc/mm: Fix build failures due to arch_reserved_kernel_pages() powerpc: Fix build error due to is_valid_bugaddr() powerpc/mm: Fix null-pointer dereference in pgtable_cache_add x86/entry/ia32: Ensure s32 is sign extended to s64 tick/sched: Preserve number of idle sleeps across CPU hotplug events mips: Call lose_fpu(0) before initializing fcr31 in mips_set_personality_nan spi: bcm-qspi: fix SFDP BFPT read by usig mspi read gpio: eic-sprd: Clear interrupt after set the interrupt type drm/exynos: gsc: minor fix for loop iteration in gsc_runtime_resume drm/exynos: fix accidental on-stack copy of exynos_drm_plane drm/bridge: nxp-ptn3460: simplify some error checking drm/bridge: nxp-ptn3460: fix i2c_master_send() error checking drm: Don't unref the same fb many times by mistake due to deadlock handling gpiolib: acpi: Ignore touchpad wakeup on GPD G1619-04 netfilter: nf_tables: reject QUEUE/DROP verdict parameters rbd: don't move requests to the running list on errors btrfs: defrag: reject unknown flags of btrfs_ioctl_defrag_range_args btrfs: don't warn if discard range is not aligned to sector btrfs: tree-checker: fix inline ref size in error messages btrfs: ref-verify: free ref cache before clearing mount opt net: fec: fix the unhandled context fault from smmu fjes: fix memleaks in fjes_hw_setup netfilter: nf_tables: validate NFPROTO_* family netfilter: nf_tables: restrict anonymous set and map names to 16 bytes net/mlx5e: fix a double-free in arfs_create_groups net/mlx5: Use kfree(ft->g) in arfs_create_groups() net/mlx5: DR, Use the right GVMI number for drop action netlink: fix potential sleeping issue in mqueue_flush_file tcp: Add memory barrier to tcp_push() afs: Hide silly-rename files from userspace tracing: Ensure visibility when inserting an element into tracing_map net/rds: Fix UBSAN: array-index-out-of-bounds in rds_cmsg_recv llc: Drop support for ETH_P_TR_802_2. llc: make llc_ui_sendmsg() more robust against bonding changes vlan: skip nested type that is not IFLA_VLAN_QOS_MAPPING net/smc: fix illegal rmb_desc access in SMC-D connection dump x86/CPU/AMD: Fix disabling XSAVES on AMD family 0x17 due to erratum powerpc: Use always instead of always-y in for crtsavres.o fs: move S_ISGID stripping into the vfs_*() helpers fs: add mode_strip_sgid() helper mtd: spinand: macronix: Fix MX35LFxGE4AD page size block: Remove special-casing of compound pages rename(): fix the locking of subdirectories ubifs: ubifs_symlink: Fix memleak of inode->i_link in error path nouveau/vmm: don't set addr on the fail path to avoid warning mmc: core: Use mrq.sbc in close-ended ffu arm64: dts: qcom: sdm845: fix USB wakeup interrupt types parisc/firmware: Fix F-extend for PDC addresses rpmsg: virtio: Free driver_override when rpmsg_remove() hwrng: core - Fix page fault dead lock on mmap-ed hwrng PM: hibernate: Enforce ordering during image compression/decompression crypto: api - Disallow identical driver names ext4: allow for the last group to be marked as trimmed serial: sc16is7xx: add check for unsupported SPI modes during probe spi: introduce SPI_MODE_X_MASK macro serial: sc16is7xx: set safe default SPI clock frequency units: add the HZ macros units: change from 'L' to 'UL' units: Add Watt units include/linux/units.h: add helpers for kelvin to/from Celsius conversion PCI: mediatek: Clear interrupt status before dispatching handler Conflicts: include/linux/timer.h mm/memory-failure.c Change-Id: I4974903c79ecddc3d9225b0b723a30b6c83ef572
3155 lines
74 KiB
C
3155 lines
74 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
|
|
* policies)
|
|
*/
|
|
#include "sched.h"
|
|
|
|
#include "pelt.h"
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <trace/events/sched.h>
|
|
|
|
#include "walt/walt.h"
|
|
|
|
#include <trace/hooks/sched.h>
|
|
|
|
int sched_rr_timeslice = RR_TIMESLICE;
|
|
int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
|
|
/* More than 4 hours if BW_SHIFT equals 20. */
|
|
static const u64 max_rt_runtime = MAX_BW;
|
|
|
|
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
|
|
|
|
struct rt_bandwidth def_rt_bandwidth;
|
|
|
|
static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
|
|
{
|
|
struct rt_bandwidth *rt_b =
|
|
container_of(timer, struct rt_bandwidth, rt_period_timer);
|
|
int idle = 0;
|
|
int overrun;
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
for (;;) {
|
|
overrun = hrtimer_forward_now(timer, rt_b->rt_period);
|
|
if (!overrun)
|
|
break;
|
|
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
idle = do_sched_rt_period_timer(rt_b, overrun);
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
}
|
|
if (idle)
|
|
rt_b->rt_period_active = 0;
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
|
|
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
|
|
}
|
|
|
|
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
|
|
{
|
|
rt_b->rt_period = ns_to_ktime(period);
|
|
rt_b->rt_runtime = runtime;
|
|
|
|
raw_spin_lock_init(&rt_b->rt_runtime_lock);
|
|
|
|
hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
|
|
HRTIMER_MODE_REL_HARD);
|
|
rt_b->rt_period_timer.function = sched_rt_period_timer;
|
|
}
|
|
|
|
static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
|
|
{
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
if (!rt_b->rt_period_active) {
|
|
rt_b->rt_period_active = 1;
|
|
/*
|
|
* SCHED_DEADLINE updates the bandwidth, as a run away
|
|
* RT task with a DL task could hog a CPU. But DL does
|
|
* not reset the period. If a deadline task was running
|
|
* without an RT task running, it can cause RT tasks to
|
|
* throttle when they start up. Kick the timer right away
|
|
* to update the period.
|
|
*/
|
|
hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
|
|
hrtimer_start_expires(&rt_b->rt_period_timer,
|
|
HRTIMER_MODE_ABS_PINNED_HARD);
|
|
}
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
}
|
|
|
|
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
|
|
{
|
|
if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
|
|
return;
|
|
|
|
do_start_rt_bandwidth(rt_b);
|
|
}
|
|
|
|
void init_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_prio_array *array;
|
|
int i;
|
|
|
|
array = &rt_rq->active;
|
|
for (i = 0; i < MAX_RT_PRIO; i++) {
|
|
INIT_LIST_HEAD(array->queue + i);
|
|
__clear_bit(i, array->bitmap);
|
|
}
|
|
/* delimiter for bitsearch: */
|
|
__set_bit(MAX_RT_PRIO, array->bitmap);
|
|
|
|
#if defined CONFIG_SMP
|
|
rt_rq->highest_prio.curr = MAX_RT_PRIO;
|
|
rt_rq->highest_prio.next = MAX_RT_PRIO;
|
|
rt_rq->rt_nr_migratory = 0;
|
|
rt_rq->overloaded = 0;
|
|
plist_head_init(&rt_rq->pushable_tasks);
|
|
#endif /* CONFIG_SMP */
|
|
/* We start is dequeued state, because no RT tasks are queued */
|
|
rt_rq->rt_queued = 0;
|
|
|
|
rt_rq->rt_time = 0;
|
|
rt_rq->rt_throttled = 0;
|
|
rt_rq->rt_runtime = 0;
|
|
raw_spin_lock_init(&rt_rq->rt_runtime_lock);
|
|
}
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
|
|
{
|
|
hrtimer_cancel(&rt_b->rt_period_timer);
|
|
}
|
|
|
|
#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
|
|
|
|
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
|
|
{
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
WARN_ON_ONCE(!rt_entity_is_task(rt_se));
|
|
#endif
|
|
return container_of(rt_se, struct task_struct, rt);
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rq;
|
|
}
|
|
|
|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
return rt_se->rt_rq;
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *rt_rq = rt_se->rt_rq;
|
|
|
|
return rt_rq->rq;
|
|
}
|
|
|
|
void free_rt_sched_group(struct task_group *tg)
|
|
{
|
|
int i;
|
|
|
|
if (tg->rt_se)
|
|
destroy_rt_bandwidth(&tg->rt_bandwidth);
|
|
|
|
for_each_possible_cpu(i) {
|
|
if (tg->rt_rq)
|
|
kfree(tg->rt_rq[i]);
|
|
if (tg->rt_se)
|
|
kfree(tg->rt_se[i]);
|
|
}
|
|
|
|
kfree(tg->rt_rq);
|
|
kfree(tg->rt_se);
|
|
}
|
|
|
|
void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
|
|
struct sched_rt_entity *rt_se, int cpu,
|
|
struct sched_rt_entity *parent)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
rt_rq->highest_prio.curr = MAX_RT_PRIO;
|
|
rt_rq->rt_nr_boosted = 0;
|
|
rt_rq->rq = rq;
|
|
rt_rq->tg = tg;
|
|
|
|
tg->rt_rq[cpu] = rt_rq;
|
|
tg->rt_se[cpu] = rt_se;
|
|
|
|
if (!rt_se)
|
|
return;
|
|
|
|
if (!parent)
|
|
rt_se->rt_rq = &rq->rt;
|
|
else
|
|
rt_se->rt_rq = parent->my_q;
|
|
|
|
rt_se->my_q = rt_rq;
|
|
rt_se->parent = parent;
|
|
INIT_LIST_HEAD(&rt_se->run_list);
|
|
}
|
|
|
|
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
|
|
{
|
|
struct rt_rq *rt_rq;
|
|
struct sched_rt_entity *rt_se;
|
|
int i;
|
|
|
|
tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
|
|
if (!tg->rt_rq)
|
|
goto err;
|
|
tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
|
|
if (!tg->rt_se)
|
|
goto err;
|
|
|
|
init_rt_bandwidth(&tg->rt_bandwidth,
|
|
ktime_to_ns(def_rt_bandwidth.rt_period), 0);
|
|
|
|
for_each_possible_cpu(i) {
|
|
rt_rq = kzalloc_node(sizeof(struct rt_rq),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
if (!rt_rq)
|
|
goto err;
|
|
|
|
rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
if (!rt_se)
|
|
goto err_free_rq;
|
|
|
|
init_rt_rq(rt_rq);
|
|
rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
|
|
init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
|
|
}
|
|
|
|
return 1;
|
|
|
|
err_free_rq:
|
|
kfree(rt_rq);
|
|
err:
|
|
return 0;
|
|
}
|
|
|
|
#else /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#define rt_entity_is_task(rt_se) (1)
|
|
|
|
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
|
|
{
|
|
return container_of(rt_se, struct task_struct, rt);
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
return container_of(rt_rq, struct rq, rt);
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct task_struct *p = rt_task_of(rt_se);
|
|
|
|
return task_rq(p);
|
|
}
|
|
|
|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rq *rq = rq_of_rt_se(rt_se);
|
|
|
|
return &rq->rt;
|
|
}
|
|
|
|
void free_rt_sched_group(struct task_group *tg) { }
|
|
|
|
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static void pull_rt_task(struct rq *this_rq);
|
|
|
|
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
/*
|
|
* Try to pull RT tasks here if we lower this rq's prio and cpu is not
|
|
* isolated
|
|
*/
|
|
return rq->rt.highest_prio.curr > prev->prio &&
|
|
!cpu_isolated(cpu_of(rq));
|
|
}
|
|
|
|
static inline int rt_overloaded(struct rq *rq)
|
|
{
|
|
return atomic_read(&rq->rd->rto_count);
|
|
}
|
|
|
|
static inline void rt_set_overload(struct rq *rq)
|
|
{
|
|
if (!rq->online)
|
|
return;
|
|
|
|
cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
|
|
/*
|
|
* Make sure the mask is visible before we set
|
|
* the overload count. That is checked to determine
|
|
* if we should look at the mask. It would be a shame
|
|
* if we looked at the mask, but the mask was not
|
|
* updated yet.
