android_kernel_xiaomi_sm8350/techpack/display/msm/sde/sde_encoder.c
Michael Bestas 8b685a05b5
Merge tag 'LA.UM.9.14.r1-23300-LAHAINA.QSSI14.0' of https://git.codelinaro.org/clo/la/platform/vendor/opensource/display-drivers into android13-5.4-lahaina
"LA.UM.9.14.r1-23300-LAHAINA.QSSI14.0"

* tag 'LA.UM.9.14.r1-23300-LAHAINA.QSSI14.0' of https://git.codelinaro.org/clo/la/platform/vendor/opensource/display-drivers:
  disp: msm: sde: skip msm_lastclose if display is stuck in splash
  disp: msm: cancel all delayed_works before triggering msm_lastclose
  disp: msm: sde: cancel delayed work items during TUI transition

Change-Id: I8dbdda8ada31d7d58a5aceaf7e72d6955cee2ec2
2023-12-11 20:41:53 +02:00

5524 lines
147 KiB
C

/*
* Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
* Copyright (c) 2014-2021, The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <linux/kthread.h>
#include <linux/debugfs.h>
#include <linux/input.h>
#include <linux/seq_file.h>
#include <linux/sde_rsc.h>
#include "msm_drv.h"
#include "sde_kms.h"
#include <drm/drm_crtc.h>
#include <drm/drm_probe_helper.h>
#include "sde_hwio.h"
#include "sde_hw_catalog.h"
#include "sde_hw_intf.h"
#include "sde_hw_ctl.h"
#include "sde_formats.h"
#include "sde_encoder.h"
#include "sde_encoder_phys.h"
#include "sde_hw_dsc.h"
#include "sde_crtc.h"
#include "sde_trace.h"
#include "sde_core_irq.h"
#include "sde_hw_top.h"
#include "sde_hw_qdss.h"
#include "sde_encoder_dce.h"
#include "sde_vm.h"
#define SDE_DEBUG_ENC(e, fmt, ...) SDE_DEBUG("enc%d " fmt,\
(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
#define SDE_ERROR_ENC(e, fmt, ...) SDE_ERROR("enc%d " fmt,\
(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
#define SDE_DEBUG_PHYS(p, fmt, ...) SDE_DEBUG("enc%d intf%d pp%d " fmt,\
(p) ? (p)->parent->base.id : -1, \
(p) ? (p)->intf_idx - INTF_0 : -1, \
(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
##__VA_ARGS__)
#define SDE_ERROR_PHYS(p, fmt, ...) SDE_ERROR("enc%d intf%d pp%d " fmt,\
(p) ? (p)->parent->base.id : -1, \
(p) ? (p)->intf_idx - INTF_0 : -1, \
(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
##__VA_ARGS__)
#define MISR_BUFF_SIZE 256
#define IDLE_SHORT_TIMEOUT 1
#define EVT_TIME_OUT_SPLIT 2
/* worst case poll time for delay_kickoff to be cleared */
#define DELAY_KICKOFF_POLL_TIMEOUT_US 100000
/* Maximum number of VSYNC wait attempts for RSC state transition */
#define MAX_RSC_WAIT 5
/**
* enum sde_enc_rc_events - events for resource control state machine
* @SDE_ENC_RC_EVENT_KICKOFF:
* This event happens at NORMAL priority.
* Event that signals the start of the transfer. When this event is
* received, enable MDP/DSI core clocks and request RSC with CMD state.
* Regardless of the previous state, the resource should be in ON state
* at the end of this event. At the end of this event, a delayed work is
* scheduled to go to IDLE_PC state after IDLE_POWERCOLLAPSE_DURATION
* ktime.
* @SDE_ENC_RC_EVENT_PRE_STOP:
* This event happens at NORMAL priority.
* This event, when received during the ON state, set RSC to IDLE, and
* and leave the RC STATE in the PRE_OFF state.
* It should be followed by the STOP event as part of encoder disable.
* If received during IDLE or OFF states, it will do nothing.
* @SDE_ENC_RC_EVENT_STOP:
* This event happens at NORMAL priority.
* When this event is received, disable all the MDP/DSI core clocks, and
* disable IRQs. It should be called from the PRE_OFF or IDLE states.
* IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
* PRE_OFF is expected when PRE_STOP was executed during the ON state.
* Resource state should be in OFF at the end of the event.
* @SDE_ENC_RC_EVENT_PRE_MODESET:
* This event happens at NORMAL priority from a work item.
* Event signals that there is a seamless mode switch is in prgoress. A
* client needs to turn of only irq - leave clocks ON to reduce the mode
* switch latency.
* @SDE_ENC_RC_EVENT_POST_MODESET:
* This event happens at NORMAL priority from a work item.
* Event signals that seamless mode switch is complete and resources are
* acquired. Clients wants to turn on the irq again and update the rsc
* with new vtotal.
* @SDE_ENC_RC_EVENT_ENTER_IDLE:
* This event happens at NORMAL priority from a work item.
* Event signals that there were no frame updates for
* IDLE_POWERCOLLAPSE_DURATION time. This would disable MDP/DSI core clocks
* and request RSC with IDLE state and change the resource state to IDLE.
* @SDE_ENC_RC_EVENT_EARLY_WAKEUP:
* This event is triggered from the input event thread when touch event is
* received from the input device. On receiving this event,
* - If the device is in SDE_ENC_RC_STATE_IDLE state, it turns ON the
clocks and enable RSC.
* - If the device is in SDE_ENC_RC_STATE_ON state, it resets the delayed
* off work since a new commit is imminent.
*/
enum sde_enc_rc_events {
SDE_ENC_RC_EVENT_KICKOFF = 1,
SDE_ENC_RC_EVENT_PRE_STOP,
SDE_ENC_RC_EVENT_STOP,
SDE_ENC_RC_EVENT_PRE_MODESET,
SDE_ENC_RC_EVENT_POST_MODESET,
SDE_ENC_RC_EVENT_ENTER_IDLE,
SDE_ENC_RC_EVENT_EARLY_WAKEUP,
};
void sde_encoder_uidle_enable(struct drm_encoder *drm_enc, bool enable)
{
struct sde_encoder_virt *sde_enc;
int i;
sde_enc = to_sde_encoder_virt(drm_enc);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->hw_ctl && phys->hw_ctl->ops.uidle_enable &&
phys->split_role != ENC_ROLE_SLAVE) {
if (enable)
SDE_EVT32(DRMID(drm_enc), enable);
phys->hw_ctl->ops.uidle_enable(phys->hw_ctl, enable);
}
}
}
static void _sde_encoder_pm_qos_add_request(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct device *cpu_dev;
struct cpumask *cpu_mask = NULL;
int cpu = 0;
u32 cpu_dma_latency;
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
if (!sde_kms->catalog || !sde_kms->catalog->perf.cpu_mask)
return;
cpu_dma_latency = sde_kms->catalog->perf.cpu_dma_latency;
cpumask_clear(&sde_enc->valid_cpu_mask);
if (sde_enc->mode_info.frame_rate > DEFAULT_FPS)
cpu_mask = to_cpumask(&sde_kms->catalog->perf.cpu_mask_perf);
if (!cpu_mask &&
sde_encoder_check_curr_mode(drm_enc,
MSM_DISPLAY_CMD_MODE))
cpu_mask = to_cpumask(&sde_kms->catalog->perf.cpu_mask);
if (!cpu_mask)
return;
for_each_cpu(cpu, cpu_mask) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
SDE_ERROR("%s: failed to get cpu%d device\n", __func__,
cpu);
return;
}
cpumask_set_cpu(cpu, &sde_enc->valid_cpu_mask);
dev_pm_qos_add_request(cpu_dev,
&sde_enc->pm_qos_cpu_req[cpu],
DEV_PM_QOS_RESUME_LATENCY, cpu_dma_latency);
SDE_EVT32_VERBOSE(DRMID(drm_enc), cpu_dma_latency, cpu);
}
}
static void _sde_encoder_pm_qos_remove_request(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
struct device *cpu_dev;
int cpu = 0;
for_each_cpu(cpu, &sde_enc->valid_cpu_mask) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
SDE_ERROR("%s: failed to get cpu%d device\n", __func__,
cpu);
continue;
}
dev_pm_qos_remove_request(&sde_enc->pm_qos_cpu_req[cpu]);
SDE_EVT32_VERBOSE(DRMID(drm_enc), cpu);
}
cpumask_clear(&sde_enc->valid_cpu_mask);
}
static bool _sde_encoder_is_autorefresh_enabled(
struct sde_encoder_virt *sde_enc)
{
struct drm_connector *drm_conn;
if (!sde_enc->cur_master ||
!(sde_enc->disp_info.capabilities & MSM_DISPLAY_CAP_CMD_MODE))
return false;
drm_conn = sde_enc->cur_master->connector;
if (!drm_conn || !drm_conn->state)
return false;
return sde_connector_get_property(drm_conn->state,
CONNECTOR_PROP_AUTOREFRESH) ? true : false;
}
static void sde_configure_qdss(struct sde_encoder_virt *sde_enc,
struct sde_hw_qdss *hw_qdss,
struct sde_encoder_phys *phys, bool enable)
{
if (sde_enc->qdss_status == enable)
return;
sde_enc->qdss_status = enable;
phys->hw_mdptop->ops.set_mdp_hw_events(phys->hw_mdptop,
sde_enc->qdss_status);
hw_qdss->ops.enable_qdss_events(hw_qdss, sde_enc->qdss_status);
}
static int _sde_encoder_wait_timeout(int32_t drm_id, int32_t hw_id,
s64 timeout_ms, struct sde_encoder_wait_info *info)
{
int rc = 0;
s64 wait_time_jiffies = msecs_to_jiffies(timeout_ms);
ktime_t cur_ktime;
ktime_t exp_ktime = ktime_add_ms(ktime_get(), timeout_ms);
do {
rc = wait_event_timeout(*(info->wq),
atomic_read(info->atomic_cnt) == info->count_check,
wait_time_jiffies);
cur_ktime = ktime_get();
SDE_EVT32(drm_id, hw_id, rc, ktime_to_ms(cur_ktime),
timeout_ms, atomic_read(info->atomic_cnt),
info->count_check);
/* If we timed out, counter is valid and time is less, wait again */
} while ((atomic_read(info->atomic_cnt) != info->count_check) &&
(rc == 0) &&
(ktime_compare_safe(exp_ktime, cur_ktime) > 0));
return rc;
}
u32 sde_encoder_get_display_type(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
return sde_enc ? sde_enc->disp_info.display_type : 0;
}
bool sde_encoder_is_dsi_display(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
return sde_enc &&
(sde_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DSI);
}
int sde_encoder_in_cont_splash(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
return sde_enc && sde_enc->cur_master &&
sde_enc->cur_master->cont_splash_enabled;
}
void sde_encoder_helper_report_irq_timeout(struct sde_encoder_phys *phys_enc,
enum sde_intr_idx intr_idx)
{
SDE_EVT32(DRMID(phys_enc->parent),
phys_enc->intf_idx - INTF_0,
phys_enc->hw_pp->idx - PINGPONG_0,
intr_idx);
SDE_ERROR_PHYS(phys_enc, "irq %d timeout\n", intr_idx);
if (phys_enc->parent_ops.handle_frame_done)
phys_enc->parent_ops.handle_frame_done(
phys_enc->parent, phys_enc,
SDE_ENCODER_FRAME_EVENT_ERROR);
}
int sde_encoder_helper_wait_for_irq(struct sde_encoder_phys *phys_enc,
enum sde_intr_idx intr_idx,
struct sde_encoder_wait_info *wait_info)
{
struct sde_encoder_irq *irq;
u32 irq_status;
int ret, i;
if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
SDE_ERROR("invalid params\n");
return -EINVAL;
}
irq = &phys_enc->irq[intr_idx];
/* note: do master / slave checking outside */
/* return EWOULDBLOCK since we know the wait isn't necessary */
if (phys_enc->enable_state == SDE_ENC_DISABLED) {
SDE_ERROR_PHYS(phys_enc, "encoder is disabled\n");
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, intr_idx, SDE_EVTLOG_ERROR);
return -EWOULDBLOCK;
}
if (irq->irq_idx < 0) {
SDE_DEBUG_PHYS(phys_enc, "irq %s hw %d disabled, skip wait\n",
irq->name, irq->hw_idx);
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx);
return 0;
}
SDE_DEBUG_PHYS(phys_enc, "pending_cnt %d\n",
atomic_read(wait_info->atomic_cnt));
SDE_EVT32_VERBOSE(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt), SDE_EVTLOG_FUNC_ENTRY);
/*
* Some module X may disable interrupt for longer duration
* and it may trigger all interrupts including timer interrupt
* when module X again enable the interrupt.
* That may cause interrupt wait timeout API in this API.
* It is handled by split the wait timer in two halves.