|
|
*
|
|
* Matched by the barrier in pull_rt_task().
|
|
*/
|
|
smp_wmb();
|
|
atomic_inc(&rq->rd->rto_count);
|
|
}
|
|
|
|
static inline void rt_clear_overload(struct rq *rq)
|
|
{
|
|
if (!rq->online)
|
|
return;
|
|
|
|
/* the order here really doesn't matter */
|
|
atomic_dec(&rq->rd->rto_count);
|
|
cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
|
|
}
|
|
|
|
static void update_rt_migration(struct rt_rq *rt_rq)
|
|
{
|
|
if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
|
|
if (!rt_rq->overloaded) {
|
|
rt_set_overload(rq_of_rt_rq(rt_rq));
|
|
rt_rq->overloaded = 1;
|
|
}
|
|
} else if (rt_rq->overloaded) {
|
|
rt_clear_overload(rq_of_rt_rq(rt_rq));
|
|
rt_rq->overloaded = 0;
|
|
}
|
|
}
|
|
|
|
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!rt_entity_is_task(rt_se))
|
|
return;
|
|
|
|
p = rt_task_of(rt_se);
|
|
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
|
|
|
|
rt_rq->rt_nr_total++;
|
|
if (p->nr_cpus_allowed > 1)
|
|
rt_rq->rt_nr_migratory++;
|
|
|
|
update_rt_migration(rt_rq);
|
|
}
|
|
|
|
static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!rt_entity_is_task(rt_se))
|
|
return;
|
|
|
|
p = rt_task_of(rt_se);
|
|
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
|
|
|
|
rt_rq->rt_nr_total--;
|
|
if (p->nr_cpus_allowed > 1)
|
|
rt_rq->rt_nr_migratory--;
|
|
|
|
update_rt_migration(rt_rq);
|
|
}
|
|
|
|
static inline int has_pushable_tasks(struct rq *rq)
|
|
{
|
|
return !plist_head_empty(&rq->rt.pushable_tasks);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct callback_head, rt_push_head);
|
|
static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
|
|
|
|
static void push_rt_tasks(struct rq *);
|
|
static void pull_rt_task(struct rq *);
|
|
|
|
static inline void rt_queue_push_tasks(struct rq *rq)
|
|
{
|
|
if (!has_pushable_tasks(rq))
|
|
return;
|
|
|
|
queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
|
|
}
|
|
|
|
static inline void rt_queue_pull_task(struct rq *rq)
|
|
{
|
|
queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
|
|
}
|
|
|
|
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
plist_node_init(&p->pushable_tasks, p->prio);
|
|
plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
|
|
/* Update the highest prio pushable task */
|
|
if (p->prio < rq->rt.highest_prio.next)
|
|
rq->rt.highest_prio.next = p->prio;
|
|
}
|
|
|
|
static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
|
|
/* Update the new highest prio pushable task */
|
|
if (has_pushable_tasks(rq)) {
|
|
p = plist_first_entry(&rq->rt.pushable_tasks,
|
|
struct task_struct, pushable_tasks);
|
|
rq->rt.highest_prio.next = p->prio;
|
|
} else
|
|
rq->rt.highest_prio.next = MAX_RT_PRIO;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
}
|
|
|
|
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void pull_rt_task(struct rq *this_rq)
|
|
{
|
|
}
|
|
|
|
static inline void rt_queue_push_tasks(struct rq *rq)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
|
|
static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
|
|
|
|
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
|
|
{
|
|
return rt_se->on_rq;
|
|
}
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
/*
|
|
* Verify the fitness of task @p to run on @cpu taking into account the uclamp
|
|
* settings.
|
|
*
|
|
* This check is only important for heterogeneous systems where uclamp_min value
|
|
* is higher than the capacity of a @cpu. For non-heterogeneous system this
|
|
* function will always return true.
|
|
*
|
|
* The function will return true if the capacity of the @cpu is >= the
|
|
* uclamp_min and false otherwise.
|
|
*
|
|
* Note that uclamp_min will be clamped to uclamp_max if uclamp_min
|
|
* > uclamp_max.
|
|
*/
|
|
static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
|
|
{
|
|
unsigned int min_cap;
|
|
unsigned int max_cap;
|
|
unsigned int cpu_cap;
|
|
|
|
/* Only heterogeneous systems can benefit from this check */
|
|
if (!static_branch_unlikely(&sched_asym_cpucapacity))
|
|
return true;
|
|
|
|
min_cap = uclamp_eff_value(p, UCLAMP_MIN);
|
|
max_cap = uclamp_eff_value(p, UCLAMP_MAX);
|
|
|
|
cpu_cap = capacity_orig_of(cpu);
|
|
|
|
return cpu_cap >= min(min_cap, max_cap);
|
|
}
|
|
#else
|
|
static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
|
|
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
if (!rt_rq->tg)
|
|
return RUNTIME_INF;
|
|
|
|
return rt_rq->rt_runtime;
|
|
}
|
|
|
|
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
|
|
{
|
|
return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
|
|
}
|
|
|
|
typedef struct task_group *rt_rq_iter_t;
|
|
|
|
static inline struct task_group *next_task_group(struct task_group *tg)
|
|
{
|
|
do {
|
|
tg = list_entry_rcu(tg->list.next,
|
|
typeof(struct task_group), list);
|
|
} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
|
|
|
|
if (&tg->list == &task_groups)
|
|
tg = NULL;
|
|
|
|
return tg;
|
|
}
|
|
|
|
#define for_each_rt_rq(rt_rq, iter, rq) \
|
|
for (iter = container_of(&task_groups, typeof(*iter), list); \
|
|
(iter = next_task_group(iter)) && \
|
|
(rt_rq = iter->rt_rq[cpu_of(rq)]);)
|
|
|
|
#define for_each_sched_rt_entity(rt_se) \
|
|
for (; rt_se; rt_se = rt_se->parent)
|
|
|
|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
|
|
{
|
|
return rt_se->my_q;
|
|
}
|
|
|
|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
|
|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
|
|
|
|
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
|
|
{
|
|
struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
struct sched_rt_entity *rt_se;
|
|
|
|
int cpu = cpu_of(rq);
|
|
|
|
rt_se = rt_rq->tg->rt_se[cpu];
|
|
|
|
if (rt_rq->rt_nr_running) {
|
|
if (!rt_se)
|
|
enqueue_top_rt_rq(rt_rq);
|
|
else if (!on_rt_rq(rt_se))
|
|
enqueue_rt_entity(rt_se, 0);
|
|
|
|
if (rt_rq->highest_prio.curr < curr->prio)
|
|
resched_curr(rq);
|
|
}
|
|
}
|
|
|
|
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
|
|
{
|
|
struct sched_rt_entity *rt_se;
|
|
int cpu = cpu_of(rq_of_rt_rq(rt_rq));
|
|
|
|
rt_se = rt_rq->tg->rt_se[cpu];
|
|
|
|
if (!rt_se) {
|
|
dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
|
|
/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
|
|
cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
|
|
}
|
|
else if (on_rt_rq(rt_se))
|
|
dequeue_rt_entity(rt_se, 0);
|
|
}
|
|
|
|
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
|
|
}
|
|
|
|
static int rt_se_boosted(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
struct task_struct *p;
|
|
|
|
if (rt_rq)
|
|
return !!rt_rq->rt_nr_boosted;
|
|
|
|
p = rt_task_of(rt_se);
|
|
return p->prio != p->normal_prio;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline const struct cpumask *sched_rt_period_mask(void)
|
|
{
|
|
return this_rq()->rd->span;
|
|
}
|
|
#else
|
|
static inline const struct cpumask *sched_rt_period_mask(void)
|
|
{
|
|
return cpu_online_mask;
|
|
}
|
|
#endif
|
|
|
|
static inline
|
|
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
|
|
{
|
|
return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
|
|
}
|
|
|
|
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
|
|
{
|
|
return &rt_rq->tg->rt_bandwidth;
|
|
}
|
|
|
|
#else /* !CONFIG_RT_GROUP_SCHED */
|
|
|
|
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_runtime;
|
|
}
|
|
|
|
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
|
|
{
|
|
return ktime_to_ns(def_rt_bandwidth.rt_period);
|
|
}
|
|
|
|
typedef struct rt_rq *rt_rq_iter_t;
|
|
|
|
#define for_each_rt_rq(rt_rq, iter, rq) \
|
|
for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
|
|
|
|
#define for_each_sched_rt_entity(rt_se) \
|
|
for (; rt_se; rt_se = NULL)
|
|
|
|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
if (!rt_rq->rt_nr_running)
|
|
return;
|
|
|
|
enqueue_top_rt_rq(rt_rq);
|
|
resched_curr(rq);
|
|
}
|
|
|
|
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
|
|
{
|
|
dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
|
|
}
|
|
|
|
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_throttled;
|
|
}
|
|
|
|
static inline const struct cpumask *sched_rt_period_mask(void)
|
|
{
|
|
return cpu_online_mask;
|
|
}
|
|
|
|
static inline
|
|
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
|
|
{
|
|
return &cpu_rq(cpu)->rt;
|
|
}
|
|
|
|
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
|
|
{
|
|
return &def_rt_bandwidth;
|
|
}
|
|
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
return (hrtimer_active(&rt_b->rt_period_timer) ||
|
|
rt_rq->rt_time < rt_b->rt_runtime);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* We ran out of runtime, see if we can borrow some from our neighbours.
|
|
*/
|
|
static void do_balance_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
|
|
int i, weight;
|
|
u64 rt_period;
|
|
|
|
weight = cpumask_weight(rd->span);
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
rt_period = ktime_to_ns(rt_b->rt_period);
|
|
for_each_cpu(i, rd->span) {
|
|
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
|
|
s64 diff;
|
|
|
|
if (iter == rt_rq)
|
|
continue;
|
|
|
|
raw_spin_lock(&iter->rt_runtime_lock);
|
|
/*
|
|
* Either all rqs have inf runtime and there's nothing to steal
|
|
* or __disable_runtime() below sets a specific rq to inf to
|
|
* indicate its been disabled and disalow stealing.
|
|
*/
|
|
if (iter->rt_runtime == RUNTIME_INF)
|
|
goto next;
|
|
|
|
/*
|
|
* From runqueues with spare time, take 1/n part of their
|
|
* spare time, but no more than our period.
|
|
*/
|
|
diff = iter->rt_runtime - iter->rt_time;
|
|
if (diff > 0) {
|
|
diff = div_u64((u64)diff, weight);
|
|
if (rt_rq->rt_runtime + diff > rt_period)
|
|
diff = rt_period - rt_rq->rt_runtime;
|
|
iter->rt_runtime -= diff;
|
|
rt_rq->rt_runtime += diff;
|
|
if (rt_rq->rt_runtime == rt_period) {
|
|
raw_spin_unlock(&iter->rt_runtime_lock);
|
|
break;
|
|
}
|
|
}
|
|
next:
|
|
raw_spin_unlock(&iter->rt_runtime_lock);
|
|
}
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
}
|
|
|
|
/*
|
|
* Ensure this RQ takes back all the runtime it lend to its neighbours.