*/
for (i = 0; i < EVT_TIME_OUT_SPLIT; i++) {
ret = _sde_encoder_wait_timeout(DRMID(phys_enc->parent),
irq->hw_idx,
(wait_info->timeout_ms/EVT_TIME_OUT_SPLIT),
wait_info);
if (ret)
break;
}
if (ret <= 0) {
irq_status = sde_core_irq_read(phys_enc->sde_kms,
irq->irq_idx, true);
if (irq_status) {
unsigned long flags;
SDE_EVT32(DRMID(phys_enc->parent), intr_idx,
irq->hw_idx, irq->irq_idx,
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
SDE_DEBUG_PHYS(phys_enc,
"done but irq %d not triggered\n",
irq->irq_idx);
local_irq_save(flags);
irq->cb.func(phys_enc, irq->irq_idx);
local_irq_restore(flags);
ret = 0;
} else {
ret = -ETIMEDOUT;
SDE_EVT32(DRMID(phys_enc->parent), intr_idx,
irq->hw_idx, irq->irq_idx,
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt), irq_status,
SDE_EVTLOG_ERROR);
}
} else {
ret = 0;
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
}
SDE_EVT32_VERBOSE(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, ret, phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt), SDE_EVTLOG_FUNC_EXIT);
return ret;
}
int sde_encoder_helper_register_irq(struct sde_encoder_phys *phys_enc,
enum sde_intr_idx intr_idx)
{
struct sde_encoder_irq *irq;
int ret = 0;
if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
SDE_ERROR("invalid params\n");
return -EINVAL;
}
irq = &phys_enc->irq[intr_idx];
if (irq->irq_idx >= 0) {
SDE_DEBUG_PHYS(phys_enc,
"skipping already registered irq %s type %d\n",
irq->name, irq->intr_type);
return 0;
}
irq->irq_idx = sde_core_irq_idx_lookup(phys_enc->sde_kms,
irq->intr_type, irq->hw_idx);
if (irq->irq_idx < 0) {
SDE_ERROR_PHYS(phys_enc,
"failed to lookup IRQ index for %s type:%d\n",
irq->name, irq->intr_type);
return -EINVAL;
}
ret = sde_core_irq_register_callback(phys_enc->sde_kms, irq->irq_idx,
&irq->cb);
if (ret) {
SDE_ERROR_PHYS(phys_enc,
"failed to register IRQ callback for %s\n",
irq->name);
irq->irq_idx = -EINVAL;
return ret;
}
ret = sde_core_irq_enable(phys_enc->sde_kms, &irq->irq_idx, 1);
if (ret) {
SDE_ERROR_PHYS(phys_enc,
"enable IRQ for intr:%s failed, irq_idx %d\n",
irq->name, irq->irq_idx);
sde_core_irq_unregister_callback(phys_enc->sde_kms,
irq->irq_idx, &irq->cb);
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, SDE_EVTLOG_ERROR);
irq->irq_idx = -EINVAL;
return ret;
}
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx);
SDE_DEBUG_PHYS(phys_enc, "registered irq %s idx: %d\n",
irq->name, irq->irq_idx);
return ret;
}
int sde_encoder_helper_unregister_irq(struct sde_encoder_phys *phys_enc,
enum sde_intr_idx intr_idx)
{
struct sde_encoder_irq *irq;
int ret;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
irq = &phys_enc->irq[intr_idx];
/* silently skip irqs that weren't registered */
if (irq->irq_idx < 0) {
SDE_ERROR(
"extra unregister irq, enc%d intr_idx:0x%x hw_idx:0x%x irq_idx:0x%x\n",
DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx);
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, SDE_EVTLOG_ERROR);
return 0;
}
ret = sde_core_irq_disable(phys_enc->sde_kms, &irq->irq_idx, 1);
if (ret)
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, ret, SDE_EVTLOG_ERROR);
ret = sde_core_irq_unregister_callback(phys_enc->sde_kms, irq->irq_idx,
&irq->cb);
if (ret)
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
irq->irq_idx, ret, SDE_EVTLOG_ERROR);
SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx);
SDE_DEBUG_PHYS(phys_enc, "unregistered %d\n", irq->irq_idx);
irq->irq_idx = -EINVAL;
return 0;
}
void sde_encoder_get_hw_resources(struct drm_encoder *drm_enc,
struct sde_encoder_hw_resources *hw_res,
struct drm_connector_state *conn_state)
{
struct sde_encoder_virt *sde_enc = NULL;
int ret, i = 0;
if (!hw_res || !drm_enc || !conn_state || !hw_res->comp_info) {
SDE_ERROR("rc %d, drm_enc %d, res %d, state %d, comp-info %d\n",
-EINVAL, !drm_enc, !hw_res, !conn_state,
hw_res ? !hw_res->comp_info : 0);
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
hw_res->display_num_of_h_tiles = sde_enc->display_num_of_h_tiles;
hw_res->display_type = sde_enc->disp_info.display_type;
/* Query resources used by phys encs, expected to be without overlap */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.get_hw_resources)
phys->ops.get_hw_resources(phys, hw_res, conn_state);
}
/*
* NOTE: Do not use sde_encoder_get_mode_info here as this function is
* called from atomic_check phase. Use the below API to get mode
* information of the temporary conn_state passed
*/
ret = sde_connector_state_get_topology(conn_state, &hw_res->topology);
if (ret)
SDE_ERROR("failed to get topology ret %d\n", ret);
ret = sde_connector_state_get_compression_info(conn_state,
hw_res->comp_info);
if (ret)
SDE_ERROR("failed to get compression info ret %d\n", ret);
}
void sde_encoder_destroy(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
int i = 0;
unsigned int num_encs;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
num_encs = sde_enc->num_phys_encs;
mutex_lock(&sde_enc->enc_lock);
sde_rsc_client_destroy(sde_enc->rsc_client);
for (i = 0; i < num_encs; i++) {
struct sde_encoder_phys *phys;
phys = sde_enc->phys_vid_encs[i];
if (phys && phys->ops.destroy) {
phys->ops.destroy(phys);
--sde_enc->num_phys_encs;
sde_enc->phys_vid_encs[i] = NULL;
}
phys = sde_enc->phys_cmd_encs[i];
if (phys && phys->ops.destroy) {
phys->ops.destroy(phys);
--sde_enc->num_phys_encs;
sde_enc->phys_cmd_encs[i] = NULL;
}
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.destroy) {
phys->ops.destroy(phys);
--sde_enc->num_phys_encs;
sde_enc->phys_encs[i] = NULL;
}
}
if (sde_enc->num_phys_encs)
SDE_ERROR_ENC(sde_enc, "expected 0 num_phys_encs not %d\n",
sde_enc->num_phys_encs);
sde_enc->num_phys_encs = 0;
mutex_unlock(&sde_enc->enc_lock);
drm_encoder_cleanup(drm_enc);
mutex_destroy(&sde_enc->enc_lock);
kfree(sde_enc->input_handler);
sde_enc->input_handler = NULL;
kfree(sde_enc);
}
void sde_encoder_helper_update_intf_cfg(
struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_hw_intf_cfg_v1 *intf_cfg;
enum sde_3d_blend_mode mode_3d;
if (!phys_enc || !phys_enc->hw_pp) {
SDE_ERROR("invalid args, encoder %d\n", !phys_enc);
return;
}
sde_enc = to_sde_encoder_virt(phys_enc->parent);
intf_cfg = &sde_enc->cur_master->intf_cfg_v1;
SDE_DEBUG_ENC(sde_enc,
"intf_cfg updated for %d at idx %d\n",
phys_enc->intf_idx,
intf_cfg->intf_count);
/* setup interface configuration */
if (intf_cfg->intf_count >= MAX_INTF_PER_CTL_V1) {
pr_err("invalid inf_count %d\n", intf_cfg->intf_count);
return;
}
intf_cfg->intf[intf_cfg->intf_count++] = phys_enc->intf_idx;
if (phys_enc == sde_enc->cur_master) {
if (sde_enc->cur_master->intf_mode == INTF_MODE_CMD)
intf_cfg->intf_mode_sel = SDE_CTL_MODE_SEL_CMD;
else
intf_cfg->intf_mode_sel = SDE_CTL_MODE_SEL_VID;
}
/* configure this interface as master for split display */
if (phys_enc->split_role == ENC_ROLE_MASTER)
intf_cfg->intf_master = phys_enc->hw_intf->idx;
/* setup which pp blk will connect to this intf */
if (phys_enc->hw_intf->ops.bind_pingpong_blk)
phys_enc->hw_intf->ops.bind_pingpong_blk(
phys_enc->hw_intf,
true,
phys_enc->hw_pp->idx);
/*setup merge_3d configuration */
mode_3d = sde_encoder_helper_get_3d_blend_mode(phys_enc);
if (mode_3d && phys_enc->hw_pp->merge_3d &&
intf_cfg->merge_3d_count < MAX_MERGE_3D_PER_CTL_V1)
intf_cfg->merge_3d[intf_cfg->merge_3d_count++] =
phys_enc->hw_pp->merge_3d->idx;
if (phys_enc->hw_pp->ops.setup_3d_mode)
phys_enc->hw_pp->ops.setup_3d_mode(phys_enc->hw_pp,
mode_3d);
}
void sde_encoder_helper_split_config(
struct sde_encoder_phys *phys_enc,
enum sde_intf interface)
{
struct sde_encoder_virt *sde_enc;
struct split_pipe_cfg *cfg;
struct sde_hw_mdp *hw_mdptop;
enum sde_rm_topology_name topology;
struct msm_display_info *disp_info;
if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
SDE_ERROR("invalid arg(s), encoder %d\n", !phys_enc);
return;
}
sde_enc = to_sde_encoder_virt(phys_enc->parent);
hw_mdptop = phys_enc->hw_mdptop;
disp_info = &sde_enc->disp_info;
cfg = &phys_enc->hw_intf->cfg;
memset(cfg, 0, sizeof(*cfg));
if (disp_info->intf_type != DRM_MODE_CONNECTOR_DSI)
return;
if (disp_info->capabilities & MSM_DISPLAY_SPLIT_LINK)
cfg->split_link_en = true;
/**
* disable split modes since encoder will be operating in as the only
* encoder, either for the entire use case in the case of, for example,
* single DSI, or for this frame in the case of left/right only partial
* update.
*/
if (phys_enc->split_role == ENC_ROLE_SOLO) {
if (hw_mdptop->ops.setup_split_pipe)
hw_mdptop->ops.setup_split_pipe(hw_mdptop, cfg);
if (hw_mdptop->ops.setup_pp_split)
hw_mdptop->ops.setup_pp_split(hw_mdptop, cfg);
return;
}
cfg->en = true;
cfg->mode = phys_enc->intf_mode;
cfg->intf = interface;
if (cfg->en && phys_enc->ops.needs_single_flush &&
phys_enc->ops.needs_single_flush(phys_enc))
cfg->split_flush_en = true;
topology = sde_connector_get_topology_name(phys_enc->connector);
if (topology == SDE_RM_TOPOLOGY_PPSPLIT)
cfg->pp_split_slave = cfg->intf;
else
cfg->pp_split_slave = INTF_MAX;
if (phys_enc->split_role == ENC_ROLE_MASTER) {
SDE_DEBUG_ENC(sde_enc, "enable %d\n", cfg->en);
if (hw_mdptop->ops.setup_split_pipe)
hw_mdptop->ops.setup_split_pipe(hw_mdptop, cfg);
} else if (sde_enc->hw_pp[0]) {
/*
* slave encoder
* - determine split index from master index,
* assume master is first pp
*/
cfg->pp_split_index = sde_enc->hw_pp[0]->idx - PINGPONG_0;
SDE_DEBUG_ENC(sde_enc, "master using pp%d\n",
cfg->pp_split_index);
if (hw_mdptop->ops.setup_pp_split)
hw_mdptop->ops.setup_pp_split(hw_mdptop, cfg);
}
}
bool sde_encoder_in_clone_mode(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
int i = 0;
if (!drm_enc)
return false;
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc)
return false;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->in_clone_mode)
return true;
}
return false;
}
bool sde_encoder_is_cwb_disabling(struct drm_encoder *drm_enc,
struct drm_crtc *crtc)
{
struct sde_encoder_virt *sde_enc;
int i;
if (!drm_enc)
return false;
sde_enc = to_sde_encoder_virt(drm_enc);
if (sde_enc->disp_info.intf_type != DRM_MODE_CONNECTOR_VIRTUAL)
return false;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (sde_encoder_phys_is_cwb_disabling(phys, crtc))
return true;
}
return false;
}
void sde_encoder_set_clone_mode(struct drm_encoder *drm_enc,
struct drm_crtc_state *crtc_state)
{
struct sde_encoder_virt *sde_enc;
struct sde_crtc_state *sde_crtc_state;
int i = 0;
if (!drm_enc || !crtc_state) {
SDE_DEBUG("invalid params\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
sde_crtc_state = to_sde_crtc_state(crtc_state);
if ((sde_enc->disp_info.intf_type != DRM_MODE_CONNECTOR_VIRTUAL) ||
(!(sde_crtc_state->cwb_enc_mask & drm_encoder_mask(drm_enc))))
return;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys) {
phys->in_clone_mode = true;
SDE_DEBUG("enc:%d phys state:%d\n", DRMID(drm_enc), phys->enable_state);
}
}
sde_crtc_state->cwb_enc_mask = 0;
}
static int _sde_encoder_atomic_check_phys_enc(struct sde_encoder_virt *sde_enc,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
const struct drm_display_mode *mode;
struct drm_display_mode *adj_mode;
int i = 0;
int ret = 0;
mode = &crtc_state->mode;
adj_mode = &crtc_state->adjusted_mode;
/* perform atomic check on the first physical encoder (master) */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.atomic_check)
ret = phys->ops.atomic_check(phys, crtc_state,
conn_state);
else if (phys && phys->ops.mode_fixup)
if (!phys->ops.mode_fixup(phys, mode, adj_mode))
ret = -EINVAL;
if (ret) {
SDE_ERROR_ENC(sde_enc,
"mode unsupported, phys idx %d\n", i);
break;
}
}
return ret;
}
static int _sde_encoder_atomic_check_pu_roi(struct sde_encoder_virt *sde_enc,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
struct sde_connector_state *sde_conn_state,
struct sde_crtc_state *sde_crtc_state)
{
int ret = 0;
if (crtc_state->mode_changed || crtc_state->active_changed) {
struct sde_rect mode_roi, roi;
mode_roi.x = 0;
mode_roi.y = 0;
mode_roi.w = crtc_state->adjusted_mode.hdisplay;
mode_roi.h = crtc_state->adjusted_mode.vdisplay;
if (sde_conn_state->rois.num_rects) {
sde_kms_rect_merge_rectangles(
&sde_conn_state->rois, &roi);
if (!sde_kms_rect_is_equal(&mode_roi, &roi)) {
SDE_ERROR_ENC(sde_enc,
"roi (%d,%d,%d,%d) on connector invalid during modeset\n",
roi.x, roi.y, roi.w, roi.h);
ret = -EINVAL;
}
}
if (sde_crtc_state->user_roi_list.num_rects) {
sde_kms_rect_merge_rectangles(
&sde_crtc_state->user_roi_list, &roi);
if (!sde_kms_rect_is_equal(&mode_roi, &roi)) {
SDE_ERROR_ENC(sde_enc,
"roi (%d,%d,%d,%d) on crtc invalid during modeset\n",
roi.x, roi.y, roi.w, roi.h);
ret = -EINVAL;
}
}
}
return ret;
}
static int _sde_encoder_atomic_check_reserve(struct drm_encoder *drm_enc,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
struct sde_encoder_virt *sde_enc, struct sde_kms *sde_kms,
struct sde_connector *sde_conn,
struct sde_connector_state *sde_conn_state)
{
int ret = 0;
struct drm_display_mode *adj_mode = &crtc_state->adjusted_mode;
if (sde_conn && drm_atomic_crtc_needs_modeset(crtc_state)) {
struct msm_display_topology *topology = NULL;
ret = sde_connector_get_mode_info(&sde_conn->base,
adj_mode, &sde_conn_state->mode_info);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"failed to get mode info, rc = %d\n", ret);
return ret;
}
if (sde_conn_state->mode_info.comp_info.comp_type &&
sde_conn_state->mode_info.comp_info.comp_ratio >=
MSM_DISPLAY_COMPRESSION_RATIO_MAX) {
SDE_ERROR_ENC(sde_enc,
"invalid compression ratio: %d\n",
sde_conn_state->mode_info.comp_info.comp_ratio);
ret = -EINVAL;
return ret;
}
/* Skip RM allocation for Primary during CWB usecase */
if ((!crtc_state->mode_changed && !crtc_state->active_changed &&
crtc_state->connectors_changed && (conn_state->crtc ==
conn_state->connector->state->crtc)) ||
(crtc_state->active_changed && !crtc_state->active))
goto skip_reserve;
/* Reserve dynamic resources, indicating atomic_check phase */
ret = sde_rm_reserve(&sde_kms->rm, drm_enc, crtc_state,
conn_state, true);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"RM failed to reserve resources, rc = %d\n",
ret);
return ret;
}
skip_reserve:
/**
* Update connector state with the topology selected for the
* resource set validated. Reset the topology if we are
* de-activating crtc.