|
|
*/
|
|
static void __disable_runtime(struct rq *rq)
|
|
{
|
|
struct root_domain *rd = rq->rd;
|
|
rt_rq_iter_t iter;
|
|
struct rt_rq *rt_rq;
|
|
|
|
if (unlikely(!scheduler_running))
|
|
return;
|
|
|
|
for_each_rt_rq(rt_rq, iter, rq) {
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
s64 want;
|
|
int i;
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
/*
|
|
* Either we're all inf and nobody needs to borrow, or we're
|
|
* already disabled and thus have nothing to do, or we have
|
|
* exactly the right amount of runtime to take out.
|
|
*/
|
|
if (rt_rq->rt_runtime == RUNTIME_INF ||
|
|
rt_rq->rt_runtime == rt_b->rt_runtime)
|
|
goto balanced;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
|
|
/*
|
|
* Calculate the difference between what we started out with
|
|
* and what we current have, that's the amount of runtime
|
|
* we lend and now have to reclaim.
|
|
*/
|
|
want = rt_b->rt_runtime - rt_rq->rt_runtime;
|
|
|
|
/*
|
|
* Greedy reclaim, take back as much as we can.
|
|
*/
|
|
for_each_cpu(i, rd->span) {
|
|
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
|
|
s64 diff;
|
|
|
|
/*
|
|
* Can't reclaim from ourselves or disabled runqueues.
|
|
*/
|
|
if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
|
|
continue;
|
|
|
|
raw_spin_lock(&iter->rt_runtime_lock);
|
|
if (want > 0) {
|
|
diff = min_t(s64, iter->rt_runtime, want);
|
|
iter->rt_runtime -= diff;
|
|
want -= diff;
|
|
} else {
|
|
iter->rt_runtime -= want;
|
|
want -= want;
|
|
}
|
|
raw_spin_unlock(&iter->rt_runtime_lock);
|
|
|
|
if (!want)
|
|
break;
|
|
}
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
/*
|
|
* We cannot be left wanting - that would mean some runtime
|
|
* leaked out of the system.
|
|
*/
|
|
BUG_ON(want);
|
|
balanced:
|
|
/*
|
|
* Disable all the borrow logic by pretending we have inf
|
|
* runtime - in which case borrowing doesn't make sense.
|
|
*/
|
|
rt_rq->rt_runtime = RUNTIME_INF;
|
|
rt_rq->rt_throttled = 0;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
|
|
/* Make rt_rq available for pick_next_task() */
|
|
sched_rt_rq_enqueue(rt_rq);
|
|
}
|
|
}
|
|
|
|
static void __enable_runtime(struct rq *rq)
|
|
{
|
|
rt_rq_iter_t iter;
|
|
struct rt_rq *rt_rq;
|
|
|
|
if (unlikely(!scheduler_running))
|
|
return;
|
|
|
|
/*
|
|
* Reset each runqueue's bandwidth settings
|
|
*/
|
|
for_each_rt_rq(rt_rq, iter, rq) {
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_runtime = rt_b->rt_runtime;
|
|
rt_rq->rt_time = 0;
|
|
rt_rq->rt_throttled = 0;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
}
|
|
}
|
|
|
|
static void balance_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
if (!sched_feat(RT_RUNTIME_SHARE))
|
|
return;
|
|
|
|
if (rt_rq->rt_time > rt_rq->rt_runtime) {
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
do_balance_runtime(rt_rq);
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
}
|
|
#else /* !CONFIG_SMP */
|
|
static inline void balance_runtime(struct rt_rq *rt_rq) {}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
|
|
{
|
|
int i, idle = 1, throttled = 0;
|
|
const struct cpumask *span;
|
|
|
|
span = sched_rt_period_mask();
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* FIXME: isolated CPUs should really leave the root task group,
|
|
* whether they are isolcpus or were isolated via cpusets, lest
|
|
* the timer run on a CPU which does not service all runqueues,
|
|
* potentially leaving other CPUs indefinitely throttled. If
|
|
* isolation is really required, the user will turn the throttle
|
|
* off to kill the perturbations it causes anyway. Meanwhile,
|
|
* this maintains functionality for boot and/or troubleshooting.
|
|
*/
|
|
if (rt_b == &root_task_group.rt_bandwidth)
|
|
span = cpu_online_mask;
|
|
#endif
|
|
for_each_cpu(i, span) {
|
|
int enqueue = 0;
|
|
struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
int skip;
|
|
|
|
/*
|
|
* When span == cpu_online_mask, taking each rq->lock
|
|
* can be time-consuming. Try to avoid it when possible.
|
|
*/
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
|
|
rt_rq->rt_runtime = rt_b->rt_runtime;
|
|
skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
if (skip)
|
|
continue;
|
|
|
|
raw_spin_lock(&rq->lock);
|
|
update_rq_clock(rq);
|
|
|
|
if (rt_rq->rt_time) {
|
|
u64 runtime;
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
if (rt_rq->rt_throttled)
|
|
balance_runtime(rt_rq);
|
|
runtime = rt_rq->rt_runtime;
|
|
rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
|
|
if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
|
|
rt_rq->rt_throttled = 0;
|
|
enqueue = 1;
|
|
|
|
/*
|
|
* When we're idle and a woken (rt) task is
|
|
* throttled check_preempt_curr() will set
|
|
* skip_update and the time between the wakeup
|
|
* and this unthrottle will get accounted as
|
|
* 'runtime'.
|
|
*/
|
|
if (rt_rq->rt_nr_running && rq->curr == rq->idle)
|
|
rq_clock_cancel_skipupdate(rq);
|
|
}
|
|
if (rt_rq->rt_time || rt_rq->rt_nr_running)
|
|
idle = 0;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
} else if (rt_rq->rt_nr_running) {
|
|
idle = 0;
|
|
if (!rt_rq_throttled(rt_rq))
|
|
enqueue = 1;
|
|
}
|
|
if (rt_rq->rt_throttled)
|
|
throttled = 1;
|
|
|
|
if (enqueue)
|
|
sched_rt_rq_enqueue(rt_rq);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
|
|
return 1;
|
|
|
|
return idle;
|
|
}
|
|
|
|
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
|
|
{
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
|
|
if (rt_rq)
|
|
return rt_rq->highest_prio.curr;
|
|
#endif
|
|
|
|
return rt_task_of(rt_se)->prio;
|
|
}
|
|
|
|
static void dump_throttled_rt_tasks(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct sched_rt_entity *rt_se;
|
|
char buf[500];
|
|
char *pos = buf;
|
|
char *end = buf + sizeof(buf);
|
|
int idx;
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
pos += snprintf(pos, sizeof(buf),
|
|
"sched: RT throttling activated for rt_rq %pK (cpu %d)\n",
|
|
rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
|
|
|
|
pos += snprintf(pos, end - pos,
|
|
"rt_period_timer: expires=%lld now=%llu runtime=%llu period=%llu\n",
|
|
hrtimer_get_expires_ns(&rt_b->rt_period_timer),
|
|
ktime_get_ns(), sched_rt_runtime(rt_rq),
|
|
sched_rt_period(rt_rq));
|
|
|
|
if (bitmap_empty(array->bitmap, MAX_RT_PRIO))
|
|
goto out;
|
|
|
|
pos += snprintf(pos, end - pos, "potential CPU hogs:\n");
|
|
#ifdef CONFIG_SCHED_INFO
|
|
if (sched_info_on())
|
|
pos += snprintf(pos, end - pos,
|
|
"current %s (%d) is running for %llu nsec\n",
|
|
current->comm, current->pid,
|
|
rq_clock(rq_of_rt_rq(rt_rq)) -
|
|
current->sched_info.last_arrival);
|
|
#endif
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
while (idx < MAX_RT_PRIO) {
|
|
list_for_each_entry(rt_se, array->queue + idx, run_list) {
|
|
struct task_struct *p;
|
|
|
|
if (!rt_entity_is_task(rt_se))
|
|
continue;
|
|
|
|
p = rt_task_of(rt_se);
|
|
if (pos < end)
|
|
pos += snprintf(pos, end - pos, "\t%s (%d)\n",
|
|
p->comm, p->pid);
|
|
}
|
|
idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1);
|
|
}
|
|
out:
|
|
#ifdef CONFIG_PANIC_ON_RT_THROTTLING
|
|
/*
|
|
* Use pr_err() in the BUG() case since printk_sched() will
|
|
* not get flushed and deadlock is not a concern.
|
|
*/
|
|
pr_err("%s\n", buf);
|
|
BUG();
|
|
#else
|
|
printk_deferred("%s\n", buf);
|
|
#endif
|
|
}
|
|
|
|
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
|
|
{
|
|
u64 runtime = sched_rt_runtime(rt_rq);
|
|
|
|
if (rt_rq->rt_throttled)
|
|
return rt_rq_throttled(rt_rq);
|
|
|
|
if (runtime >= sched_rt_period(rt_rq))
|
|
return 0;
|
|
|
|
balance_runtime(rt_rq);
|
|
runtime = sched_rt_runtime(rt_rq);
|
|
if (runtime == RUNTIME_INF)
|
|
return 0;
|
|
|
|
if (rt_rq->rt_time > runtime) {
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
/*
|
|
* Don't actually throttle groups that have no runtime assigned
|
|
* but accrue some time due to boosting.
|
|
*/
|
|
if (likely(rt_b->rt_runtime)) {
|
|
static bool once;
|
|
|
|
rt_rq->rt_throttled = 1;
|
|
|
|
if (!once) {
|
|
once = true;
|
|
dump_throttled_rt_tasks(rt_rq);
|
|
}
|
|
} else {
|
|
/*
|
|
* In case we did anyway, make it go away,
|
|
* replenishment is a joke, since it will replenish us
|
|
* with exactly 0 ns.
|
|
*/
|
|
rt_rq->rt_time = 0;
|
|
}
|
|
|
|
if (rt_rq_throttled(rt_rq)) {
|
|
sched_rt_rq_dequeue(rt_rq);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the current task's runtime statistics. Skip current tasks that
|
|
* are not in our scheduling class.
|
|
*/
|
|
static void update_curr_rt(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
struct sched_rt_entity *rt_se = &curr->rt;
|
|
u64 delta_exec;
|
|
u64 now;
|
|
|
|
if (curr->sched_class != &rt_sched_class)
|
|
return;
|
|
|
|
now = rq_clock_task(rq);
|
|
delta_exec = now - curr->se.exec_start;
|
|
if (unlikely((s64)delta_exec <= 0))
|
|
return;
|
|
|
|
schedstat_set(curr->se.statistics.exec_max,
|
|
max(curr->se.statistics.exec_max, delta_exec));
|
|
|
|
curr->se.sum_exec_runtime += delta_exec;
|
|
account_group_exec_runtime(curr, delta_exec);
|
|
|
|
curr->se.exec_start = now;
|
|
cgroup_account_cputime(curr, delta_exec);
|
|
|
|
if (!rt_bandwidth_enabled())
|
|
return;
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
int exceeded;
|
|
|
|
if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_time += delta_exec;
|
|
exceeded = sched_rt_runtime_exceeded(rt_rq);
|
|
if (exceeded)
|
|
resched_curr(rq);
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
if (exceeded)
|
|
do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
BUG_ON(&rq->rt != rt_rq);
|
|
|
|
if (!rt_rq->rt_queued)
|
|
return;
|
|
|
|
BUG_ON(!rq->nr_running);
|
|
|
|
sub_nr_running(rq, count);
|
|
rt_rq->rt_queued = 0;
|
|
|
|
}
|
|
|
|
static void
|
|
enqueue_top_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
BUG_ON(&rq->rt != rt_rq);
|
|
|
|
if (rt_rq->rt_queued)
|
|
return;
|
|
|
|
if (rt_rq_throttled(rt_rq))
|
|
return;
|
|
|
|
if (rt_rq->rt_nr_running) {
|
|
add_nr_running(rq, rt_rq->rt_nr_running);
|
|
rt_rq->rt_queued = 1;
|
|
}
|
|
|
|
/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
|
|
cpufreq_update_util(rq, 0);
|
|
}
|
|
|
|
#if defined CONFIG_SMP
|
|
|
|
static void
|
|
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Change rq's cpupri only if rt_rq is the top queue.
|
|
*/
|
|
if (&rq->rt != rt_rq)
|
|
return;
|
|
#endif
|
|
if (rq->online && prio < prev_prio)
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
|
|
}
|
|
|
|
static void
|
|
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Change rq's cpupri only if rt_rq is the top queue.
|
|
*/
|
|
if (&rq->rt != rt_rq)
|
|
return;
|
|
#endif
|
|
if (rq->online && rt_rq->highest_prio.curr != prev_prio)
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
|
|
}
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
static inline
|
|
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
|
|
static inline
|
|
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
static void
|
|
inc_rt_prio(struct rt_rq *rt_rq, int prio)
|
|
{
|
|
int prev_prio = rt_rq->highest_prio.curr;
|
|
|
|
if (prio < prev_prio)
|
|
rt_rq->highest_prio.curr = prio;
|
|
|
|
inc_rt_prio_smp(rt_rq, prio, prev_prio);
|
|
}
|
|
|
|
static void
|
|
dec_rt_prio(struct rt_rq *rt_rq, int prio)
|
|
{
|
|
int prev_prio = rt_rq->highest_prio.curr;
|
|
|
|
if (rt_rq->rt_nr_running) {
|
|
|
|
WARN_ON(prio < prev_prio);
|
|
|
|
/*
|
|
* This may have been our highest task, and therefore
|
|
* we may have some recomputation to do
|
|
*/
|
|
if (prio == prev_prio) {
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
|
|
rt_rq->highest_prio.curr =
|
|
sched_find_first_bit(array->bitmap);
|
|
}
|
|
|
|
} else
|
|
rt_rq->highest_prio.curr = MAX_RT_PRIO;
|
|
|
|
dec_rt_prio_smp(rt_rq, prio, prev_prio);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
|
|
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
|
|
|
|
#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
|
|
static void
|
|
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
if (rt_se_boosted(rt_se))
|
|
rt_rq->rt_nr_boosted++;
|
|
|
|
if (rt_rq->tg)
|
|
start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
|
|
}
|
|
|
|
static void
|
|
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
if (rt_se_boosted(rt_se))
|
|
rt_rq->rt_nr_boosted--;
|
|
|
|
WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
|
|
}
|
|
|
|
#else /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
static void
|
|
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
start_rt_bandwidth(&def_rt_bandwidth);
|
|
}
|
|
|
|
static inline
|
|
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
|
|
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
static inline
|
|
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
|
|
|
if (group_rq)
|
|
return group_rq->rt_nr_running;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static inline
|
|
unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
|
struct task_struct *tsk;
|
|
|
|
if (group_rq)
|
|
return group_rq->rr_nr_running;
|
|
|
|
tsk = rt_task_of(rt_se);
|
|
|
|
return (tsk->policy == SCHED_RR) ? 1 : 0;
|
|
}
|
|
|
|
static inline
|
|
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
int prio = rt_se_prio(rt_se);
|
|
|
|
WARN_ON(!rt_prio(prio));
|
|
rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
|
|
rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
|
|
|
|
inc_rt_prio(rt_rq, prio);
|
|
inc_rt_migration(rt_se, rt_rq);
|
|
inc_rt_group(rt_se, rt_rq);
|
|
}
|
|
|
|
static inline
|
|
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
|
|
WARN_ON(!rt_rq->rt_nr_running);
|
|
rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
|
|
rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
|
|
|
|
dec_rt_prio(rt_rq, rt_se_prio(rt_se));
|
|
dec_rt_migration(rt_se, rt_rq);
|
|
dec_rt_group(rt_se, rt_rq);
|
|
}
|
|
|
|
/*
|
|
* Change rt_se->run_list location unless SAVE && !MOVE
|
|
*
|
|
* assumes ENQUEUE/DEQUEUE flags match
|
|
*/
|
|
static inline bool move_entity(unsigned int flags)
|
|
{
|
|
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
|
|
{
|
|
list_del_init(&rt_se->run_list);
|
|
|
|
if (list_empty(array->queue + rt_se_prio(rt_se)))
|
|
__clear_bit(rt_se_prio(rt_se), array->bitmap);
|
|
|
|
rt_se->on_list = 0;
|
|
}
|
|
|
|
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
|
struct list_head *queue = array->queue + rt_se_prio(rt_se);
|
|
|
|
/*
|
|
* Don't enqueue the group if its throttled, or when empty.
|
|
* The latter is a consequence of the former when a child group
|
|
* get throttled and the current group doesn't have any other
|
|
* active members.
|
|
*/
|
|
if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
|
|
if (rt_se->on_list)
|
|
__delist_rt_entity(rt_se, array);
|
|
return;
|
|
}
|
|
|
|
if (move_entity(flags)) {
|
|
WARN_ON_ONCE(rt_se->on_list);
|
|
if (flags & ENQUEUE_HEAD)
|
|
list_add(&rt_se->run_list, queue);
|
|
else
|
|
list_add_tail(&rt_se->run_list, queue);
|
|
|
|
__set_bit(rt_se_prio(rt_se), array->bitmap);
|
|
rt_se->on_list = 1;
|
|
}
|
|
rt_se->on_rq = 1;
|
|
|
|
inc_rt_tasks(rt_se, rt_rq);
|
|
}
|
|
|
|
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
|
|
if (move_entity(flags)) {
|
|
WARN_ON_ONCE(!rt_se->on_list);
|
|
__delist_rt_entity(rt_se, array);
|
|
}
|
|
rt_se->on_rq = 0;
|
|
|
|
dec_rt_tasks(rt_se, rt_rq);
|
|
}
|
|
|
|
/*
|
|
* Because the prio of an upper entry depends on the lower
|
|
* entries, we must remove entries top - down.
|
|
*/
|
|
static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct sched_rt_entity *back = NULL;
|
|
unsigned int rt_nr_running;
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
rt_se->back = back;
|
|
back = rt_se;
|
|
}
|
|
|
|
rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
|
|
|
|
for (rt_se = back; rt_se; rt_se = rt_se->back) {
|
|
if (on_rt_rq(rt_se))
|
|
__dequeue_rt_entity(rt_se, flags);
|
|
}
|
|
|
|
dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
|
|
}
|
|
|
|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct rq *rq = rq_of_rt_se(rt_se);
|
|
|
|
dequeue_rt_stack(rt_se, flags);
|
|
for_each_sched_rt_entity(rt_se)
|
|
__enqueue_rt_entity(rt_se, flags);
|
|
enqueue_top_rt_rq(&rq->rt);
|
|
}
|
|
|
|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct rq *rq = rq_of_rt_se(rt_se);
|
|
|
|
dequeue_rt_stack(rt_se, flags);
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
|
|
if (rt_rq && rt_rq->rt_nr_running)
|
|
__enqueue_rt_entity(rt_se, flags);
|
|
}
|
|
enqueue_top_rt_rq(&rq->rt);
|
|
}
|
|
|
|
/*
|
|
* Adding/removing a task to/from a priority array:
|
|
*/
|
|
static void
|
|
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
|
|
if (flags & ENQUEUE_WAKEUP)
|
|
rt_se->timeout = 0;
|
|
|
|
enqueue_rt_entity(rt_se, flags);
|
|
walt_inc_cumulative_runnable_avg(rq, p);
|
|
|
|
if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
|
|
enqueue_pushable_task(rq, p);
|
|
}
|
|
|
|
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
|
|
update_curr_rt(rq);
|
|
dequeue_rt_entity(rt_se, flags);
|
|
walt_dec_cumulative_runnable_avg(rq, p);
|
|
|
|
dequeue_pushable_task(rq, p);
|
|
}
|
|
|
|
/*
|
|
* Put task to the head or the end of the run list without the overhead of
|
|
* dequeue followed by enqueue.
|
|
*/
|
|
static void
|
|
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
|
|
{
|
|
if (on_rt_rq(rt_se)) {
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct list_head *queue = array->queue + rt_se_prio(rt_se);
|
|
|
|
if (head)
|
|
list_move(&rt_se->run_list, queue);
|
|
else
|
|
list_move_tail(&rt_se->run_list, queue);
|
|
}
|
|
}
|
|
|
|
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
struct rt_rq *rt_rq;
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
rt_rq = rt_rq_of_se(rt_se);
|
|
requeue_rt_entity(rt_rq, rt_se, head);
|
|
}
|
|
}
|
|
|
|
static void yield_task_rt(struct rq *rq)
|
|
{
|
|
requeue_task_rt(rq, rq->curr, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static int find_lowest_rq(struct task_struct *task);
|
|
|
|
/*
|
|
* Return whether the task on the given cpu is currently non-preemptible
|
|
* while handling a potentially long softint, or if the task is likely
|
|
* to block preemptions soon because it is a ksoftirq thread that is
|
|
* handling slow softints.
|
|
*/
|
|
bool
|
|
task_may_not_preempt(struct task_struct *task, int cpu)
|
|
{
|
|
__u32 softirqs = per_cpu(active_softirqs, cpu) |
|
|
__IRQ_STAT(cpu, __softirq_pending);
|
|
struct task_struct *cpu_ksoftirqd = per_cpu(ksoftirqd, cpu);
|
|
|
|
return ((softirqs & LONG_SOFTIRQ_MASK) &&
|
|
(task == cpu_ksoftirqd ||
|
|
task_thread_info(task)->preempt_count & SOFTIRQ_MASK));
|
|
}
|
|
|
|
static int
|
|
#ifdef CONFIG_SCHED_WALT
|
|
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags,
|
|
int sibling_count_hint)
|
|
#else
|
|
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
|
|
#endif
|
|
{
|
|
struct task_struct *curr;
|
|
struct rq *rq;
|
|
bool may_not_preempt;
|
|
bool test;
|
|
int target_cpu = -1;
|
|
|
|
trace_android_rvh_select_task_rq_rt(p, cpu, sd_flag,
|
|
flags, &target_cpu);
|
|
if (target_cpu >= 0)
|
|
return target_cpu;
|
|
|
|
/* For anything but wake ups, just return the task_cpu */
|
|
if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
|
|
goto out;
|
|
|
|
rq = cpu_rq(cpu);
|
|
|
|
rcu_read_lock();
|
|
curr = READ_ONCE(rq->curr); /* unlocked access */
|
|
|
|
/*
|
|
* If the current task on @p's runqueue is a softirq task,
|
|
* it may run without preemption for a time that is
|
|
* ill-suited for a waiting RT task. Therefore, try to
|
|
* wake this RT task on another runqueue.
|
|
*
|
|
* Also, if the current task on @p's runqueue is an RT task, then
|
|
* it may run without preemption for a time that is
|
|
* ill-suited for a waiting RT task. Therefore, try to
|
|
* wake this RT task on another runqueue.
|
|
*
|
|
* Also, if the current task on @p's runqueue is an RT task, then
|
|
* try to see if we can wake this RT task up on another
|
|
* runqueue. Otherwise simply start this RT task
|
|
* on its current runqueue.
|
|
*
|
|
* We want to avoid overloading runqueues. If the woken
|
|
* task is a higher priority, then it will stay on this CPU
|
|
* and the lower prio task should be moved to another CPU.
|
|
* Even though this will probably make the lower prio task
|
|
* lose its cache, we do not want to bounce a higher task
|
|
* around just because it gave up its CPU, perhaps for a
|
|
* lock?
|
|
*
|
|
* For equal prio tasks, we just let the scheduler sort it out.