*/
if (crtc_state->active)
topology = &sde_conn_state->mode_info.topology;
ret = sde_rm_update_topology(&sde_kms->rm,
conn_state, topology);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"RM failed to update topology, rc: %d\n", ret);
return ret;
}
ret = sde_connector_set_blob_data(conn_state->connector,
conn_state,
CONNECTOR_PROP_SDE_INFO);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"connector failed to update info, rc: %d\n",
ret);
return ret;
}
}
return ret;
}
static int sde_encoder_virt_atomic_check(
struct drm_encoder *drm_enc, struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct sde_encoder_virt *sde_enc;
struct sde_kms *sde_kms;
const struct drm_display_mode *mode;
struct drm_display_mode *adj_mode;
struct sde_connector *sde_conn = NULL;
struct sde_connector_state *sde_conn_state = NULL;
struct sde_crtc_state *sde_crtc_state = NULL;
enum sde_rm_topology_name old_top;
int ret = 0;
bool qsync_dirty = false, has_modeset = false;
if (!drm_enc || !crtc_state || !conn_state) {
SDE_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
!drm_enc, !crtc_state, !conn_state);
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
sde_kms = sde_encoder_get_kms(drm_enc);
if (!sde_kms)
return -EINVAL;
mode = &crtc_state->mode;
adj_mode = &crtc_state->adjusted_mode;
sde_conn = to_sde_connector(conn_state->connector);
sde_conn_state = to_sde_connector_state(conn_state);
sde_crtc_state = to_sde_crtc_state(crtc_state);
SDE_EVT32(DRMID(drm_enc), crtc_state->mode_changed,
crtc_state->active_changed, crtc_state->connectors_changed);
ret = _sde_encoder_atomic_check_phys_enc(sde_enc, crtc_state,
conn_state);
if (ret)
return ret;
ret = _sde_encoder_atomic_check_pu_roi(sde_enc, crtc_state,
conn_state, sde_conn_state, sde_crtc_state);
if (ret)
return ret;
/**
* record topology in previous atomic state to be able to handle
* topology transitions correctly.
*/
old_top = sde_connector_get_property(conn_state,
CONNECTOR_PROP_TOPOLOGY_NAME);
ret = sde_connector_set_old_topology_name(conn_state, old_top);
if (ret)
return ret;
ret = _sde_encoder_atomic_check_reserve(drm_enc, crtc_state,
conn_state, sde_enc, sde_kms, sde_conn, sde_conn_state);
if (ret)
return ret;
ret = sde_connector_roi_v1_check_roi(conn_state);
if (ret) {
SDE_ERROR_ENC(sde_enc, "connector roi check failed, rc: %d",
ret);
return ret;
}
drm_mode_set_crtcinfo(adj_mode, 0);
has_modeset = sde_crtc_atomic_check_has_modeset(conn_state->state,
conn_state->crtc);
qsync_dirty = msm_property_is_dirty(&sde_conn->property_info,
&sde_conn_state->property_state,
CONNECTOR_PROP_QSYNC_MODE);
if (has_modeset && qsync_dirty &&
(msm_is_mode_seamless_poms(adj_mode) ||
msm_is_mode_seamless_dms(adj_mode) ||
msm_is_mode_seamless_dyn_clk(adj_mode))) {
SDE_ERROR("invalid qsync update during modeset priv flag:%x\n",
adj_mode->private_flags);
return -EINVAL;
}
SDE_EVT32(DRMID(drm_enc), adj_mode->flags, adj_mode->private_flags,
old_top, adj_mode->vrefresh, adj_mode->hdisplay,
adj_mode->vdisplay, adj_mode->htotal, adj_mode->vtotal);
return ret;
}
static void _sde_encoder_get_connector_roi(
struct sde_encoder_virt *sde_enc,
struct sde_rect *merged_conn_roi)
{
struct drm_connector *drm_conn;
struct sde_connector_state *c_state;
if (!sde_enc || !merged_conn_roi)
return;
drm_conn = sde_enc->phys_encs[0]->connector;
if (!drm_conn || !drm_conn->state)
return;
c_state = to_sde_connector_state(drm_conn->state);
sde_kms_rect_merge_rectangles(&c_state->rois, merged_conn_roi);
}
static int _sde_encoder_update_roi(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct drm_connector *drm_conn;
struct drm_display_mode *adj_mode;
struct sde_rect roi;
if (!drm_enc) {
SDE_ERROR("invalid encoder parameter\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->crtc || !sde_enc->crtc->state) {
SDE_ERROR("invalid crtc parameter\n");
return -EINVAL;
}
if (!sde_enc->cur_master) {
SDE_ERROR("invalid cur_master parameter\n");
return -EINVAL;
}
adj_mode = &sde_enc->cur_master->cached_mode;
drm_conn = sde_enc->cur_master->connector;
_sde_encoder_get_connector_roi(sde_enc, &roi);
if (sde_kms_rect_is_null(&roi)) {
roi.w = adj_mode->hdisplay;
roi.h = adj_mode->vdisplay;
}
memcpy(&sde_enc->prv_conn_roi, &sde_enc->cur_conn_roi,
sizeof(sde_enc->prv_conn_roi));
memcpy(&sde_enc->cur_conn_roi, &roi, sizeof(sde_enc->cur_conn_roi));
return 0;
}
void sde_encoder_helper_vsync_config(struct sde_encoder_phys *phys_enc,
u32 vsync_source, bool is_dummy)
{
struct sde_vsync_source_cfg vsync_cfg = { 0 };
struct sde_kms *sde_kms;
struct sde_hw_mdp *hw_mdptop;
struct sde_encoder_virt *sde_enc;
int i;
sde_enc = to_sde_encoder_virt(phys_enc->parent);
if (!sde_enc) {
SDE_ERROR("invalid param sde_enc:%d\n", sde_enc != NULL);
return;
} else if (sde_enc->num_phys_encs > ARRAY_SIZE(sde_enc->hw_pp)) {
SDE_ERROR("invalid num phys enc %d/%d\n",
sde_enc->num_phys_encs,
(int) ARRAY_SIZE(sde_enc->hw_pp));
return;
}
sde_kms = sde_encoder_get_kms(&sde_enc->base);
if (!sde_kms) {
SDE_ERROR("invalid sde_kms\n");
return;
}
hw_mdptop = sde_kms->hw_mdp;
if (!hw_mdptop) {
SDE_ERROR("invalid mdptop\n");
return;
}
if (hw_mdptop->ops.setup_vsync_source) {
for (i = 0; i < sde_enc->num_phys_encs; i++)
vsync_cfg.ppnumber[i] = sde_enc->hw_pp[i]->idx;
vsync_cfg.pp_count = sde_enc->num_phys_encs;
vsync_cfg.frame_rate = sde_enc->mode_info.frame_rate;
vsync_cfg.vsync_source = vsync_source;
vsync_cfg.is_dummy = is_dummy;
hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
}
}
static void _sde_encoder_update_vsync_source(struct sde_encoder_virt *sde_enc,
struct msm_display_info *disp_info, bool is_dummy)
{
struct sde_encoder_phys *phys;
int i;
u32 vsync_source;
if (!sde_enc || !disp_info) {
SDE_ERROR("invalid param sde_enc:%d or disp_info:%d\n",
sde_enc != NULL, disp_info != NULL);
return;
} else if (sde_enc->num_phys_encs > ARRAY_SIZE(sde_enc->hw_pp)) {
SDE_ERROR("invalid num phys enc %d/%d\n",
sde_enc->num_phys_encs,
(int) ARRAY_SIZE(sde_enc->hw_pp));
return;
}
if (sde_encoder_check_curr_mode(&sde_enc->base, MSM_DISPLAY_CMD_MODE)) {
if (is_dummy)
vsync_source = SDE_VSYNC_SOURCE_WD_TIMER_0 -
sde_enc->te_source;
else if (disp_info->is_te_using_watchdog_timer)
vsync_source = SDE_VSYNC_SOURCE_WD_TIMER_4 +
sde_enc->te_source;
else
vsync_source = sde_enc->te_source;
SDE_EVT32(DRMID(&sde_enc->base), vsync_source, is_dummy,
disp_info->is_te_using_watchdog_timer);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.setup_vsync_source)
phys->ops.setup_vsync_source(phys,
vsync_source, is_dummy);
}
}
}
int sde_encoder_helper_switch_vsync(struct drm_encoder *drm_enc,
bool watchdog_te)
{
struct sde_encoder_virt *sde_enc;
struct msm_display_info disp_info;
if (!drm_enc) {
pr_err("invalid drm encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
sde_encoder_control_te(drm_enc, false);
memcpy(&disp_info, &sde_enc->disp_info, sizeof(disp_info));
disp_info.is_te_using_watchdog_timer = watchdog_te;
_sde_encoder_update_vsync_source(sde_enc, &disp_info, false);
sde_encoder_control_te(drm_enc, true);
return 0;
}
static int _sde_encoder_rsc_client_update_vsync_wait(
struct drm_encoder *drm_enc, struct sde_encoder_virt *sde_enc,
int wait_vblank_crtc_id)
{
int wait_refcount = 0, ret = 0;
int pipe = -1;
int wait_count = 0;
struct drm_crtc *primary_crtc;
struct drm_crtc *crtc;
crtc = sde_enc->crtc;
if (wait_vblank_crtc_id)
wait_refcount =
sde_rsc_client_get_vsync_refcount(sde_enc->rsc_client);
SDE_EVT32_VERBOSE(DRMID(drm_enc), wait_vblank_crtc_id, wait_refcount,
SDE_EVTLOG_FUNC_ENTRY);
if (crtc->base.id != wait_vblank_crtc_id) {
primary_crtc = drm_crtc_find(drm_enc->dev,
NULL, wait_vblank_crtc_id);
if (!primary_crtc) {
SDE_ERROR_ENC(sde_enc,
"failed to find primary crtc id %d\n",
wait_vblank_crtc_id);
return -EINVAL;
}
pipe = drm_crtc_index(primary_crtc);
}
/**
* note: VBLANK is expected to be enabled at this point in
* resource control state machine if on primary CRTC
*/
for (wait_count = 0; wait_count < MAX_RSC_WAIT; wait_count++) {
if (sde_rsc_client_is_state_update_complete(
sde_enc->rsc_client))
break;
if (crtc->base.id == wait_vblank_crtc_id)
ret = sde_encoder_wait_for_event(drm_enc,
MSM_ENC_VBLANK);
else
drm_wait_one_vblank(drm_enc->dev, pipe);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"wait for vblank failed ret:%d\n", ret);
/**
* rsc hardware may hang without vsync. avoid rsc hang
* by generating the vsync from watchdog timer.
*/
if (crtc->base.id == wait_vblank_crtc_id)
sde_encoder_helper_switch_vsync(drm_enc, true);
}
}
if (wait_count >= MAX_RSC_WAIT)
SDE_EVT32(DRMID(drm_enc), wait_vblank_crtc_id, wait_count,
SDE_EVTLOG_ERROR);
if (wait_refcount)
sde_rsc_client_reset_vsync_refcount(sde_enc->rsc_client);
SDE_EVT32_VERBOSE(DRMID(drm_enc), wait_vblank_crtc_id, wait_refcount,
SDE_EVTLOG_FUNC_EXIT);
return ret;
}
static int _sde_encoder_update_rsc_client(
struct drm_encoder *drm_enc, bool enable)
{
struct sde_encoder_virt *sde_enc;
struct drm_crtc *crtc;
enum sde_rsc_state rsc_state = SDE_RSC_IDLE_STATE;
struct sde_rsc_cmd_config *rsc_config;
int ret;
struct msm_display_info *disp_info;
struct msm_mode_info *mode_info;
int wait_vblank_crtc_id = SDE_RSC_INVALID_CRTC_ID;
u32 qsync_mode = 0, v_front_porch;
struct drm_display_mode *mode;
bool is_vid_mode;
struct drm_encoder *enc;
if (!drm_enc || !drm_enc->dev) {
SDE_ERROR("invalid encoder arguments\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
mode_info = &sde_enc->mode_info;
crtc = sde_enc->crtc;
if (!sde_enc->crtc) {
SDE_ERROR("invalid crtc parameter\n");
return -EINVAL;
}
disp_info = &sde_enc->disp_info;
rsc_config = &sde_enc->rsc_config;
if (!sde_enc->rsc_client) {
SDE_DEBUG_ENC(sde_enc, "rsc client not created\n");
return 0;
}
/**
* only primary command mode panel without Qsync can request CMD state.
* all other panels/displays can request for VID state including
* secondary command mode panel.
* Clone mode encoder can request CLK STATE only.