|
|
*
|
|
* Otherwise, just let it ride on the affined RQ and the
|
|
* post-schedule router will push the preempted task away
|
|
*
|
|
* This test is optimistic, if we get it wrong the load-balancer
|
|
* will have to sort it out.
|
|
*
|
|
* We take into account the capacity of the CPU to ensure it fits the
|
|
* requirement of the task - which is only important on heterogeneous
|
|
* systems like big.LITTLE.
|
|
*/
|
|
may_not_preempt = task_may_not_preempt(curr, cpu);
|
|
test = curr &&
|
|
unlikely(rt_task(curr)) &&
|
|
(curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
|
|
|
|
if (sched_energy_enabled() || may_not_preempt ||
|
|
test || !rt_task_fits_capacity(p, cpu)) {
|
|
int target = find_lowest_rq(p);
|
|
|
|
/*
|
|
* Bail out if we were forcing a migration to find a better
|
|
* fitting CPU but our search failed.
|
|
*/
|
|
if (!test && target != -1 && !rt_task_fits_capacity(p, target))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* If cpu is non-preemptible, prefer remote cpu
|
|
* even if it's running a higher-prio task.
|
|
* Otherwise: Don't bother moving it if the
|
|
* destination CPU is not running a lower priority task.
|
|
*/
|
|
if (target != -1 &&
|
|
(may_not_preempt ||
|
|
p->prio < cpu_rq(target)->rt.highest_prio.curr))
|
|
cpu = target;
|
|
}
|
|
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
|
|
out:
|
|
return cpu;
|
|
}
|
|
|
|
static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* Current can't be migrated, useless to reschedule,
|
|
* let's hope p can move out.
|
|
*/
|
|
if (rq->curr->nr_cpus_allowed == 1 ||
|
|
!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
|
|
return;
|
|
|
|
/*
|
|
* p is migratable, so let's not schedule it and
|
|
* see if it is pushed or pulled somewhere else.
|
|
*/
|
|
if (p->nr_cpus_allowed != 1 &&
|
|
cpupri_find(&rq->rd->cpupri, p, NULL))
|
|
return;
|
|
|
|
/*
|
|
* There appear to be other CPUs that can accept
|
|
* the current task but none can run 'p', so lets reschedule
|
|
* to try and push the current task away:
|
|
*/
|
|
requeue_task_rt(rq, p, 1);
|
|
resched_curr(rq);
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
#define WALT_RT_PULL_THRESHOLD_NS 250000
|
|
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu);
|
|
static void try_pull_rt_task(struct rq *this_rq)
|
|
{
|
|
int i, this_cpu = this_rq->cpu, src_cpu = this_cpu;
|
|
struct rq *src_rq;
|
|
struct task_struct *p;
|
|
|
|
if (sched_rt_runnable(this_rq))
|
|
return;
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct rq *rq = cpu_rq(i);
|
|
|
|
if (!has_pushable_tasks(rq))
|
|
continue;
|
|
|
|
src_cpu = i;
|
|
break;
|
|
}
|
|
|
|
if (src_cpu == this_cpu)
|
|
return;
|
|
|
|
src_rq = cpu_rq(src_cpu);
|
|
double_lock_balance(this_rq, src_rq);
|
|
|
|
/* lock is dropped, so check again */
|
|
if (sched_rt_runnable(this_rq))
|
|
goto unlock;
|
|
|
|
p = pick_highest_pushable_task(src_rq, this_cpu);
|
|
|
|
if (!p)
|
|
goto unlock;
|
|
|
|
if (sched_ktime_clock() - p->wts.last_wake_ts <
|
|
WALT_RT_PULL_THRESHOLD_NS)
|
|
goto unlock;
|
|
|
|
deactivate_task(src_rq, p, 0);
|
|
set_task_cpu(p, this_cpu);
|
|
activate_task(this_rq, p, 0);
|
|
unlock:
|
|
double_unlock_balance(this_rq, src_rq);
|
|
}
|
|
#endif
|
|
|
|
static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
|
|
{
|
|
if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
|
|
/*
|
|
* This is OK, because current is on_cpu, which avoids it being
|
|
* picked for load-balance and preemption/IRQs are still
|
|
* disabled avoiding further scheduler activity on it and we've
|
|
* not yet started the picking loop.
|
|
*/
|
|
rq_unpin_lock(rq, rf);
|
|
#ifndef CONFIG_SCHED_WALT
|
|
pull_rt_task(rq);
|
|
#else
|
|
if (rt_overloaded(rq))
|
|
pull_rt_task(rq);
|
|
else
|
|
try_pull_rt_task(rq);
|
|
#endif
|
|
rq_repin_lock(rq, rf);
|
|
}
|
|
|
|
return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* Preempt the current task with a newly woken task if needed:
|
|
*/
|
|
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
if (p->prio < rq->curr->prio) {
|
|
resched_curr(rq);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* If:
|
|
*
|
|
* - the newly woken task is of equal priority to the current task
|
|
* - the newly woken task is non-migratable while current is migratable
|
|
* - current will be preempted on the next reschedule
|
|
*
|
|
* we should check to see if current can readily move to a different
|
|
* cpu. If so, we will reschedule to allow the push logic to try
|
|
* to move current somewhere else, making room for our non-migratable
|
|
* task.
|
|
*/
|
|
if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
|
|
check_preempt_equal_prio(rq, p);
|
|
#endif
|
|
}
|
|
|
|
static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
|
|
{
|
|
p->se.exec_start = rq_clock_task(rq);
|
|
|
|
/* The running task is never eligible for pushing */
|
|
dequeue_pushable_task(rq, p);
|
|
|
|
if (!first)
|
|
return;
|
|
|
|
/*
|
|
* If prev task was rt, put_prev_task() has already updated the
|
|
* utilization. We only care of the case where we start to schedule a
|
|
* rt task
|
|
*/
|
|
if (rq->curr->sched_class != &rt_sched_class)
|
|
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
|
|
|
|
rt_queue_push_tasks(rq);
|
|
}
|
|
|
|
static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct sched_rt_entity *next = NULL;
|
|
struct list_head *queue;
|
|
int idx;
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
BUG_ON(idx >= MAX_RT_PRIO);
|
|
|
|
queue = array->queue + idx;
|
|
if (SCHED_WARN_ON(list_empty(queue)))
|
|
return NULL;
|
|
next = list_entry(queue->next, struct sched_rt_entity, run_list);
|
|
|
|
return next;
|
|
}
|
|
|
|
static struct task_struct *_pick_next_task_rt(struct rq *rq)
|
|
{
|
|
struct sched_rt_entity *rt_se;
|
|
struct rt_rq *rt_rq = &rq->rt;
|
|
|
|
do {
|
|
rt_se = pick_next_rt_entity(rt_rq);
|
|
if (unlikely(!rt_se))
|
|
return NULL;
|
|
rt_rq = group_rt_rq(rt_se);
|
|
} while (rt_rq);
|
|
|
|
return rt_task_of(rt_se);
|
|
}
|
|
|
|
static struct task_struct *
|
|
pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
WARN_ON_ONCE(prev || rf);
|
|
|
|
if (!sched_rt_runnable(rq))
|
|
return NULL;
|
|
|
|
p = _pick_next_task_rt(rq);
|
|
set_next_task_rt(rq, p, true);
|
|
return p;
|
|
}
|
|
|
|
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
update_curr_rt(rq);
|
|
|
|
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
|
|
|
|
/*
|
|
* The previous task needs to be made eligible for pushing
|
|
* if it is still active
|
|
*/
|
|
if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
|
|
enqueue_pushable_task(rq, p);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/* Only try algorithms three times */
|
|
#define RT_MAX_TRIES 3
|
|
|
|
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
|
|
{
|
|
if (!task_running(rq, p) &&
|
|
cpumask_test_cpu(cpu, p->cpus_ptr))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the highest pushable rq's task, which is suitable to be executed
|
|
* on the CPU, NULL otherwise
|
|
*/
|
|
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
|
|
{
|
|
struct plist_head *head = &rq->rt.pushable_tasks;
|
|
struct task_struct *p;
|
|
|
|
if (!has_pushable_tasks(rq))
|
|
return NULL;
|
|
|
|
plist_for_each_entry(p, head, pushable_tasks) {
|
|
if (pick_rt_task(rq, p, cpu))
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
static int rt_energy_aware_wake_cpu(struct task_struct *task)
|
|
{
|
|
struct sched_domain *sd;
|
|
struct sched_group *sg;
|
|
struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
|
|
int cpu, best_cpu = -1;
|
|
unsigned long best_capacity = ULONG_MAX;
|
|
unsigned long util, best_cpu_util = ULONG_MAX;
|
|
unsigned long best_cpu_util_cum = ULONG_MAX;
|
|
unsigned long util_cum;
|
|
unsigned long tutil = task_util(task);
|
|
int best_cpu_idle_idx = INT_MAX;
|
|
int cpu_idle_idx = -1;
|
|
bool boost_on_big = rt_boost_on_big();
|
|
bool best_cpu_lt = true;
|
|
|
|
rcu_read_lock();
|
|
|
|
cpu = cpu_rq(smp_processor_id())->rd->wrd.min_cap_orig_cpu;
|
|
if (cpu < 0)
|
|
goto unlock;
|
|
|
|
sd = rcu_dereference(*per_cpu_ptr(&sd_asym_cpucapacity, cpu));
|
|
if (!sd)
|
|
goto unlock;
|
|
|
|
retry:
|
|
sg = sd->groups;
|
|
do {
|
|
int fcpu = group_first_cpu(sg);
|
|
int capacity_orig = capacity_orig_of(fcpu);
|
|
|
|
if (boost_on_big) {
|
|
if (is_min_capacity_cpu(fcpu))
|
|
continue;
|
|
} else {
|
|
if (capacity_orig > best_capacity)
|
|
continue;
|
|
}
|
|
|
|
for_each_cpu_and(cpu, lowest_mask, sched_group_span(sg)) {
|
|
bool lt;
|
|
|
|
trace_sched_cpu_util(cpu);
|
|
|
|
if (cpu_isolated(cpu))
|
|
continue;
|
|
|
|
if (sched_cpu_high_irqload(cpu))
|
|
continue;
|
|
|
|
if (__cpu_overutilized(cpu, tutil))
|
|
continue;
|
|
|
|
util = cpu_util(cpu);
|
|
|
|
lt = (walt_low_latency_task(cpu_rq(cpu)->curr) ||
|
|
walt_nr_rtg_high_prio(cpu));
|
|
|
|
/*
|
|
* When the best is suitable and the current is not,
|
|
* skip it
|
|
*/
|
|
if (lt && !best_cpu_lt)
|
|
continue;
|
|
/*
|
|
* Either both are sutilable or unsuitable, load takes
|
|
* precedence.
|
|
*/
|
|
if (!(best_cpu_lt ^ lt) && (util > best_cpu_util))
|
|
continue;
|
|
|
|
/*
|
|
* If the previous CPU has same load, keep it as
|
|
* best_cpu.
|
|
*/
|
|
if (best_cpu_util == util && best_cpu == task_cpu(task))
|
|
continue;
|
|
|
|
/*
|
|
* If candidate CPU is the previous CPU, select it.
|
|
* Otherwise, if its load is same with best_cpu and in
|
|
* a shallower C-state, select it. If all above
|
|
* conditions are same, select the least cumulative
|
|
* window demand CPU.
|
|
*/
|
|
cpu_idle_idx = idle_get_state_idx(cpu_rq(cpu));
|
|
|
|
util_cum = cpu_util_cum(cpu, 0);
|
|
if (cpu != task_cpu(task) && best_cpu_util == util) {
|
|
if (best_cpu_idle_idx < cpu_idle_idx)
|
|
continue;
|
|
|
|
if (best_cpu_idle_idx == cpu_idle_idx &&
|
|
best_cpu_util_cum < util_cum)
|
|
continue;
|
|
}
|
|
|
|
best_cpu_idle_idx = cpu_idle_idx;
|
|
best_cpu_util_cum = util_cum;
|
|
best_cpu_util = util;
|
|
best_cpu = cpu;
|
|
best_capacity = capacity_orig;
|
|
best_cpu_lt = lt;
|
|
}
|
|
|
|
} while (sg = sg->next, sg != sd->groups);
|
|
|
|
if (unlikely(boost_on_big) && best_cpu == -1) {
|
|
boost_on_big = false;
|
|
goto retry;
|
|
}
|
|
|
|
unlock:
|
|
rcu_read_unlock();
|
|
return best_cpu;
|
|
}
|
|
#else
|
|
static inline int rt_energy_aware_wake_cpu(struct task_struct *task)
|
|
{
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
static int find_lowest_rq(struct task_struct *task)
|
|
{
|
|
struct sched_domain *sd;
|
|
struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
|
|
int this_cpu = smp_processor_id();
|
|
int cpu = -1;
|
|
int ret;
|
|
int lowest_cpu = -1;
|
|
|
|
trace_android_rvh_find_lowest_rq(task, lowest_mask, &lowest_cpu);
|
|
if (lowest_cpu >= 0)
|
|
return lowest_cpu;
|
|
|
|
/* Make sure the mask is initialized first */
|
|
if (unlikely(!lowest_mask))
|
|
return -1;
|
|
|
|
if (task->nr_cpus_allowed == 1)
|
|
return -1; /* No other targets possible */
|
|
|
|
/*
|
|
* If we're on asym system ensure we consider the different capacities
|
|
* of the CPUs when searching for the lowest_mask.
|
|
*/
|
|
if (static_branch_unlikely(&sched_asym_cpucapacity)) {
|
|
|
|
ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
|
|
task, lowest_mask,
|
|
rt_task_fits_capacity);
|
|
} else {
|
|
|
|
ret = cpupri_find(&task_rq(task)->rd->cpupri,
|
|
task, lowest_mask);
|
|
}
|
|
|
|
if (!ret)
|
|
return -1; /* No targets found */
|
|
|
|
if (sched_energy_enabled())
|
|
cpu = rt_energy_aware_wake_cpu(task);
|
|
|
|
if (cpu == -1)
|
|
cpu = task_cpu(task);
|
|
|
|
/*
|
|
* At this point we have built a mask of CPUs representing the
|
|
* lowest priority tasks in the system. Now we want to elect
|
|
* the best one based on our affinity and topology.
|
|
*
|
|
* We prioritize the last CPU that the task executed on since
|
|
* it is most likely cache-hot in that location.
|
|
*/
|
|
if (cpumask_test_cpu(cpu, lowest_mask))
|
|
return cpu;
|
|
|
|
/*
|
|
* Otherwise, we consult the sched_domains span maps to figure
|
|
* out which CPU is logically closest to our hot cache data.
|
|
*/
|
|
if (!cpumask_test_cpu(this_cpu, lowest_mask))
|
|
this_cpu = -1; /* Skip this_cpu opt if not among lowest */
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, sd) {
|
|
if (sd->flags & SD_WAKE_AFFINE) {
|
|
int best_cpu;
|
|
|
|
/*
|
|
* "this_cpu" is cheaper to preempt than a
|
|
* remote processor.
|
|
*/
|
|
if (this_cpu != -1 &&
|
|
cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
|
|
rcu_read_unlock();
|
|
return this_cpu;
|
|
}
|
|
|
|
best_cpu = cpumask_first_and(lowest_mask,
|
|
sched_domain_span(sd));
|
|
if (best_cpu < nr_cpu_ids) {
|
|
rcu_read_unlock();
|
|
return best_cpu;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* And finally, if there were no matches within the domains
|
|
* just give the caller *something* to work with from the compatible
|
|
* locations.
|
|
*/
|
|
if (this_cpu != -1)
|
|
return this_cpu;
|
|
|
|
cpu = cpumask_any(lowest_mask);
|
|
if (cpu < nr_cpu_ids)
|
|
return cpu;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Will lock the rq it finds */
|
|
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
|
|
{
|
|
struct rq *lowest_rq = NULL;
|
|
int tries;
|
|
int cpu;
|
|
|
|
for (tries = 0; tries < RT_MAX_TRIES; tries++) {
|
|
cpu = find_lowest_rq(task);
|
|
|
|
if ((cpu == -1) || (cpu == rq->cpu))
|
|
break;
|
|
|
|
lowest_rq = cpu_rq(cpu);
|
|
|
|
if (lowest_rq->rt.highest_prio.curr <= task->prio) {
|
|
/*
|
|
* Target rq has tasks of equal or higher priority,
|
|
* retrying does not release any lock and is unlikely
|
|
* to yield a different result.
|
|
*/
|
|
lowest_rq = NULL;
|
|
break;
|
|
}
|
|
|
|
/* if the prio of this runqueue changed, try again */
|
|
if (double_lock_balance(rq, lowest_rq)) {
|
|
/*
|
|
* We had to unlock the run queue. In
|
|
* the mean time, task could have
|
|
* migrated already or had its affinity changed.
|
|
* Also make sure that it wasn't scheduled on its rq.
|
|
*/
|
|
if (unlikely(task_rq(task) != rq ||
|
|
!cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
|
|
task_running(rq, task) ||
|
|
!rt_task(task) ||
|
|
!task_on_rq_queued(task))) {
|
|
|
|
double_unlock_balance(rq, lowest_rq);
|
|
lowest_rq = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If this rq is still suitable use it. */
|
|
if (lowest_rq->rt.highest_prio.curr > task->prio)
|
|
break;
|
|
|
|
/* try again */
|
|
double_unlock_balance(rq, lowest_rq);
|
|
lowest_rq = NULL;
|
|
}
|
|
|
|
return lowest_rq;
|
|
}
|
|
|
|
static struct task_struct *pick_next_pushable_task(struct rq *rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!has_pushable_tasks(rq))
|
|
return NULL;
|
|
|
|
p = plist_first_entry(&rq->rt.pushable_tasks,
|
|
struct task_struct, pushable_tasks);
|
|
|
|
BUG_ON(rq->cpu != task_cpu(p));
|
|
BUG_ON(task_current(rq, p));
|
|
BUG_ON(p->nr_cpus_allowed <= 1);
|
|
|
|
BUG_ON(!task_on_rq_queued(p));
|
|
BUG_ON(!rt_task(p));
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* If the current CPU has more than one RT task, see if the non
|
|
* running task can migrate over to a CPU that is running a task
|
|
* of lesser priority.
|
|
*/
|
|
static int push_rt_task(struct rq *rq)
|
|
{
|
|
struct task_struct *next_task;
|
|
struct rq *lowest_rq;
|
|
int ret = 0;
|
|
|
|
if (!rq->rt.overloaded)
|
|
return 0;
|
|
|
|
next_task = pick_next_pushable_task(rq);
|
|
if (!next_task)
|
|
return 0;
|
|
|
|
retry:
|
|
if (WARN_ON(next_task == rq->curr))
|
|
return 0;
|
|
|
|
/*
|
|
* It's possible that the next_task slipped in of
|
|
* higher priority than current. If that's the case
|
|
* just reschedule current.
|
|
*/
|
|
if (unlikely(next_task->prio < rq->curr->prio)) {
|
|
resched_curr(rq);
|
|
return 0;
|
|
}
|
|
|
|
/* We might release rq lock */
|
|
get_task_struct(next_task);
|
|
|
|
/* find_lock_lowest_rq locks the rq if found */
|
|
lowest_rq = find_lock_lowest_rq(next_task, rq);
|
|
if (!lowest_rq) {
|
|
struct task_struct *task;
|
|
/*
|
|
* find_lock_lowest_rq releases rq->lock
|
|
* so it is possible that next_task has migrated.
|
|
*
|
|
* We need to make sure that the task is still on the same
|
|
* run-queue and is also still the next task eligible for
|
|
* pushing.
|
|
*/
|
|
task = pick_next_pushable_task(rq);
|
|
if (task == next_task) {
|
|
/*
|
|
* The task hasn't migrated, and is still the next
|
|
* eligible task, but we failed to find a run-queue
|
|
* to push it to. Do not retry in this case, since
|
|
* other CPUs will pull from us when ready.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
if (!task)
|
|
/* No more tasks, just exit */
|
|
goto out;
|
|
|
|
/*
|
|
* Something has shifted, try again.
|
|
*/
|
|
put_task_struct(next_task);
|
|
next_task = task;
|
|
goto retry;
|
|
}
|
|
|
|
deactivate_task(rq, next_task, 0);
|
|
next_task->on_rq = TASK_ON_RQ_MIGRATING;
|
|
set_task_cpu(next_task, lowest_rq->cpu);
|
|
next_task->on_rq = TASK_ON_RQ_QUEUED;
|
|
activate_task(lowest_rq, next_task, 0);
|
|
ret = 1;
|
|
|
|
resched_curr(lowest_rq);
|
|
|
|
double_unlock_balance(rq, lowest_rq);
|
|
|
|
out:
|
|
put_task_struct(next_task);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void push_rt_tasks(struct rq *rq)
|
|
{
|
|
/* push_rt_task will return true if it moved an RT */
|
|
while (push_rt_task(rq))
|
|
;
|
|
}
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
|
|
/*
|
|
* When a high priority task schedules out from a CPU and a lower priority
|
|
* task is scheduled in, a check is made to see if there's any RT tasks
|
|
* on other CPUs that are waiting to run because a higher priority RT task
|
|
* is currently running on its CPU. In this case, the CPU with multiple RT
|
|
* tasks queued on it (overloaded) needs to be notified that a CPU has opened
|
|
* up that may be able to run one of its non-running queued RT tasks.
|
|
*
|
|
* All CPUs with overloaded RT tasks need to be notified as there is currently
|
|
* no way to know which of these CPUs have the highest priority task waiting
|
|
* to run. Instead of trying to take a spinlock on each of these CPUs,
|
|
* which has shown to cause large latency when done on machines with many
|
|
* CPUs, sending an IPI to the CPUs to have them push off the overloaded
|
|
* RT tasks waiting to run.
|
|
*
|
|
* Just sending an IPI to each of the CPUs is also an issue, as on large
|
|
* count CPU machines, this can cause an IPI storm on a CPU, especially
|
|
* if its the only CPU with multiple RT tasks queued, and a large number
|
|
* of CPUs scheduling a lower priority task at the same time.
|
|
*
|
|
* Each root domain has its own irq work function that can iterate over
|
|
* all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
|
|
* tassk must be checked if there's one or many CPUs that are lowering
|
|
* their priority, there's a single irq work iterator that will try to
|
|
* push off RT tasks that are waiting to run.
|
|
*
|
|
* When a CPU schedules a lower priority task, it will kick off the
|
|
* irq work iterator that will jump to each CPU with overloaded RT tasks.
|
|
* As it only takes the first CPU that schedules a lower priority task
|
|
* to start the process, the rto_start variable is incremented and if
|
|
* the atomic result is one, then that CPU will try to take the rto_lock.
|
|
* This prevents high contention on the lock as the process handles all
|
|
* CPUs scheduling lower priority tasks.
|
|
*
|
|
* All CPUs that are scheduling a lower priority task will increment the
|
|
* rt_loop_next variable. This will make sure that the irq work iterator
|
|
* checks all RT overloaded CPUs whenever a CPU schedules a new lower
|
|
* priority task, even if the iterator is in the middle of a scan. Incrementing
|
|
* the rt_loop_next will cause the iterator to perform another scan.