*/
if (sde_enc->cur_master)
qsync_mode = sde_connector_get_qsync_mode(
sde_enc->cur_master->connector);
/* left primary encoder keep vote */
if (sde_encoder_in_clone_mode(drm_enc)) {
SDE_EVT32(rsc_state, SDE_EVTLOG_FUNC_CASE1);
return 0;
}
if ((disp_info->display_type != SDE_CONNECTOR_PRIMARY) ||
(disp_info->display_type && qsync_mode))
rsc_state = enable ? SDE_RSC_CLK_STATE : SDE_RSC_IDLE_STATE;
else if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE))
rsc_state = enable ? SDE_RSC_CMD_STATE : SDE_RSC_IDLE_STATE;
else if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_VIDEO_MODE))
rsc_state = enable ? SDE_RSC_VID_STATE : SDE_RSC_IDLE_STATE;
drm_for_each_encoder(enc, drm_enc->dev) {
if (enc->base.id != drm_enc->base.id &&
sde_encoder_in_cont_splash(enc))
rsc_state = SDE_RSC_CLK_STATE;
}
is_vid_mode = sde_encoder_check_curr_mode(&sde_enc->base,
MSM_DISPLAY_VIDEO_MODE);
mode = &sde_enc->crtc->state->mode;
v_front_porch = mode->vsync_start - mode->vdisplay;
/* compare specific items and reconfigure the rsc */
if ((rsc_config->fps != mode_info->frame_rate) ||
(rsc_config->vtotal != mode_info->vtotal) ||
(rsc_config->prefill_lines != mode_info->prefill_lines) ||
(rsc_config->jitter_numer != mode_info->jitter_numer) ||
(rsc_config->jitter_denom != mode_info->jitter_denom)) {
rsc_config->fps = mode_info->frame_rate;
rsc_config->vtotal = mode_info->vtotal;
rsc_config->prefill_lines = mode_info->prefill_lines;
rsc_config->jitter_numer = mode_info->jitter_numer;
rsc_config->jitter_denom = mode_info->jitter_denom;
sde_enc->rsc_state_init = false;
}
SDE_EVT32(DRMID(drm_enc), rsc_state, qsync_mode,
rsc_config->fps, sde_enc->rsc_state_init);
if (rsc_state != SDE_RSC_IDLE_STATE && !sde_enc->rsc_state_init
&& (disp_info->display_type == SDE_CONNECTOR_PRIMARY)) {
/* update it only once */
sde_enc->rsc_state_init = true;
ret = sde_rsc_client_state_update(sde_enc->rsc_client,
rsc_state, rsc_config, crtc->base.id,
&wait_vblank_crtc_id);
} else {
ret = sde_rsc_client_state_update(sde_enc->rsc_client,
rsc_state, NULL, crtc->base.id,
&wait_vblank_crtc_id);
}
/**
* if RSC performed a state change that requires a VBLANK wait, it will
* set wait_vblank_crtc_id to the CRTC whose VBLANK we must wait on.
*
* if we are the primary display, we will need to enable and wait
* locally since we hold the commit thread
*
* if we are an external display, we must send a signal to the primary
* to enable its VBLANK and wait one, since the RSC hardware is driven
* by the primary panel's VBLANK signals
*/
SDE_EVT32_VERBOSE(DRMID(drm_enc), wait_vblank_crtc_id);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"sde rsc client update failed ret:%d\n", ret);
return ret;
} else if (wait_vblank_crtc_id == SDE_RSC_INVALID_CRTC_ID) {
return ret;
}
ret = _sde_encoder_rsc_client_update_vsync_wait(drm_enc,
sde_enc, wait_vblank_crtc_id);
return ret;
}
void sde_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
{
struct sde_encoder_virt *sde_enc;
int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "enable:%d\n", enable);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.irq_control)
phys->ops.irq_control(phys, enable);
}
sde_kms_cpu_vote_for_irq(sde_encoder_get_kms(drm_enc), enable);
}
/* keep track of the userspace vblank during modeset */
static void _sde_encoder_modeset_helper_locked(struct drm_encoder *drm_enc,
u32 sw_event)
{
struct sde_encoder_virt *sde_enc;
bool enable;
int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, vblank_enabled:%d\n",
sw_event, sde_enc->vblank_enabled);
/* nothing to do if vblank not enabled by userspace */
if (!sde_enc->vblank_enabled)
return;
/* disable vblank on pre_modeset */
if (sw_event == SDE_ENC_RC_EVENT_PRE_MODESET)
enable = false;
/* enable vblank on post_modeset */
else if (sw_event == SDE_ENC_RC_EVENT_POST_MODESET)
enable = true;
else
return;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.control_vblank_irq)
phys->ops.control_vblank_irq(phys, enable);
}
}
struct sde_rsc_client *sde_encoder_get_rsc_client(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
if (!drm_enc)
return NULL;
sde_enc = to_sde_encoder_virt(drm_enc);
return sde_enc->rsc_client;
}
static int _sde_encoder_resource_control_helper(struct drm_encoder *drm_enc,
bool enable)
{
struct sde_kms *sde_kms;
struct sde_encoder_virt *sde_enc;
int rc;
sde_enc = to_sde_encoder_virt(drm_enc);
sde_kms = sde_encoder_get_kms(drm_enc);
if (!sde_kms)
return -EINVAL;
SDE_DEBUG_ENC(sde_enc, "enable:%d\n", enable);
SDE_EVT32(DRMID(drm_enc), enable);
if (!sde_enc->cur_master) {
SDE_ERROR("encoder master not set\n");
return -EINVAL;
}
if (enable) {
/* enable SDE core clks */
rc = pm_runtime_get_sync(drm_enc->dev->dev);
if (rc < 0) {
SDE_ERROR("failed to enable power resource %d\n", rc);
SDE_EVT32(rc, SDE_EVTLOG_ERROR);
return rc;
}
sde_enc->elevated_ahb_vote = true;
/* enable DSI clks */
rc = sde_connector_clk_ctrl(sde_enc->cur_master->connector,
true);
if (rc) {
SDE_ERROR("failed to enable clk control %d\n", rc);
pm_runtime_put_sync(drm_enc->dev->dev);
return rc;
}
/* enable all the irq */
sde_encoder_irq_control(drm_enc, true);
_sde_encoder_pm_qos_add_request(drm_enc);
} else {
_sde_encoder_pm_qos_remove_request(drm_enc);
/* disable all the irq */
sde_encoder_irq_control(drm_enc, false);
/* disable DSI clks */
sde_connector_clk_ctrl(sde_enc->cur_master->connector, false);
/* disable SDE core clks */
pm_runtime_put_sync(drm_enc->dev->dev);
}
return 0;
}
static void sde_encoder_misr_configure(struct drm_encoder *drm_enc,
bool enable, u32 frame_count)
{
struct sde_encoder_virt *sde_enc;
int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->misr_reconfigure)
return;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys || !phys->ops.setup_misr)
continue;
phys->ops.setup_misr(phys, enable, frame_count);
}
sde_enc->misr_reconfigure = false;
}
static void sde_encoder_input_event_handler(struct input_handle *handle,
unsigned int type, unsigned int code, int value)
{
struct drm_encoder *drm_enc = NULL;
struct sde_encoder_virt *sde_enc = NULL;
struct msm_drm_thread *disp_thread = NULL;
struct msm_drm_private *priv = NULL;
if (!handle || !handle->handler || !handle->handler->private) {
SDE_ERROR("invalid encoder for the input event\n");
return;
}
drm_enc = (struct drm_encoder *)handle->handler->private;
if (!drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("invalid parameters\n");
return;
}
priv = drm_enc->dev->dev_private;
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->crtc || (sde_enc->crtc->index
>= ARRAY_SIZE(priv->disp_thread))) {
SDE_DEBUG_ENC(sde_enc,
"invalid cached CRTC: %d or crtc index: %d\n",
sde_enc->crtc == NULL,
sde_enc->crtc ? sde_enc->crtc->index : -EINVAL);
return;
}
SDE_EVT32_VERBOSE(DRMID(drm_enc));
disp_thread = &priv->disp_thread[sde_enc->crtc->index];
kthread_queue_work(&disp_thread->worker,
&sde_enc->input_event_work);
}
void sde_encoder_control_idle_pc(struct drm_encoder *drm_enc, bool enable)
{
struct sde_encoder_virt *sde_enc;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
/* return early if there is no state change */
if (sde_enc->idle_pc_enabled == enable)
return;
sde_enc->idle_pc_enabled = enable;
SDE_DEBUG("idle-pc state:%d\n", sde_enc->idle_pc_enabled);
SDE_EVT32(sde_enc->idle_pc_enabled);
}
static void _sde_encoder_rc_restart_delayed(struct sde_encoder_virt *sde_enc,
u32 sw_event)
{
struct drm_encoder *drm_enc = &sde_enc->base;
struct msm_drm_private *priv;
unsigned int lp, idle_pc_duration;
struct msm_drm_thread *disp_thread;
/* set idle timeout based on master connector's lp value */
if (sde_enc->cur_master)
lp = sde_connector_get_lp(
sde_enc->cur_master->connector);
else
lp = SDE_MODE_DPMS_ON;
if (lp == SDE_MODE_DPMS_LP2)
idle_pc_duration = IDLE_SHORT_TIMEOUT;
else
idle_pc_duration = IDLE_POWERCOLLAPSE_DURATION;
priv = drm_enc->dev->dev_private;
disp_thread = &priv->disp_thread[sde_enc->crtc->index];
kthread_mod_delayed_work(
&disp_thread->worker,
&sde_enc->delayed_off_work,
msecs_to_jiffies(idle_pc_duration));
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
idle_pc_duration, SDE_EVTLOG_FUNC_CASE2);
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, work scheduled\n",
sw_event);
}
static void _sde_encoder_rc_cancel_delayed(struct sde_encoder_virt *sde_enc,
u32 sw_event)
{
if (kthread_cancel_delayed_work_sync(&sde_enc->delayed_off_work))
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, work cancelled\n",
sw_event);
}
void sde_encoder_cancel_delayed_work(struct drm_encoder *encoder)
{
struct sde_encoder_virt *sde_enc;
if (!encoder)
return;
sde_enc = to_sde_encoder_virt(encoder);
_sde_encoder_rc_cancel_delayed(sde_enc, 0);
}
static void _sde_encoder_rc_kickoff_delayed(struct sde_encoder_virt *sde_enc,
u32 sw_event)
{
if (_sde_encoder_is_autorefresh_enabled(sde_enc))
_sde_encoder_rc_cancel_delayed(sde_enc, sw_event);
else
_sde_encoder_rc_restart_delayed(sde_enc, sw_event);
}
static int _sde_encoder_rc_kickoff(struct drm_encoder *drm_enc,
u32 sw_event, struct sde_encoder_virt *sde_enc, bool is_vid_mode)
{
int ret = 0;
mutex_lock(&sde_enc->rc_lock);
/* return if the resource control is already in ON state */
if (sde_enc->rc_state == SDE_ENC_RC_STATE_ON) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in ON state\n",
sw_event);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_FUNC_CASE1);
goto end;
} else if (sde_enc->rc_state != SDE_ENC_RC_STATE_OFF &&
sde_enc->rc_state != SDE_ENC_RC_STATE_IDLE) {
SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc in state %d\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
goto end;
}
if (is_vid_mode && sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) {
sde_encoder_irq_control(drm_enc, true);
_sde_encoder_pm_qos_add_request(drm_enc);
} else {
/* enable all the clks and resources */
ret = _sde_encoder_resource_control_helper(drm_enc,
true);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"sw_event:%d, rc in state %d\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event,
sde_enc->rc_state,
SDE_EVTLOG_ERROR);
goto end;
}
_sde_encoder_update_rsc_client(drm_enc, true);
}
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE1);
sde_enc->rc_state = SDE_ENC_RC_STATE_ON;
end:
/* avoid delayed off work if called from esd thread */
if (!sde_enc->delay_kickoff)
_sde_encoder_rc_kickoff_delayed(sde_enc, sw_event);
mutex_unlock(&sde_enc->rc_lock);
return ret;
}
static int _sde_encoder_rc_pre_stop(struct drm_encoder *drm_enc,
u32 sw_event, struct sde_encoder_virt *sde_enc, bool is_vid_mode)
{
/* cancel delayed off work, if any */
_sde_encoder_rc_cancel_delayed(sde_enc, sw_event);
mutex_lock(&sde_enc->rc_lock);
if (is_vid_mode &&
sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) {
sde_encoder_irq_control(drm_enc, true);
}
/* skip if is already OFF or IDLE, resources are off already */
else if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF ||
sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in %d state\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_FUNC_CASE3);
goto end;
}
/**
* IRQs are still enabled currently, which allows wait for
* VBLANK which RSC may require to correctly transition to OFF
*/
_sde_encoder_update_rsc_client(drm_enc, false);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_PRE_OFF,
SDE_EVTLOG_FUNC_CASE3);
sde_enc->rc_state = SDE_ENC_RC_STATE_PRE_OFF;
end:
mutex_unlock(&sde_enc->rc_lock);
return 0;
}
static int _sde_encoder_rc_stop(struct drm_encoder *drm_enc,
u32 sw_event, struct sde_encoder_virt *sde_enc)
{
int ret = 0;
mutex_lock(&sde_enc->rc_lock);
/* return if the resource control is already in OFF state */
if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in OFF state\n",
sw_event);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_FUNC_CASE4);
goto end;
} else if (sde_enc->rc_state == SDE_ENC_RC_STATE_ON ||
sde_enc->rc_state == SDE_ENC_RC_STATE_MODESET) {
SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc in state %d\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
ret = -EINVAL;
goto end;
}
/**
* expect to arrive here only if in either idle state or pre-off
* and in IDLE state the resources are already disabled
*/
if (sde_enc->rc_state == SDE_ENC_RC_STATE_PRE_OFF)
_sde_encoder_resource_control_helper(drm_enc, false);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_OFF, SDE_EVTLOG_FUNC_CASE4);
sde_enc->rc_state = SDE_ENC_RC_STATE_OFF;
end:
mutex_unlock(&sde_enc->rc_lock);
return ret;
}
static int _sde_encoder_rc_pre_modeset(struct drm_encoder *drm_enc,
u32 sw_event, struct sde_encoder_virt *sde_enc)
{
int ret = 0;
mutex_lock(&sde_enc->rc_lock);
if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in OFF state\n",
sw_event);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_FUNC_CASE5);
goto end;
} else if (sde_enc->rc_state != SDE_ENC_RC_STATE_ON) {
/* enable all the clks and resources */
ret = _sde_encoder_resource_control_helper(drm_enc,
true);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"sw_event:%d, rc in state %d\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event,
sde_enc->rc_state,
SDE_EVTLOG_ERROR);
goto end;
}
_sde_encoder_update_rsc_client(drm_enc, true);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE5);
sde_enc->rc_state = SDE_ENC_RC_STATE_ON;
}
if (sde_encoder_has_dsc_hw_rev_2(sde_enc))
goto skip_wait;
ret = sde_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
if (ret && ret != -EWOULDBLOCK) {
SDE_ERROR_ENC(sde_enc, "wait for commit done returned %d\n", ret);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, ret, SDE_EVTLOG_ERROR);
ret = -EINVAL;
goto end;
}
skip_wait:
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_MODESET, SDE_EVTLOG_FUNC_CASE5);
sde_enc->rc_state = SDE_ENC_RC_STATE_MODESET;
_sde_encoder_pm_qos_remove_request(drm_enc);
end:
mutex_unlock(&sde_enc->rc_lock);
return ret;
}
static int _sde_encoder_rc_post_modeset(struct drm_encoder *drm_enc,
u32 sw_event, struct sde_encoder_virt *sde_enc)
{
int ret = 0;
mutex_lock(&sde_enc->rc_lock);
if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in OFF state\n",
sw_event);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_FUNC_CASE5);
goto end;
} else if (sde_enc->rc_state != SDE_ENC_RC_STATE_MODESET) {
SDE_ERROR_ENC(sde_enc,
"sw_event:%d, rc:%d !MODESET state\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
ret = -EINVAL;
goto end;
}
_sde_encoder_update_rsc_client(drm_enc, true);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE6);
sde_enc->rc_state = SDE_ENC_RC_STATE_ON;
_sde_encoder_pm_qos_add_request(drm_enc);
end:
mutex_unlock(&sde_enc->rc_lock);
return ret;
}
static int _sde_encoder_rc_idle(struct drm_encoder *drm_enc,
u32 sw_event, struct sde_encoder_virt *sde_enc, bool is_vid_mode)
{
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct drm_crtc *crtc = drm_enc->crtc;
struct sde_crtc *sde_crtc = to_sde_crtc(crtc);
priv = drm_enc->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
mutex_lock(&sde_enc->rc_lock);
if (sde_enc->rc_state != SDE_ENC_RC_STATE_ON) {
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc:%d !ON state\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_EVTLOG_ERROR);
goto end;
} else if (sde_crtc_frame_pending(sde_enc->crtc) ||
sde_crtc->kickoff_in_progress ||
sde_enc->delay_kickoff) {
SDE_DEBUG_ENC(sde_enc, "skip idle entry");
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
sde_crtc_frame_pending(sde_enc->crtc),
SDE_EVTLOG_ERROR);
_sde_encoder_rc_kickoff_delayed(sde_enc, sw_event);
goto end;
}
if (is_vid_mode) {
sde_encoder_irq_control(drm_enc, false);
_sde_encoder_pm_qos_remove_request(drm_enc);
} else {
/* disable all the clks and resources */
_sde_encoder_update_rsc_client(drm_enc, false);
_sde_encoder_resource_control_helper(drm_enc, false);
if (!sde_kms->perf.bw_vote_mode)
memset(&sde_crtc->cur_perf, 0,
sizeof(struct sde_core_perf_params));
}
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_IDLE, SDE_EVTLOG_FUNC_CASE7);
sde_enc->rc_state = SDE_ENC_RC_STATE_IDLE;
end:
mutex_unlock(&sde_enc->rc_lock);
return 0;
}
static int _sde_encoder_rc_early_wakeup(struct drm_encoder *drm_enc,
u32 sw_event, struct sde_encoder_virt *sde_enc,
struct msm_drm_private *priv, bool is_vid_mode)
{
bool autorefresh_enabled = false;
struct msm_drm_thread *disp_thread;
int ret = 0;
if (!sde_enc->crtc ||
sde_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) {
SDE_DEBUG_ENC(sde_enc,
"invalid crtc:%d or crtc index:%d , sw_event:%u\n",
sde_enc->crtc == NULL,
sde_enc->crtc ? sde_enc->crtc->index : -EINVAL,
sw_event);
return -EINVAL;
}
disp_thread = &priv->disp_thread[sde_enc->crtc->index];
mutex_lock(&sde_enc->rc_lock);
if (sde_enc->rc_state == SDE_ENC_RC_STATE_ON) {
if (sde_enc->cur_master &&
sde_enc->cur_master->ops.is_autorefresh_enabled)
autorefresh_enabled =
sde_enc->cur_master->ops.is_autorefresh_enabled(
sde_enc->cur_master);
if (autorefresh_enabled) {
SDE_DEBUG_ENC(sde_enc,
"not handling early wakeup since auto refresh is enabled\n");
goto end;
}
if (!sde_crtc_frame_pending(sde_enc->crtc))
kthread_mod_delayed_work(&disp_thread->worker,
&sde_enc->delayed_off_work,
msecs_to_jiffies(
IDLE_POWERCOLLAPSE_DURATION));
} else if (sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) {
/* enable all the clks and resources */
ret = _sde_encoder_resource_control_helper(drm_enc,
true);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"sw_event:%d, rc in state %d\n",
sw_event, sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sw_event,
sde_enc->rc_state,
SDE_EVTLOG_ERROR);
goto end;
}
_sde_encoder_update_rsc_client(drm_enc, true);
/*
* In some cases, commit comes with slight delay
* (> 80 ms)after early wake up, prevent clock switch
* off to avoid jank in next update. So, increase the
* command mode idle timeout sufficiently to prevent
* such case.
*/
kthread_mod_delayed_work(&disp_thread->worker,
&sde_enc->delayed_off_work,
msecs_to_jiffies(
IDLE_POWERCOLLAPSE_IN_EARLY_WAKEUP));
sde_enc->rc_state = SDE_ENC_RC_STATE_ON;
}
SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state,
SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE8);
end:
mutex_unlock(&sde_enc->rc_lock);
return ret;
}
static int sde_encoder_resource_control(struct drm_encoder *drm_enc,
u32 sw_event)
{
struct sde_encoder_virt *sde_enc;
struct msm_drm_private *priv;
int ret = 0;
bool is_vid_mode = false;
if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("invalid encoder parameters, sw_event:%u\n",
sw_event);
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
if (sde_encoder_check_curr_mode(&sde_enc->base, MSM_DISPLAY_VIDEO_MODE))
is_vid_mode = true;
/*
* when idle_pc is not supported, process only KICKOFF, STOP and MODESET
* events and return early for other events (ie wb display).
*/
if (!sde_enc->idle_pc_enabled &&
(sw_event != SDE_ENC_RC_EVENT_KICKOFF &&
sw_event != SDE_ENC_RC_EVENT_PRE_MODESET &&
sw_event != SDE_ENC_RC_EVENT_POST_MODESET &&
sw_event != SDE_ENC_RC_EVENT_STOP &&
sw_event != SDE_ENC_RC_EVENT_PRE_STOP))
return 0;
SDE_DEBUG_ENC(sde_enc, "sw_event:%d, idle_pc:%d\n",
sw_event, sde_enc->idle_pc_enabled);
SDE_EVT32_VERBOSE(DRMID(drm_enc), sw_event, sde_enc->idle_pc_enabled,
sde_enc->rc_state, SDE_EVTLOG_FUNC_ENTRY);
switch (sw_event) {
case SDE_ENC_RC_EVENT_KICKOFF:
ret = _sde_encoder_rc_kickoff(drm_enc, sw_event, sde_enc,
is_vid_mode);
break;
case SDE_ENC_RC_EVENT_PRE_STOP:
ret = _sde_encoder_rc_pre_stop(drm_enc, sw_event, sde_enc,
is_vid_mode);
break;
case SDE_ENC_RC_EVENT_STOP:
ret = _sde_encoder_rc_stop(drm_enc, sw_event, sde_enc);
break;
case SDE_ENC_RC_EVENT_PRE_MODESET:
ret = _sde_encoder_rc_pre_modeset(drm_enc, sw_event, sde_enc);
break;
case SDE_ENC_RC_EVENT_POST_MODESET:
ret = _sde_encoder_rc_post_modeset(drm_enc, sw_event, sde_enc);
break;
case SDE_ENC_RC_EVENT_ENTER_IDLE:
ret = _sde_encoder_rc_idle(drm_enc, sw_event, sde_enc,
is_vid_mode);
break;
case SDE_ENC_RC_EVENT_EARLY_WAKEUP:
ret = _sde_encoder_rc_early_wakeup(drm_enc, sw_event, sde_enc,
priv, is_vid_mode);
break;
default:
SDE_EVT32(DRMID(drm_enc), sw_event, SDE_EVTLOG_ERROR);
SDE_ERROR("unexpected sw_event: %d\n", sw_event);
break;
}
SDE_EVT32_VERBOSE(DRMID(drm_enc), sw_event, sde_enc->idle_pc_enabled,
sde_enc->rc_state, SDE_EVTLOG_FUNC_EXIT);
return ret;
}
static void sde_encoder_virt_mode_switch(struct drm_encoder *drm_enc,
enum sde_intf_mode intf_mode, struct drm_display_mode *adj_mode)
{
int i = 0;
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
if (intf_mode == INTF_MODE_CMD)
sde_enc->disp_info.curr_panel_mode = MSM_DISPLAY_VIDEO_MODE;
else if (intf_mode == INTF_MODE_VIDEO)
sde_enc->disp_info.curr_panel_mode = MSM_DISPLAY_CMD_MODE;
_sde_encoder_update_rsc_client(drm_enc, true);
if (intf_mode == INTF_MODE_CMD) {
for (i = 0; i < sde_enc->num_phys_encs; i++)
sde_enc->phys_encs[i] = sde_enc->phys_vid_encs[i];
SDE_DEBUG_ENC(sde_enc, "switch to video physical encoder\n");
SDE_EVT32(DRMID(&sde_enc->base), intf_mode, adj_mode->flags,
adj_mode->private_flags, SDE_EVTLOG_FUNC_CASE1);
} else if (intf_mode == INTF_MODE_VIDEO) {
for (i = 0; i < sde_enc->num_phys_encs; i++)
sde_enc->phys_encs[i] = sde_enc->phys_cmd_encs[i];
SDE_DEBUG_ENC(sde_enc, "switch to command physical encoder\n");
SDE_EVT32(DRMID(&sde_enc->base), intf_mode, adj_mode->flags,
adj_mode->private_flags, SDE_EVTLOG_FUNC_CASE2);
}
}
static struct drm_connector *_sde_encoder_get_connector(
struct drm_device *dev, struct drm_encoder *drm_enc)
{
struct drm_connector_list_iter conn_iter;
struct drm_connector *conn = NULL, *conn_search;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(conn_search, &conn_iter) {
if (conn_search->encoder == drm_enc) {
conn = conn_search;
break;
}
}
drm_connector_list_iter_end(&conn_iter);
return conn;
}
static void _sde_encoder_virt_populate_hw_res(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
struct sde_kms *sde_kms = sde_encoder_get_kms(drm_enc);
struct sde_rm_hw_iter pp_iter, qdss_iter;
struct sde_rm_hw_iter dsc_iter, vdc_iter;
struct sde_rm_hw_request request_hw;
int i, j;
sde_rm_init_hw_iter(&pp_iter, drm_enc->base.id, SDE_HW_BLK_PINGPONG);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
sde_enc->hw_pp[i] = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &pp_iter))
break;
sde_enc->hw_pp[i] = (struct sde_hw_pingpong *) pp_iter.hw;
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys) {
sde_rm_init_hw_iter(&qdss_iter, drm_enc->base.id,
SDE_HW_BLK_QDSS);
for (j = 0; j < QDSS_MAX; j++) {
if (sde_rm_get_hw(&sde_kms->rm, &qdss_iter)) {
phys->hw_qdss =
(struct sde_hw_qdss *)qdss_iter.hw;
break;
}
}
}
}
sde_rm_init_hw_iter(&dsc_iter, drm_enc->base.id, SDE_HW_BLK_DSC);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
sde_enc->hw_dsc[i] = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &dsc_iter))
break;
sde_enc->hw_dsc[i] = (struct sde_hw_dsc *) dsc_iter.hw;
}
sde_rm_init_hw_iter(&vdc_iter, drm_enc->base.id, SDE_HW_BLK_VDC);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
sde_enc->hw_vdc[i] = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &vdc_iter))
break;
sde_enc->hw_vdc[i] = (struct sde_hw_vdc *) vdc_iter.hw;
}
/* Get PP for DSC configuration */
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
struct sde_hw_pingpong *pp = NULL;
unsigned long features = 0;
if (!sde_enc->hw_dsc[i])
continue;
request_hw.id = sde_enc->hw_dsc[i]->base.id;
request_hw.type = SDE_HW_BLK_PINGPONG;
if (!sde_rm_request_hw_blk(&sde_kms->rm, &request_hw))
break;
pp = (struct sde_hw_pingpong *) request_hw.hw;
features = pp->ops.get_hw_caps(pp);
if (test_bit(SDE_PINGPONG_DSC, &features))
sde_enc->hw_dsc_pp[i] = pp;
else
sde_enc->hw_dsc_pp[i] = NULL;
}
}
static bool sde_encoder_detect_panel_mode_switch(
struct drm_display_mode *adj_mode, enum sde_intf_mode intf_mode)
{
/* don't rely on POMS flag as it may not be set for power-on modeset */
if ((intf_mode == INTF_MODE_CMD &&
adj_mode->flags & DRM_MODE_FLAG_VID_MODE_PANEL) ||
(intf_mode == INTF_MODE_VIDEO &&
adj_mode->flags & DRM_MODE_FLAG_CMD_MODE_PANEL))
return true;
return false;
}
static int sde_encoder_virt_modeset_rc(struct drm_encoder *drm_enc,
struct drm_display_mode *adj_mode, bool pre_modeset)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
enum sde_intf_mode intf_mode;
int ret;
bool is_cmd_mode = false;
if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE))
is_cmd_mode = true;
if (pre_modeset) {
intf_mode = sde_encoder_get_intf_mode(drm_enc);
if ((msm_is_mode_seamless_dms(adj_mode) ||
msm_is_mode_seamless_dyn_clk(adj_mode)) &&
is_cmd_mode) {
/* restore resource state before releasing them */
ret = sde_encoder_resource_control(drm_enc,
SDE_ENC_RC_EVENT_PRE_MODESET);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"sde resource control failed: %d\n",
ret);
return ret;
}
/*
* Disable dce before switching the mode and after pre-
* modeset to guarantee previous kickoff has finished.