|
|
*
|
|
*/
|
|
static int rto_next_cpu(struct root_domain *rd)
|
|
{
|
|
int next;
|
|
int cpu;
|
|
|
|
/*
|
|
* When starting the IPI RT pushing, the rto_cpu is set to -1,
|
|
* rt_next_cpu() will simply return the first CPU found in
|
|
* the rto_mask.
|
|
*
|
|
* If rto_next_cpu() is called with rto_cpu is a valid CPU, it
|
|
* will return the next CPU found in the rto_mask.
|
|
*
|
|
* If there are no more CPUs left in the rto_mask, then a check is made
|
|
* against rto_loop and rto_loop_next. rto_loop is only updated with
|
|
* the rto_lock held, but any CPU may increment the rto_loop_next
|
|
* without any locking.
|
|
*/
|
|
for (;;) {
|
|
|
|
/* When rto_cpu is -1 this acts like cpumask_first() */
|
|
cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
|
|
|
|
rd->rto_cpu = cpu;
|
|
|
|
if (cpu < nr_cpu_ids)
|
|
return cpu;
|
|
|
|
rd->rto_cpu = -1;
|
|
|
|
/*
|
|
* ACQUIRE ensures we see the @rto_mask changes
|
|
* made prior to the @next value observed.
|
|
*
|
|
* Matches WMB in rt_set_overload().
|
|
*/
|
|
next = atomic_read_acquire(&rd->rto_loop_next);
|
|
|
|
if (rd->rto_loop == next)
|
|
break;
|
|
|
|
rd->rto_loop = next;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static inline bool rto_start_trylock(atomic_t *v)
|
|
{
|
|
return !atomic_cmpxchg_acquire(v, 0, 1);
|
|
}
|
|
|
|
static inline void rto_start_unlock(atomic_t *v)
|
|
{
|
|
atomic_set_release(v, 0);
|
|
}
|
|
|
|
static void tell_cpu_to_push(struct rq *rq)
|
|
{
|
|
int cpu = -1;
|
|
|
|
/* Keep the loop going if the IPI is currently active */
|
|
atomic_inc(&rq->rd->rto_loop_next);
|
|
|
|
/* Only one CPU can initiate a loop at a time */
|
|
if (!rto_start_trylock(&rq->rd->rto_loop_start))
|
|
return;
|
|
|
|
raw_spin_lock(&rq->rd->rto_lock);
|
|
|
|
/*
|
|
* The rto_cpu is updated under the lock, if it has a valid CPU
|
|
* then the IPI is still running and will continue due to the
|
|
* update to loop_next, and nothing needs to be done here.
|
|
* Otherwise it is finishing up and an ipi needs to be sent.
|
|
*/
|
|
if (rq->rd->rto_cpu < 0)
|
|
cpu = rto_next_cpu(rq->rd);
|
|
|
|
raw_spin_unlock(&rq->rd->rto_lock);
|
|
|
|
rto_start_unlock(&rq->rd->rto_loop_start);
|
|
|
|
if (cpu >= 0) {
|
|
/* Make sure the rd does not get freed while pushing */
|
|
sched_get_rd(rq->rd);
|
|
irq_work_queue_on(&rq->rd->rto_push_work, cpu);
|
|
}
|
|
}
|
|
|
|
/* Called from hardirq context */
|
|
void rto_push_irq_work_func(struct irq_work *work)
|
|
{
|
|
struct root_domain *rd =
|
|
container_of(work, struct root_domain, rto_push_work);
|
|
struct rq *rq;
|
|
int cpu;
|
|
|
|
rq = this_rq();
|
|
|
|
/*
|
|
* We do not need to grab the lock to check for has_pushable_tasks.
|
|
* When it gets updated, a check is made if a push is possible.
|
|
*/
|
|
if (has_pushable_tasks(rq)) {
|
|
raw_spin_lock(&rq->lock);
|
|
push_rt_tasks(rq);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
raw_spin_lock(&rd->rto_lock);
|
|
|
|
/* Pass the IPI to the next rt overloaded queue */
|
|
cpu = rto_next_cpu(rd);
|
|
|
|
raw_spin_unlock(&rd->rto_lock);
|
|
|
|
if (cpu < 0) {
|
|
sched_put_rd(rd);
|
|
return;
|
|
}
|
|
|
|
/* Try the next RT overloaded CPU */
|
|
irq_work_queue_on(&rd->rto_push_work, cpu);
|
|
}
|
|
#endif /* HAVE_RT_PUSH_IPI */
|
|
|
|
static void pull_rt_task(struct rq *this_rq)
|
|
{
|
|
int this_cpu = this_rq->cpu, cpu;
|
|
bool resched = false;
|
|
struct task_struct *p;
|
|
struct rq *src_rq;
|
|
int rt_overload_count = rt_overloaded(this_rq);
|
|
|
|
if (likely(!rt_overload_count))
|
|
return;
|
|
|
|
/*
|
|
* Match the barrier from rt_set_overloaded; this guarantees that if we
|
|
* see overloaded we must also see the rto_mask bit.
|
|
*/
|
|
smp_rmb();
|
|
|
|
/* If we are the only overloaded CPU do nothing */
|
|
if (rt_overload_count == 1 &&
|
|
cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
|
|
return;
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
if (sched_feat(RT_PUSH_IPI)) {
|
|
tell_cpu_to_push(this_rq);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
for_each_cpu(cpu, this_rq->rd->rto_mask) {
|
|
if (this_cpu == cpu)
|
|
continue;
|
|
|
|
src_rq = cpu_rq(cpu);
|
|
|
|
/*
|
|
* Don't bother taking the src_rq->lock if the next highest
|
|
* task is known to be lower-priority than our current task.
|
|
* This may look racy, but if this value is about to go
|
|
* logically higher, the src_rq will push this task away.
|
|
* And if its going logically lower, we do not care
|
|
*/
|
|
if (src_rq->rt.highest_prio.next >=
|
|
this_rq->rt.highest_prio.curr)
|
|
continue;
|
|
|
|
/*
|
|
* We can potentially drop this_rq's lock in
|
|
* double_lock_balance, and another CPU could
|
|
* alter this_rq
|
|
*/
|
|
double_lock_balance(this_rq, src_rq);
|
|
|
|
/*
|
|
* We can pull only a task, which is pushable
|
|
* on its rq, and no others.
|
|
*/
|
|
p = pick_highest_pushable_task(src_rq, this_cpu);
|
|
|
|
/*
|
|
* Do we have an RT task that preempts
|
|
* the to-be-scheduled task?
|
|
*/
|
|
if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
|
|
WARN_ON(p == src_rq->curr);
|
|
WARN_ON(!task_on_rq_queued(p));
|
|
|
|
/*
|
|
* There's a chance that p is higher in priority
|
|
* than what's currently running on its CPU.
|
|
* This is just that p is wakeing up and hasn't
|
|
* had a chance to schedule. We only pull
|
|
* p if it is lower in priority than the
|
|
* current task on the run queue
|
|
*/
|
|
if (p->prio < src_rq->curr->prio)
|
|
goto skip;
|
|
|
|
resched = true;
|
|
|
|
deactivate_task(src_rq, p, 0);
|
|
p->on_rq = TASK_ON_RQ_MIGRATING;
|
|
set_task_cpu(p, this_cpu);
|
|
p->on_rq = TASK_ON_RQ_QUEUED;
|
|
activate_task(this_rq, p, 0);
|
|
/*
|
|
* We continue with the search, just in
|
|
* case there's an even higher prio task
|
|
* in another runqueue. (low likelihood
|
|
* but possible)
|
|
*/
|
|
}
|
|
skip:
|
|
double_unlock_balance(this_rq, src_rq);
|
|
}
|
|
|
|
if (resched)
|
|
resched_curr(this_rq);
|
|
}
|
|
|
|
/*
|
|
* If we are not running and we are not going to reschedule soon, we should
|
|
* try to push tasks away now
|
|
*/
|
|
static void task_woken_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
bool need_to_push = !task_running(rq, p) &&
|
|
!test_tsk_need_resched(rq->curr) &&
|
|
p->nr_cpus_allowed > 1 &&
|
|
(dl_task(rq->curr) || rt_task(rq->curr)) &&
|
|
(rq->curr->nr_cpus_allowed < 2 ||
|
|
rq->curr->prio <= p->prio);
|
|
|
|
if (need_to_push)
|
|
push_rt_tasks(rq);
|
|
}
|
|
|
|
/* Assumes rq->lock is held */
|
|
static void rq_online_rt(struct rq *rq)
|
|
{
|
|
if (rq->rt.overloaded)
|
|
rt_set_overload(rq);
|
|
|
|
__enable_runtime(rq);
|
|
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
|
|
}
|
|
|
|
/* Assumes rq->lock is held */
|
|
static void rq_offline_rt(struct rq *rq)
|
|
{
|
|
if (rq->rt.overloaded)
|
|
rt_clear_overload(rq);
|
|
|
|
__disable_runtime(rq);
|
|
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
|
|
}
|
|
|
|
/*
|
|
* When switch from the rt queue, we bring ourselves to a position
|
|
* that we might want to pull RT tasks from other runqueues.
|
|
*/
|
|
static void switched_from_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* If there are other RT tasks then we will reschedule
|
|
* and the scheduling of the other RT tasks will handle
|
|
* the balancing. But if we are the last RT task
|
|
* we may need to handle the pulling of RT tasks
|
|
* now.
|
|
*/
|
|
if (!task_on_rq_queued(p) || rq->rt.rt_nr_running ||
|
|
cpu_isolated(cpu_of(rq)))
|
|
return;
|
|
|
|
rt_queue_pull_task(rq);
|
|
}
|
|
|
|
void __init init_sched_rt_class(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
}
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* When switching a task to RT, we may overload the runqueue
|
|
* with RT tasks. In this case we try to push them off to
|
|
* other runqueues.
|
|
*/
|
|
static void switched_to_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* If we are running, update the avg_rt tracking, as the running time
|
|
* will now on be accounted into the latter.
|
|
*/
|
|
if (task_current(rq, p)) {
|
|
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we are not running we may need to preempt the current
|
|
* running task. If that current running task is also an RT task
|
|
* then see if we can move to another run queue.
|
|
*/
|
|
if (task_on_rq_queued(p)) {
|
|
#ifdef CONFIG_SMP
|
|
if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
|
|
rt_queue_push_tasks(rq);
|
|
#endif /* CONFIG_SMP */
|
|
if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
|
|
resched_curr(rq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Priority of the task has changed. This may cause
|
|
* us to initiate a push or pull.
|
|
*/
|
|
static void
|
|
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
|
|
{
|
|
if (!task_on_rq_queued(p))
|
|
return;
|
|
|
|
if (rq->curr == p) {
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* If our priority decreases while running, we
|
|
* may need to pull tasks to this runqueue.
|
|
*/
|
|
if (oldprio < p->prio)
|
|
rt_queue_pull_task(rq);
|
|
|
|
/*
|
|
* If there's a higher priority task waiting to run
|
|
* then reschedule.
|
|
*/
|
|
if (p->prio > rq->rt.highest_prio.curr)
|
|
resched_curr(rq);
|
|
#else
|
|
/* For UP simply resched on drop of prio */
|
|
if (oldprio < p->prio)
|
|
resched_curr(rq);
|
|
#endif /* CONFIG_SMP */
|
|
} else {
|
|
/*
|
|
* This task is not running, but if it is
|
|
* greater than the current running task
|
|
* then reschedule.
|
|
*/
|
|
if (p->prio < rq->curr->prio)
|
|
resched_curr(rq);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
static void watchdog(struct rq *rq, struct task_struct *p)
|
|
{
|
|
unsigned long soft, hard;
|
|
|
|
/* max may change after cur was read, this will be fixed next tick */
|
|
soft = task_rlimit(p, RLIMIT_RTTIME);
|
|
hard = task_rlimit_max(p, RLIMIT_RTTIME);
|
|
|
|
if (soft != RLIM_INFINITY) {
|
|
unsigned long next;
|
|
|
|
if (p->rt.watchdog_stamp != jiffies) {
|
|
p->rt.timeout++;
|
|
p->rt.watchdog_stamp = jiffies;
|
|
}
|
|
|
|
next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
|
|
if (p->rt.timeout > next) {
|
|
posix_cputimers_rt_watchdog(&p->posix_cputimers,
|
|
p->se.sum_exec_runtime);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static inline void watchdog(struct rq *rq, struct task_struct *p) { }
|
|
#endif
|
|
|
|
/*
|
|
* scheduler tick hitting a task of our scheduling class.
|
|
*
|
|
* NOTE: This function can be called remotely by the tick offload that
|
|
* goes along full dynticks. Therefore no local assumption can be made
|
|
* and everything must be accessed through the @rq and @curr passed in
|
|
* parameters.
|
|
*/
|
|
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
|
|
update_curr_rt(rq);
|
|
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
|
|
|
|
watchdog(rq, p);
|
|
|
|
/*
|
|
* RR tasks need a special form of timeslice management.
|
|
* FIFO tasks have no timeslices.
|
|
*/
|
|
if (p->policy != SCHED_RR)
|
|
return;
|
|
|
|
if (--p->rt.time_slice)
|
|
return;
|
|
|
|
p->rt.time_slice = sched_rr_timeslice;
|
|
|
|
/*
|
|
* Requeue to the end of queue if we (and all of our ancestors) are not
|
|
* the only element on the queue
|
|
*/
|
|
for_each_sched_rt_entity(rt_se) {
|
|
if (rt_se->run_list.prev != rt_se->run_list.next) {
|
|
requeue_task_rt(rq, p, 0);
|
|
resched_curr(rq);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
|
|
{
|
|
/*
|
|
* Time slice is 0 for SCHED_FIFO tasks
|
|
*/
|
|
if (task->policy == SCHED_RR)
|
|
return sched_rr_timeslice;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
const struct sched_class rt_sched_class = {
|
|
.next = &fair_sched_class,
|
|
.enqueue_task = enqueue_task_rt,
|
|
.dequeue_task = dequeue_task_rt,
|
|
.yield_task = yield_task_rt,
|
|
|
|
.check_preempt_curr = check_preempt_curr_rt,
|
|
|
|
.pick_next_task = pick_next_task_rt,
|
|
.put_prev_task = put_prev_task_rt,
|
|
.set_next_task = set_next_task_rt,
|
|
|
|
#ifdef CONFIG_SMP
|
|
.balance = balance_rt,
|
|
.select_task_rq = select_task_rq_rt,
|
|
.set_cpus_allowed = set_cpus_allowed_common,
|
|
.rq_online = rq_online_rt,
|
|
.rq_offline = rq_offline_rt,
|
|
.task_woken = task_woken_rt,
|
|
.switched_from = switched_from_rt,
|
|
#endif
|
|
|
|
.task_tick = task_tick_rt,
|
|
|
|
.get_rr_interval = get_rr_interval_rt,
|
|
|
|
.prio_changed = prio_changed_rt,
|
|
.switched_to = switched_to_rt,
|
|
|
|
.update_curr = update_curr_rt,
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
.uclamp_enabled = 1,
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Ensure that the real time constraints are schedulable.
|
|
*/
|
|
static DEFINE_MUTEX(rt_constraints_mutex);
|
|
|
|
/* Must be called with tasklist_lock held */
|
|
static inline int tg_has_rt_tasks(struct task_group *tg)
|
|
{
|
|
struct task_struct *g, *p;
|
|
|
|
/*
|
|
* Autogroups do not have RT tasks; see autogroup_create().
|
|
*/
|
|
if (task_group_is_autogroup(tg))
|
|
return 0;
|
|
|
|
for_each_process_thread(g, p) {
|
|
if (rt_task(p) && task_group(p) == tg)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct rt_schedulable_data {
|
|
struct task_group *tg;
|
|
u64 rt_period;
|
|
u64 rt_runtime;
|
|
};
|
|
|
|
static int tg_rt_schedulable(struct task_group *tg, void *data)
|
|
{
|
|
struct rt_schedulable_data *d = data;
|
|
struct task_group *child;
|
|
unsigned long total, sum = 0;
|
|
u64 period, runtime;
|
|
|
|
period = ktime_to_ns(tg->rt_bandwidth.rt_period);
|
|
runtime = tg->rt_bandwidth.rt_runtime;
|
|
|
|
if (tg == d->tg) {
|
|
period = d->rt_period;
|
|
runtime = d->rt_runtime;
|
|
}
|
|
|
|
/*
|
|
* Cannot have more runtime than the period.
|
|
*/
|
|
if (runtime > period && runtime != RUNTIME_INF)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Ensure we don't starve existing RT tasks.
|
|
*/
|
|
if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
|
|
return -EBUSY;
|
|
|
|
total = to_ratio(period, runtime);
|
|
|
|
/*
|
|
* Nobody can have more than the global setting allows.
|
|
*/
|
|
if (total > to_ratio(global_rt_period(), global_rt_runtime()))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The sum of our children's runtime should not exceed our own.
|
|
*/
|
|
list_for_each_entry_rcu(child, &tg->children, siblings) {
|
|
period = ktime_to_ns(child->rt_bandwidth.rt_period);
|
|
runtime = child->rt_bandwidth.rt_runtime;
|
|
|
|
if (child == d->tg) {
|
|
period = d->rt_period;
|
|
runtime = d->rt_runtime;
|
|
}
|
|
|
|
sum += to_ratio(period, runtime);
|
|
}
|
|
|
|
if (sum > total)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
|
|
{
|
|
int ret;
|
|
|
|
struct rt_schedulable_data data = {
|
|
.tg = tg,
|
|
.rt_period = period,
|
|
.rt_runtime = runtime,
|
|
};
|
|
|
|
rcu_read_lock();
|
|
ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tg_set_rt_bandwidth(struct task_group *tg,
|
|
u64 rt_period, u64 rt_runtime)
|
|
{
|
|
int i, err = 0;
|
|
|
|
/*
|
|
* Disallowing the root group RT runtime is BAD, it would disallow the
|
|
* kernel creating (and or operating) RT threads.
|
|
*/
|
|
if (tg == &root_task_group && rt_runtime == 0)
|
|
return -EINVAL;
|
|
|
|
/* No period doesn't make any sense. */
|
|
if (rt_period == 0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Bound quota to defend quota against overflow during bandwidth shift.
|
|
*/
|
|
if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rt_constraints_mutex);
|
|
read_lock(&tasklist_lock);
|
|
err = __rt_schedulable(tg, rt_period, rt_runtime);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
|
|
tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
|
|
tg->rt_bandwidth.rt_runtime = rt_runtime;
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct rt_rq *rt_rq = tg->rt_rq[i];
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_runtime = rt_runtime;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
|
|
unlock:
|
|
read_unlock(&tasklist_lock);
|
|
mutex_unlock(&rt_constraints_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
|
|
{
|
|
u64 rt_runtime, rt_period;
|
|
|
|
rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
|
|
rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
|
|
if (rt_runtime_us < 0)
|
|
rt_runtime = RUNTIME_INF;
|
|
else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
|
|
return -EINVAL;
|
|
|
|
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
|
|
}
|
|
|
|
long sched_group_rt_runtime(struct task_group *tg)
|
|
{
|
|
u64 rt_runtime_us;
|
|
|
|
if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
|
|
return -1;
|
|
|
|
rt_runtime_us = tg->rt_bandwidth.rt_runtime;
|
|
do_div(rt_runtime_us, NSEC_PER_USEC);
|
|
return rt_runtime_us;
|
|
}
|
|
|
|
int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
|
|
{
|
|
u64 rt_runtime, rt_period;
|
|
|
|
if (rt_period_us > U64_MAX / NSEC_PER_USEC)
|
|
return -EINVAL;
|
|
|
|
rt_period = rt_period_us * NSEC_PER_USEC;
|
|
rt_runtime = tg->rt_bandwidth.rt_runtime;
|
|
|
|
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
|
|
}
|
|
|
|
long sched_group_rt_period(struct task_group *tg)
|
|
{
|
|
u64 rt_period_us;
|
|
|
|
rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
|
|
do_div(rt_period_us, NSEC_PER_USEC);
|
|
return rt_period_us;
|
|
}
|
|
|
|
static int sched_rt_global_constraints(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&rt_constraints_mutex);
|
|
read_lock(&tasklist_lock);
|
|
ret = __rt_schedulable(NULL, 0, 0);
|
|
read_unlock(&tasklist_lock);
|
|
mutex_unlock(&rt_constraints_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
|
|
{
|
|
/* Don't accept realtime tasks when there is no way for them to run */
|
|
if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else /* !CONFIG_RT_GROUP_SCHED */
|
|
static int sched_rt_global_constraints(void)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
for_each_possible_cpu(i) {
|
|
struct rt_rq *rt_rq = &cpu_rq(i)->rt;
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_runtime = global_rt_runtime();
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
static int sched_rt_global_validate(void)
|
|
{
|
|
if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
|
|
((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
|
|
((u64)sysctl_sched_rt_runtime *
|
|
NSEC_PER_USEC > max_rt_runtime)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sched_rt_do_global(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
def_rt_bandwidth.rt_runtime = global_rt_runtime();
|
|
def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
|
|
raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
}
|
|
|
|
int sched_rt_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int old_period, old_runtime;
|
|
static DEFINE_MUTEX(mutex);
|
|
int ret;
|
|
|
|
mutex_lock(&mutex);
|
|
old_period = sysctl_sched_rt_period;
|
|
old_runtime = sysctl_sched_rt_runtime;
|
|
|
|
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
|
|
if (!ret && write) {
|
|
ret = sched_rt_global_validate();
|
|
if (ret)
|
|
goto undo;
|
|
|
|
ret = sched_dl_global_validate();
|
|
if (ret)
|
|
goto undo;
|
|
|
|
ret = sched_rt_global_constraints();
|
|
if (ret)
|
|
goto undo;
|
|
|
|
sched_rt_do_global();
|
|
sched_dl_do_global();
|
|
}
|
|
if (0) {
|
|
undo:
|
|
sysctl_sched_rt_period = old_period;
|
|
sysctl_sched_rt_runtime = old_runtime;
|
|
}
|
|
mutex_unlock(&mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sched_rr_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
static DEFINE_MUTEX(mutex);
|
|
|
|
mutex_lock(&mutex);
|
|
ret = proc_dointvec(table, write, buffer, lenp, ppos);
|
|
/*
|
|
* Make sure that internally we keep jiffies.
|
|
* Also, writing zero resets the timeslice to default:
|
|
*/
|
|
if (!ret && write) {
|
|
sched_rr_timeslice =
|
|
sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
|
|
msecs_to_jiffies(sysctl_sched_rr_timeslice);
|
|
|
|
if (sysctl_sched_rr_timeslice <= 0)
|
|
sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
|
|
}
|
|
mutex_unlock(&mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
void print_rt_stats(struct seq_file *m, int cpu)
|
|
{
|
|
rt_rq_iter_t iter;
|
|
struct rt_rq *rt_rq;
|
|
|
|
rcu_read_lock();
|
|
for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
|
|
print_rt_rq(m, cpu, rt_rq);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif /* CONFIG_SCHED_DEBUG */
|