*/
sde_encoder_dce_disable(sde_enc);
} else if (sde_encoder_detect_panel_mode_switch(adj_mode,
intf_mode)) {
_sde_encoder_modeset_helper_locked(drm_enc,
SDE_ENC_RC_EVENT_PRE_MODESET);
sde_encoder_virt_mode_switch(drm_enc, intf_mode,
adj_mode);
}
} else {
if ((msm_is_mode_seamless_dms(adj_mode) ||
msm_is_mode_seamless_dyn_clk(adj_mode)) &&
is_cmd_mode)
sde_encoder_resource_control(&sde_enc->base,
SDE_ENC_RC_EVENT_POST_MODESET);
else if (msm_is_mode_seamless_poms(adj_mode))
_sde_encoder_modeset_helper_locked(drm_enc,
SDE_ENC_RC_EVENT_POST_MODESET);
}
return 0;
}
static void sde_encoder_virt_mode_set(struct drm_encoder *drm_enc,
struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
struct sde_encoder_virt *sde_enc;
struct sde_kms *sde_kms;
struct drm_connector *conn;
int i = 0, ret;
int num_lm, num_intf, num_pp_per_intf;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
if (!sde_kms_power_resource_is_enabled(drm_enc->dev)) {
SDE_ERROR("power resource is not enabled\n");
return;
}
sde_kms = sde_encoder_get_kms(drm_enc);
if (!sde_kms)
return;
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
SDE_EVT32(DRMID(drm_enc));
/*
* cache the crtc in sde_enc on enable for duration of use case
* for correctly servicing asynchronous irq events and timers
*/
if (!drm_enc->crtc) {
SDE_ERROR("invalid crtc\n");
return;
}
sde_enc->crtc = drm_enc->crtc;
sde_crtc_set_qos_dirty(drm_enc->crtc);
/* get and store the mode_info */
conn = _sde_encoder_get_connector(sde_kms->dev, drm_enc);
if (!conn) {
SDE_ERROR_ENC(sde_enc, "failed to find attached connector\n");
return;
} else if (!conn->state) {
SDE_ERROR_ENC(sde_enc, "invalid connector state\n");
return;
}
sde_connector_state_get_mode_info(conn->state, &sde_enc->mode_info);
sde_encoder_dce_set_bpp(sde_enc->mode_info, sde_enc->crtc);
/* cancel delayed off work, if any */
kthread_cancel_delayed_work_sync(&sde_enc->delayed_off_work);
/* release resources before seamless mode change */
ret = sde_encoder_virt_modeset_rc(drm_enc, adj_mode, true);
if (ret)
return;
/* reserve dynamic resources now, indicating non test-only */
ret = sde_rm_reserve(&sde_kms->rm, drm_enc, drm_enc->crtc->state,
conn->state, false);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"failed to reserve hw resources, %d\n", ret);
return;
}
/* assign the reserved HW blocks to this encoder */
_sde_encoder_virt_populate_hw_res(drm_enc);
/* determine left HW PP block to map to INTF */
num_lm = sde_enc->mode_info.topology.num_lm;
num_intf = sde_enc->mode_info.topology.num_intf;
num_pp_per_intf = num_lm / num_intf;
if (!num_pp_per_intf)
num_pp_per_intf = 1;
/* perform mode_set on phys_encs */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys) {
if (!sde_enc->hw_pp[i * num_pp_per_intf] &&
sde_enc->topology.num_intf) {
SDE_ERROR_ENC(sde_enc, "invalid hw_pp[%d]\n",
i * num_pp_per_intf);
return;
}
phys->hw_pp = sde_enc->hw_pp[i * num_pp_per_intf];
phys->connector = conn->state->connector;
if (phys->ops.mode_set)
phys->ops.mode_set(phys, mode, adj_mode);
}
}
/* update resources after seamless mode change */
sde_encoder_virt_modeset_rc(drm_enc, adj_mode, false);
}
void sde_encoder_control_te(struct drm_encoder *drm_enc, bool enable)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
int i;
if (!drm_enc) {
SDE_ERROR("invalid parameters\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.control_te)
phys->ops.control_te(phys, enable);
}
}
static int _sde_encoder_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
struct input_handle *handle;
int rc = 0;
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = handler->name;
rc = input_register_handle(handle);
if (rc) {
pr_err("failed to register input handle\n");
goto error;
}
rc = input_open_device(handle);
if (rc) {
pr_err("failed to open input device\n");
goto error_unregister;
}
return 0;
error_unregister:
input_unregister_handle(handle);
error:
kfree(handle);
return rc;
}
static void _sde_encoder_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
/**
* Structure for specifying event parameters on which to receive callbacks.
* This structure will trigger a callback in case of a touch event (specified by
* EV_ABS) where there is a change in X and Y coordinates,
*/
static const struct input_device_id sde_input_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
.evbit = { BIT_MASK(EV_ABS) },
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
BIT_MASK(ABS_MT_POSITION_X) |
BIT_MASK(ABS_MT_POSITION_Y) },
},
{ },
};
static void _sde_encoder_input_handler_register(
struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
int rc;
if (!sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE) ||
!sde_enc->input_event_enabled)
return;
if (sde_enc->input_handler && !sde_enc->input_handler->private) {
sde_enc->input_handler->private = sde_enc;
/* register input handler if not already registered */
rc = input_register_handler(sde_enc->input_handler);
if (rc) {
SDE_ERROR("input_handler_register failed, rc= %d\n",
rc);
kfree(sde_enc->input_handler);
}
}
}
static void _sde_encoder_input_handler_unregister(
struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE) ||
!sde_enc->input_event_enabled)
return;
if (sde_enc->input_handler && sde_enc->input_handler->private) {
input_unregister_handler(sde_enc->input_handler);
sde_enc->input_handler->private = NULL;
}
}
static int _sde_encoder_input_handler(
struct sde_encoder_virt *sde_enc)
{
struct input_handler *input_handler = NULL;
int rc = 0;
if (sde_enc->input_handler) {
SDE_ERROR_ENC(sde_enc,
"input_handle is active. unexpected\n");
return -EINVAL;
}
input_handler = kzalloc(sizeof(*sde_enc->input_handler), GFP_KERNEL);
if (!input_handler)
return -ENOMEM;
input_handler->event = sde_encoder_input_event_handler;
input_handler->connect = _sde_encoder_input_connect;
input_handler->disconnect = _sde_encoder_input_disconnect;
input_handler->name = "sde";
input_handler->id_table = sde_input_ids;
sde_enc->input_handler = input_handler;
return rc;
}
static void _sde_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
struct sde_kms *sde_kms;
if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
SDE_ERROR("invalid parameters\n");
return;
}
sde_kms = sde_encoder_get_kms(drm_enc);
if (!sde_kms)
return;
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc || !sde_enc->cur_master) {
SDE_DEBUG("invalid sde encoder/master\n");
return;
}
if (sde_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort &&
sde_enc->cur_master->hw_mdptop &&
sde_enc->cur_master->hw_mdptop->ops.intf_audio_select)
sde_enc->cur_master->hw_mdptop->ops.intf_audio_select(
sde_enc->cur_master->hw_mdptop);
if (sde_enc->cur_master->hw_mdptop &&
sde_enc->cur_master->hw_mdptop->ops.reset_ubwc &&
!sde_in_trusted_vm(sde_kms))
sde_enc->cur_master->hw_mdptop->ops.reset_ubwc(
sde_enc->cur_master->hw_mdptop,
sde_kms->catalog);
if (sde_enc->cur_master->hw_ctl &&
sde_enc->cur_master->hw_ctl->ops.setup_intf_cfg_v1 &&
!sde_enc->cur_master->cont_splash_enabled)
sde_enc->cur_master->hw_ctl->ops.setup_intf_cfg_v1(
sde_enc->cur_master->hw_ctl,
&sde_enc->cur_master->intf_cfg_v1);
_sde_encoder_update_vsync_source(sde_enc, &sde_enc->disp_info, false);
memset(&sde_enc->prv_conn_roi, 0, sizeof(sde_enc->prv_conn_roi));
memset(&sde_enc->cur_conn_roi, 0, sizeof(sde_enc->cur_conn_roi));
}
static void _sde_encoder_setup_dither(struct sde_encoder_phys *phys)
{
struct sde_kms *sde_kms;
void *dither_cfg = NULL;
int ret = 0, i = 0;
size_t len = 0;
enum sde_rm_topology_name topology;
struct drm_encoder *drm_enc;
struct msm_display_dsc_info *dsc = NULL;
struct sde_encoder_virt *sde_enc;
struct sde_hw_pingpong *hw_pp;
u32 bpp, bpc;
int num_lm;
if (!phys || !phys->connector || !phys->hw_pp ||
!phys->hw_pp->ops.setup_dither || !phys->parent)
return;
sde_kms = sde_encoder_get_kms(phys->parent);
if (!sde_kms)
return;
topology = sde_connector_get_topology_name(phys->connector);
if ((topology == SDE_RM_TOPOLOGY_NONE) ||
((topology == SDE_RM_TOPOLOGY_PPSPLIT) &&
(phys->split_role == ENC_ROLE_SLAVE)))
return;
drm_enc = phys->parent;
sde_enc = to_sde_encoder_virt(drm_enc);
dsc = &sde_enc->mode_info.comp_info.dsc_info;
bpc = dsc->config.bits_per_component;
bpp = dsc->config.bits_per_pixel;
/* disable dither for 10 bpp or 10bpc dsc config */
if (bpp == 10 || bpc == 10) {
phys->hw_pp->ops.setup_dither(phys->hw_pp, NULL, 0);
return;
}
ret = sde_connector_get_dither_cfg(phys->connector,
phys->connector->state, &dither_cfg,
&len, sde_enc->idle_pc_restore);
/* skip reg writes when return values are invalid or no data */
if (ret && ret == -ENODATA)
return;
num_lm = sde_rm_topology_get_num_lm(&sde_kms->rm, topology);
for (i = 0; i < num_lm; i++) {
hw_pp = sde_enc->hw_pp[i];
phys->hw_pp->ops.setup_dither(hw_pp,
dither_cfg, len);
}
}
void sde_encoder_virt_restore(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->cur_master) {
SDE_DEBUG("virt encoder has no master\n");
return;
}
memset(&sde_enc->cur_master->intf_cfg_v1, 0,
sizeof(sde_enc->cur_master->intf_cfg_v1));
sde_enc->idle_pc_restore = true;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys)
continue;
if (phys->hw_ctl && phys->hw_ctl->ops.clear_pending_flush)
phys->hw_ctl->ops.clear_pending_flush(phys->hw_ctl);
if ((phys != sde_enc->cur_master) && phys->ops.restore)
phys->ops.restore(phys);
_sde_encoder_setup_dither(phys);
}
if (sde_enc->cur_master->ops.restore)
sde_enc->cur_master->ops.restore(sde_enc->cur_master);
_sde_encoder_virt_enable_helper(drm_enc);
sde_encoder_control_te(drm_enc, true);
}
static void sde_encoder_off_work(struct kthread_work *work)
{
struct sde_encoder_virt *sde_enc = container_of(work,
struct sde_encoder_virt, delayed_off_work.work);
struct drm_encoder *drm_enc;
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
drm_enc = &sde_enc->base;
SDE_ATRACE_BEGIN("sde_encoder_off_work");
sde_encoder_idle_request(drm_enc);
SDE_ATRACE_END("sde_encoder_off_work");
}
static void sde_encoder_virt_enable(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
bool has_master_enc = false;
int i, ret = 0;
struct msm_compression_info *comp_info = NULL;
struct drm_display_mode *cur_mode = NULL;
struct msm_display_info *disp_info;
if (!drm_enc || !drm_enc->crtc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
disp_info = &sde_enc->disp_info;
if (!sde_kms_power_resource_is_enabled(drm_enc->dev)) {
SDE_ERROR("power resource is not enabled\n");
return;
}
if (!sde_enc->crtc)
sde_enc->crtc = drm_enc->crtc;
comp_info = &sde_enc->mode_info.comp_info;
cur_mode = &sde_enc->base.crtc->state->adjusted_mode;
SDE_DEBUG_ENC(sde_enc, "\n");
SDE_EVT32(DRMID(drm_enc), cur_mode->hdisplay, cur_mode->vdisplay);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.is_master && phys->ops.is_master(phys)) {
SDE_DEBUG_ENC(sde_enc, "master is now idx %d\n", i);
sde_enc->cur_master = phys;
has_master_enc = true;
break;
}
}
if (!has_master_enc) {
sde_enc->cur_master = NULL;
SDE_ERROR("virt encoder has no master! num_phys %d\n", i);
return;
}
_sde_encoder_input_handler_register(drm_enc);
if ((drm_enc->crtc->state->connectors_changed &&
sde_encoder_in_clone_mode(drm_enc)) ||
!(msm_is_mode_seamless_vrr(cur_mode)
|| msm_is_mode_seamless_dms(cur_mode)
|| msm_is_mode_seamless_dyn_clk(cur_mode)))
kthread_init_delayed_work(&sde_enc->delayed_off_work,
sde_encoder_off_work);
ret = sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_KICKOFF);
if (ret) {
SDE_ERROR_ENC(sde_enc, "sde resource control failed: %d\n",
ret);
return;
}
/* turn off vsync_in to update tear check configuration */
sde_encoder_control_te(drm_enc, false);
memset(&sde_enc->cur_master->intf_cfg_v1, 0,
sizeof(sde_enc->cur_master->intf_cfg_v1));
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys)
continue;
phys->comp_type = comp_info->comp_type;
phys->comp_ratio = comp_info->comp_ratio;
phys->frame_trigger_mode = sde_enc->frame_trigger_mode;
phys->poms_align_vsync = disp_info->poms_align_vsync;
if (phys->comp_type == MSM_DISPLAY_COMPRESSION_DSC) {
phys->dsc_extra_pclk_cycle_cnt =
comp_info->dsc_info.pclk_per_line;
phys->dsc_extra_disp_width =
comp_info->dsc_info.extra_width;
phys->dce_bytes_per_line =
comp_info->dsc_info.bytes_per_pkt *
comp_info->dsc_info.pkt_per_line;
} else if (phys->comp_type == MSM_DISPLAY_COMPRESSION_VDC) {
phys->dce_bytes_per_line =
comp_info->vdc_info.bytes_per_pkt *
comp_info->vdc_info.pkt_per_line;
}
if (phys != sde_enc->cur_master) {
/**
* on DMS request, the encoder will be enabled
* already. Invoke restore to reconfigure the
* new mode.
*/
if ((msm_is_mode_seamless_dms(cur_mode) ||
msm_is_mode_seamless_dyn_clk(cur_mode)) &&
phys->ops.restore)
phys->ops.restore(phys);
else if (phys->ops.enable)
phys->ops.enable(phys);
}
if (sde_enc->misr_enable && phys->ops.setup_misr &&
(sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_VIDEO_MODE)))
phys->ops.setup_misr(phys, true,
sde_enc->misr_frame_count);
}
if ((msm_is_mode_seamless_dms(cur_mode) ||
msm_is_mode_seamless_dyn_clk(cur_mode)) &&
sde_enc->cur_master->ops.restore)
sde_enc->cur_master->ops.restore(sde_enc->cur_master);
else if (sde_enc->cur_master->ops.enable)
sde_enc->cur_master->ops.enable(sde_enc->cur_master);
_sde_encoder_virt_enable_helper(drm_enc);
sde_encoder_control_te(drm_enc, true);
}
void sde_encoder_virt_reset(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
struct sde_kms *sde_kms = sde_encoder_get_kms(drm_enc);
int i = 0;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
if (sde_enc->phys_encs[i]) {
sde_enc->phys_encs[i]->cont_splash_enabled = false;
sde_enc->phys_encs[i]->connector = NULL;
}
atomic_set(&sde_enc->frame_done_cnt[i], 0);
}
sde_enc->cur_master = NULL;
/*
* clear the cached crtc in sde_enc on use case finish, after all the
* outstanding events and timers have been completed
*/
sde_enc->crtc = NULL;
memset(&sde_enc->mode_info, 0, sizeof(sde_enc->mode_info));
SDE_DEBUG_ENC(sde_enc, "encoder disabled\n");
sde_rm_release(&sde_kms->rm, drm_enc, false);
}
static void sde_encoder_virt_disable(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
struct sde_kms *sde_kms;
enum sde_intf_mode intf_mode;
int i = 0;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
} else if (!drm_enc->dev) {
SDE_ERROR("invalid dev\n");
return;
} else if (!drm_enc->dev->dev_private) {
SDE_ERROR("invalid dev_private\n");
return;
}
if (!sde_kms_power_resource_is_enabled(drm_enc->dev)) {
SDE_ERROR("power resource is not enabled\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
sde_kms = sde_encoder_get_kms(&sde_enc->base);
if (!sde_kms)
return;
intf_mode = sde_encoder_get_intf_mode(drm_enc);
SDE_EVT32(DRMID(drm_enc));
/* wait for idle */
if (!sde_encoder_in_clone_mode(drm_enc))
sde_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
_sde_encoder_input_handler_unregister(drm_enc);
/*
* For primary command mode and video mode encoders, execute the
* resource control pre-stop operations before the physical encoders
* are disabled, to allow the rsc to transition its states properly.
*
* For other encoder types, rsc should not be enabled until after
* they have been fully disabled, so delay the pre-stop operations
* until after the physical disable calls have returned.
*/
if (sde_enc->disp_info.display_type == SDE_CONNECTOR_PRIMARY &&
(intf_mode == INTF_MODE_CMD || intf_mode == INTF_MODE_VIDEO)) {
sde_encoder_resource_control(drm_enc,
SDE_ENC_RC_EVENT_PRE_STOP);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.disable)
phys->ops.disable(phys);
}
} else {
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.disable)
phys->ops.disable(phys);
}
sde_encoder_resource_control(drm_enc,
SDE_ENC_RC_EVENT_PRE_STOP);
}
/*
* disable dce after the transfer is complete (for command mode)
* and after physical encoder is disabled, to make sure timing
* engine is already disabled (for video mode).
*/
if (!sde_in_trusted_vm(sde_kms))
sde_encoder_dce_disable(sde_enc);
sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_STOP);
if (!sde_encoder_in_clone_mode(drm_enc))
sde_encoder_virt_reset(drm_enc);
}
void sde_encoder_helper_phys_disable(struct sde_encoder_phys *phys_enc,
struct sde_encoder_phys_wb *wb_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_hw_ctl *ctl = phys_enc->hw_ctl;
struct sde_ctl_flush_cfg cfg;
sde_encoder_helper_reset_mixers(phys_enc, NULL);
if (wb_enc) {
if (wb_enc->hw_wb->ops.bind_pingpong_blk) {
wb_enc->hw_wb->ops.bind_pingpong_blk(wb_enc->hw_wb,
false, phys_enc->hw_pp->idx);
if (ctl->ops.update_bitmask)
ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_WB,
wb_enc->hw_wb->idx, true);
}
} else {
if (phys_enc->hw_intf->ops.bind_pingpong_blk) {
phys_enc->hw_intf->ops.bind_pingpong_blk(
phys_enc->hw_intf, false,
phys_enc->hw_pp->idx);
if (ctl->ops.update_bitmask)
ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_INTF,
phys_enc->hw_intf->idx, true);
}
}
if (phys_enc->hw_pp && phys_enc->hw_pp->ops.reset_3d_mode) {
phys_enc->hw_pp->ops.reset_3d_mode(phys_enc->hw_pp);
if (ctl->ops.update_bitmask && phys_enc->hw_pp->merge_3d)
ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_MERGE_3D,
phys_enc->hw_pp->merge_3d->idx, true);
}
if (phys_enc->hw_cdm && phys_enc->hw_cdm->ops.bind_pingpong_blk &&
phys_enc->hw_pp) {
phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
false, phys_enc->hw_pp->idx);
if (ctl->ops.update_bitmask)
ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_CDM,
phys_enc->hw_cdm->idx, true);
}
sde_enc = to_sde_encoder_virt(phys_enc->parent);
if (phys_enc == sde_enc->cur_master && phys_enc->hw_pp &&
ctl->ops.reset_post_disable)
ctl->ops.reset_post_disable(ctl, &phys_enc->intf_cfg_v1,
phys_enc->hw_pp->merge_3d ?
phys_enc->hw_pp->merge_3d->idx : 0);
ctl->ops.get_pending_flush(ctl, &cfg);
SDE_EVT32(DRMID(phys_enc->parent), cfg.pending_flush_mask);
ctl->ops.trigger_flush(ctl);
ctl->ops.trigger_start(ctl);
ctl->ops.clear_pending_flush(ctl);
}
static enum sde_intf sde_encoder_get_intf(struct sde_mdss_cfg *catalog,
enum sde_intf_type type, u32 controller_id)
{
int i = 0;
for (i = 0; i < catalog->intf_count; i++) {
if (catalog->intf[i].type == type
&& catalog->intf[i].controller_id == controller_id) {
return catalog->intf[i].id;
}
}
return INTF_MAX;
}
static enum sde_wb sde_encoder_get_wb(struct sde_mdss_cfg *catalog,
enum sde_intf_type type, u32 controller_id)
{
if (controller_id < catalog->wb_count)
return catalog->wb[controller_id].id;
return WB_MAX;
}
void sde_encoder_perf_uidle_status(struct sde_kms *sde_kms,
struct drm_crtc *crtc)
{
struct sde_hw_uidle *uidle;
struct sde_uidle_cntr cntr;
struct sde_uidle_status status;
if (!sde_kms || !crtc || !sde_kms->hw_uidle) {
pr_err("invalid params %d %d\n",
!sde_kms, !crtc);
return;
}
/* check if perf counters are enabled and setup */
if (!sde_kms->catalog->uidle_cfg.perf_cntr_en)
return;
uidle = sde_kms->hw_uidle;
if ((sde_kms->catalog->uidle_cfg.debugfs_perf & SDE_PERF_UIDLE_STATUS)
&& uidle->ops.uidle_get_status) {
uidle->ops.uidle_get_status(uidle, &status);
trace_sde_perf_uidle_status(
crtc->base.id,
status.uidle_danger_status_0,
status.uidle_danger_status_1,
status.uidle_safe_status_0,
status.uidle_safe_status_1,
status.uidle_idle_status_0,
status.uidle_idle_status_1,
status.uidle_fal_status_0,
status.uidle_fal_status_1,
status.uidle_status,
status.uidle_en_fal10);
}
if ((sde_kms->catalog->uidle_cfg.debugfs_perf & SDE_PERF_UIDLE_CNT)
&& uidle->ops.uidle_get_cntr) {
uidle->ops.uidle_get_cntr(uidle, &cntr);
trace_sde_perf_uidle_cntr(
crtc->base.id,
cntr.fal1_gate_cntr,
cntr.fal10_gate_cntr,
cntr.fal_wait_gate_cntr,
cntr.fal1_num_transitions_cntr,
cntr.fal10_num_transitions_cntr,
cntr.min_gate_cntr,
cntr.max_gate_cntr);
}
}
static void sde_encoder_vblank_callback(struct drm_encoder *drm_enc,
struct sde_encoder_phys *phy_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
unsigned long lock_flags;
if (!drm_enc || !phy_enc)
return;
SDE_ATRACE_BEGIN("encoder_vblank_callback");
sde_enc = to_sde_encoder_virt(drm_enc);
spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags);
if (sde_enc->crtc_vblank_cb)
sde_enc->crtc_vblank_cb(sde_enc->crtc_vblank_cb_data);
spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags);
if (phy_enc->sde_kms &&
phy_enc->sde_kms->catalog->uidle_cfg.debugfs_perf)
sde_encoder_perf_uidle_status(phy_enc->sde_kms, sde_enc->crtc);
atomic_inc(&phy_enc->vsync_cnt);
SDE_ATRACE_END("encoder_vblank_callback");
}
static void sde_encoder_underrun_callback(struct drm_encoder *drm_enc,
struct sde_encoder_phys *phy_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
if (!phy_enc)
return;
SDE_ATRACE_BEGIN("encoder_underrun_callback");
atomic_inc(&phy_enc->underrun_cnt);
SDE_EVT32(DRMID(drm_enc), atomic_read(&phy_enc->underrun_cnt));
if (sde_enc->cur_master &&
sde_enc->cur_master->ops.get_underrun_line_count)
sde_enc->cur_master->ops.get_underrun_line_count(
sde_enc->cur_master);
trace_sde_encoder_underrun(DRMID(drm_enc),
atomic_read(&phy_enc->underrun_cnt));
SDE_DBG_CTRL("stop_ftrace");
SDE_DBG_CTRL("panic_underrun");
SDE_ATRACE_END("encoder_underrun_callback");
}
void sde_encoder_register_vblank_callback(struct drm_encoder *drm_enc,
void (*vbl_cb)(void *), void *vbl_data)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
unsigned long lock_flags;
bool enable;
int i;
enable = vbl_cb ? true : false;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
SDE_DEBUG_ENC(sde_enc, "\n");
SDE_EVT32(DRMID(drm_enc), enable);
if (sde_encoder_in_clone_mode(drm_enc)) {
SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_ERROR);
return;
}
spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags);
sde_enc->crtc_vblank_cb = vbl_cb;
sde_enc->crtc_vblank_cb_data = vbl_data;
spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys && phys->ops.control_vblank_irq)
phys->ops.control_vblank_irq(phys, enable);
}
sde_enc->vblank_enabled = enable;
}
void sde_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
void (*frame_event_cb)(void *, u32 event),
struct drm_crtc *crtc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
unsigned long lock_flags;
bool enable;
enable = frame_event_cb ? true : false;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
SDE_DEBUG_ENC(sde_enc, "\n");
SDE_EVT32(DRMID(drm_enc), enable, 0);
spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags);
sde_enc->crtc_frame_event_cb = frame_event_cb;
sde_enc->crtc_frame_event_cb_data.crtc = crtc;
spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags);
}
static void sde_encoder_frame_done_callback(
struct drm_encoder *drm_enc,
struct sde_encoder_phys *ready_phys, u32 event)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
unsigned int i;
bool trigger = true;
bool is_cmd_mode = false;
enum sde_rm_topology_name topology = SDE_RM_TOPOLOGY_NONE;
if (!drm_enc || !sde_enc->cur_master) {
SDE_ERROR("invalid param: drm_enc %pK, cur_master %pK\n",
drm_enc, drm_enc ? sde_enc->cur_master : 0);
return;
}
sde_enc->crtc_frame_event_cb_data.connector =
sde_enc->cur_master->connector;
if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE))
is_cmd_mode = true;
if (event & (SDE_ENCODER_FRAME_EVENT_DONE
| SDE_ENCODER_FRAME_EVENT_ERROR
| SDE_ENCODER_FRAME_EVENT_PANEL_DEAD) && is_cmd_mode) {
if (ready_phys->connector)
topology = sde_connector_get_topology_name(
ready_phys->connector);
/* One of the physical encoders has become idle */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
if (sde_enc->phys_encs[i] == ready_phys) {
SDE_EVT32_VERBOSE(DRMID(drm_enc), i,
atomic_read(&sde_enc->frame_done_cnt[i]));
if (!atomic_add_unless(
&sde_enc->frame_done_cnt[i], 1, 2)) {
SDE_EVT32(DRMID(drm_enc), event,
ready_phys->intf_idx,
SDE_EVTLOG_ERROR);
SDE_ERROR_ENC(sde_enc,
"intf idx:%d, event:%d\n",
ready_phys->intf_idx, event);
return;
}
}
if (topology != SDE_RM_TOPOLOGY_PPSPLIT &&
atomic_read(&sde_enc->frame_done_cnt[i]) == 0)
trigger = false;
}
if (trigger) {
if (sde_enc->crtc_frame_event_cb)
sde_enc->crtc_frame_event_cb(
&sde_enc->crtc_frame_event_cb_data,
event);
for (i = 0; i < sde_enc->num_phys_encs; i++)
atomic_add_unless(&sde_enc->frame_done_cnt[i],
-1, 0);
}
} else if (sde_enc->crtc_frame_event_cb) {
sde_enc->crtc_frame_event_cb(
&sde_enc->crtc_frame_event_cb_data, event);
}
}
static void sde_encoder_get_qsync_fps_callback(
struct drm_encoder *drm_enc,
u32 *qsync_fps, u32 vrr_fps)
{
struct msm_display_info *disp_info;
struct sde_encoder_virt *sde_enc;
int rc = 0;
struct sde_connector *sde_conn;
if (!qsync_fps)
return;
*qsync_fps = 0;
if (!drm_enc) {
SDE_ERROR("invalid drm encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
disp_info = &sde_enc->disp_info;
*qsync_fps = disp_info->qsync_min_fps;
/**
* If "dsi-supported-qsync-min-fps-list" is defined, get
* the qsync min fps corresponding to the fps in dfps list
*/
if (disp_info->has_qsync_min_fps_list) {
if (!sde_enc->cur_master ||
!(sde_enc->disp_info.capabilities &
MSM_DISPLAY_CAP_VID_MODE)) {
SDE_ERROR("invalid qsync settings %b\n",
!sde_enc->cur_master);
return;
}
sde_conn = to_sde_connector(sde_enc->cur_master->connector);
if (sde_conn->ops.get_qsync_min_fps)
rc = sde_conn->ops.get_qsync_min_fps(sde_conn->display,
vrr_fps);
if (rc <= 0) {
SDE_ERROR("invalid qsync min fps %d\n", rc);
return;
}
*qsync_fps = rc;
}
}
int sde_encoder_idle_request(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
if (!drm_enc) {
SDE_ERROR("invalid drm encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
sde_encoder_resource_control(&sde_enc->base,
SDE_ENC_RC_EVENT_ENTER_IDLE);
return 0;
}
/**
* _sde_encoder_trigger_flush - trigger flush for a physical encoder
* drm_enc: Pointer to drm encoder structure
* phys: Pointer to physical encoder structure
* extra_flush: Additional bit mask to include in flush trigger
* config_changed: if true new config is applied, avoid increment of retire
* count if false
*/
static inline void _sde_encoder_trigger_flush(struct drm_encoder *drm_enc,
struct sde_encoder_phys *phys,
struct sde_ctl_flush_cfg *extra_flush,
bool config_changed)
{
struct sde_hw_ctl *ctl;
unsigned long lock_flags;
struct sde_encoder_virt *sde_enc;
int pend_ret_fence_cnt;
struct sde_connector *c_conn;
if (!drm_enc || !phys) {
SDE_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n",
!drm_enc, !phys);
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
c_conn = to_sde_connector(phys->connector);
if (!phys->hw_pp) {
SDE_ERROR("invalid pingpong hw\n");
return;
}
ctl = phys->hw_ctl;
if (!ctl || !phys->ops.trigger_flush) {
SDE_ERROR("missing ctl/trigger cb\n");
return;
}
if (phys->split_role == ENC_ROLE_SKIP) {
SDE_DEBUG_ENC(to_sde_encoder_virt(phys->parent),
"skip flush pp%d ctl%d\n",
phys->hw_pp->idx - PINGPONG_0,
ctl->idx - CTL_0);
return;
}
/* update pending counts and trigger kickoff ctl flush atomically */
spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags);
if (phys->ops.is_master && phys->ops.is_master(phys) && config_changed)
atomic_inc(&phys->pending_retire_fence_cnt);
pend_ret_fence_cnt = atomic_read(&phys->pending_retire_fence_cnt);
if (phys->hw_intf && phys->hw_intf->cap->type == INTF_DP &&
ctl->ops.update_bitmask) {
/* perform peripheral flush on every frame update for dp dsc */
if (phys->comp_type == MSM_DISPLAY_COMPRESSION_DSC &&
phys->comp_ratio && c_conn->ops.update_pps) {
c_conn->ops.update_pps(phys->connector, NULL,
c_conn->display);
ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_PERIPH,
phys->hw_intf->idx, 1);
}
if (sde_enc->dynamic_hdr_updated)
ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_PERIPH,
phys->hw_intf->idx, 1);
}
if ((extra_flush && extra_flush->pending_flush_mask)
&& ctl->ops.update_pending_flush)
ctl->ops.update_pending_flush(ctl, extra_flush);
phys->ops.trigger_flush(phys);
spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags);
if (ctl->ops.get_pending_flush) {
struct sde_ctl_flush_cfg pending_flush = {0,};
ctl->ops.get_pending_flush(ctl, &pending_flush);
SDE_EVT32(DRMID(drm_enc), phys->intf_idx - INTF_0,
ctl->idx - CTL_0,
pending_flush.pending_flush_mask,
pend_ret_fence_cnt);
} else {
SDE_EVT32(DRMID(drm_enc), phys->intf_idx - INTF_0,
ctl->idx - CTL_0,
pend_ret_fence_cnt);
}
}
/**
* _sde_encoder_trigger_start - trigger start for a physical encoder
* phys: Pointer to physical encoder structure
*/
static inline void _sde_encoder_trigger_start(struct sde_encoder_phys *phys)
{
struct sde_hw_ctl *ctl;
struct sde_encoder_virt *sde_enc;
if (!phys) {
SDE_ERROR("invalid argument(s)\n");
return;
}
if (!phys->hw_pp) {
SDE_ERROR("invalid pingpong hw\n");
return;
}
if (!phys->parent) {
SDE_ERROR("invalid parent\n");
return;
}
/* avoid ctrl start for encoder in clone mode */
if (phys->in_clone_mode)
return;
ctl = phys->hw_ctl;
sde_enc = to_sde_encoder_virt(phys->parent);
if (phys->split_role == ENC_ROLE_SKIP) {
SDE_DEBUG_ENC(sde_enc,
"skip start pp%d ctl%d\n",
phys->hw_pp->idx - PINGPONG_0,
ctl->idx - CTL_0);
return;
}
if (phys->ops.trigger_start && phys->enable_state != SDE_ENC_DISABLED)
phys->ops.trigger_start(phys);
}
void sde_encoder_helper_trigger_flush(struct sde_encoder_phys *phys_enc)
{
struct sde_hw_ctl *ctl;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
ctl = phys_enc->hw_ctl;
if (ctl && ctl->ops.trigger_flush)
ctl->ops.trigger_flush(ctl);
}
void sde_encoder_helper_trigger_start(struct sde_encoder_phys *phys_enc)
{
struct sde_hw_ctl *ctl;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
ctl = phys_enc->hw_ctl;
if (ctl && ctl->ops.trigger_start) {
ctl->ops.trigger_start(ctl);
SDE_EVT32(DRMID(phys_enc->parent), ctl->idx - CTL_0);
}
}
void sde_encoder_helper_hw_reset(struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_connector *sde_con;
void *sde_con_disp;
struct sde_hw_ctl *ctl;
int rc;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(phys_enc->parent);
ctl = phys_enc->hw_ctl;
if (!ctl || !ctl->ops.reset)
return;
SDE_DEBUG_ENC(sde_enc, "ctl %d reset\n", ctl->idx);
SDE_EVT32(DRMID(phys_enc->parent), ctl->idx);
if (phys_enc->ops.is_master && phys_enc->ops.is_master(phys_enc) &&
phys_enc->connector) {
sde_con = to_sde_connector(phys_enc->connector);
sde_con_disp = sde_connector_get_display(phys_enc->connector);
if (sde_con->ops.soft_reset) {
rc = sde_con->ops.soft_reset(sde_con_disp);
if (rc) {
SDE_ERROR_ENC(sde_enc,
"connector soft reset failure\n");
SDE_DBG_DUMP("all", "dbg_bus", "vbif_dbg_bus",
"panic");
}
}
}
phys_enc->enable_state = SDE_ENC_ENABLED;
}
/**
* _sde_encoder_kickoff_phys - handle physical encoder kickoff
* Iterate through the physical encoders and perform consolidated flush
* and/or control start triggering as needed. This is done in the virtual
* encoder rather than the individual physical ones in order to handle
* use cases that require visibility into multiple physical encoders at
* a time.
* sde_enc: Pointer to virtual encoder structure
* config_changed: if true new config is applied. Avoid regdma_flush and
* incrementing the retire count if false.
*/
static void _sde_encoder_kickoff_phys(struct sde_encoder_virt *sde_enc,
bool config_changed)
{
struct sde_hw_ctl *ctl;
uint32_t i;
struct sde_ctl_flush_cfg pending_flush = {0,};
u32 pending_kickoff_cnt;
struct msm_drm_private *priv = NULL;
struct sde_kms *sde_kms = NULL;
struct sde_crtc_misr_info crtc_misr_info = {false, 0};
bool is_regdma_blocking = false, is_vid_mode = false;
struct sde_crtc *sde_crtc;
if (!sde_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_crtc = to_sde_crtc(sde_enc->crtc);
if (sde_encoder_check_curr_mode(&sde_enc->base, MSM_DISPLAY_VIDEO_MODE))
is_vid_mode = true;
is_regdma_blocking = (is_vid_mode ||
_sde_encoder_is_autorefresh_enabled(sde_enc));
/* don't perform flush/start operations for slave encoders */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
enum sde_rm_topology_name topology = SDE_RM_TOPOLOGY_NONE;
if (!phys || phys->enable_state == SDE_ENC_DISABLED)
continue;
ctl = phys->hw_ctl;
if (!ctl)
continue;
if (phys->connector)
topology = sde_connector_get_topology_name(
phys->connector);
if (!phys->ops.needs_single_flush ||
!phys->ops.needs_single_flush(phys)) {
if (config_changed && ctl->ops.reg_dma_flush)
ctl->ops.reg_dma_flush(ctl, is_regdma_blocking);
_sde_encoder_trigger_flush(&sde_enc->base, phys, 0x0,
config_changed);
} else if (ctl->ops.get_pending_flush) {
ctl->ops.get_pending_flush(ctl, &pending_flush);
}
}
/* for split flush, combine pending flush masks and send to master */
if (pending_flush.pending_flush_mask && sde_enc->cur_master) {
ctl = sde_enc->cur_master->hw_ctl;
if (config_changed && ctl->ops.reg_dma_flush)
ctl->ops.reg_dma_flush(ctl, is_regdma_blocking);
_sde_encoder_trigger_flush(&sde_enc->base, sde_enc->cur_master,
&pending_flush,
config_changed);
}
/* update pending_kickoff_cnt AFTER flush but before trigger start */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys || phys->enable_state == SDE_ENC_DISABLED)
continue;
if (!phys->ops.needs_single_flush ||
!phys->ops.needs_single_flush(phys)) {
pending_kickoff_cnt =
sde_encoder_phys_inc_pending(phys);
SDE_EVT32(pending_kickoff_cnt, SDE_EVTLOG_FUNC_CASE1);
} else {
pending_kickoff_cnt =
sde_encoder_phys_inc_pending(phys);
SDE_EVT32(pending_kickoff_cnt,
pending_flush.pending_flush_mask,
SDE_EVTLOG_FUNC_CASE2);
}
}
if (sde_enc->misr_enable)
sde_encoder_misr_configure(&sde_enc->base, true,
sde_enc->misr_frame_count);
sde_crtc_get_misr_info(sde_enc->crtc, &crtc_misr_info);
if (crtc_misr_info.misr_enable && sde_crtc &&
sde_crtc->misr_reconfigure) {
sde_crtc_misr_setup(sde_enc->crtc, true,
crtc_misr_info.misr_frame_count);
sde_crtc->misr_reconfigure = false;
}
_sde_encoder_trigger_start(sde_enc->cur_master);
if (sde_enc->elevated_ahb_vote) {
sde_kms = sde_encoder_get_kms(&sde_enc->base);
priv = sde_enc->base.dev->dev_private;
if (sde_kms != NULL) {
sde_power_scale_reg_bus(&priv->phandle,
VOTE_INDEX_LOW,
false);
}
sde_enc->elevated_ahb_vote = false;
}
}
static void _sde_encoder_ppsplit_swap_intf_for_right_only_update(
struct drm_encoder *drm_enc,
unsigned long *affected_displays,
int num_active_phys)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *master;
enum sde_rm_topology_name topology;
bool is_right_only;
if (!drm_enc || !affected_displays)
return;
sde_enc = to_sde_encoder_virt(drm_enc);
master = sde_enc->cur_master;
if (!master || !master->connector)
return;
topology = sde_connector_get_topology_name(master->connector);
if (topology != SDE_RM_TOPOLOGY_PPSPLIT)
return;
/*
* For pingpong split, the slave pingpong won't generate IRQs. For
* right-only updates, we can't swap pingpongs, or simply swap the
* master/slave assignment, we actually have to swap the interfaces
* so that the master physical encoder will use a pingpong/interface
* that generates irqs on which to wait.
*/
is_right_only = !test_bit(0, affected_displays) &&
test_bit(1, affected_displays);
if (is_right_only && !sde_enc->intfs_swapped) {
/* right-only update swap interfaces */
swap(sde_enc->phys_encs[0]->intf_idx,
sde_enc->phys_encs[1]->intf_idx);
sde_enc->intfs_swapped = true;
} else if (!is_right_only && sde_enc->intfs_swapped) {
/* left-only or full update, swap back */
swap(sde_enc->phys_encs[0]->intf_idx,
sde_enc->phys_encs[1]->intf_idx);
sde_enc->intfs_swapped = false;
}
SDE_DEBUG_ENC(sde_enc,
"right_only %d swapped %d phys0->intf%d, phys1->intf%d\n",
is_right_only, sde_enc->intfs_swapped,
sde_enc->phys_encs[0]->intf_idx - INTF_0,
sde_enc->phys_encs[1]->intf_idx - INTF_0);
SDE_EVT32(DRMID(drm_enc), is_right_only, sde_enc->intfs_swapped,
sde_enc->phys_encs[0]->intf_idx - INTF_0,
sde_enc->phys_encs[1]->intf_idx - INTF_0,
*affected_displays);
/* ppsplit always uses master since ppslave invalid for irqs*/
if (num_active_phys == 1)
*affected_displays = BIT(0);
}
static void _sde_encoder_update_master(struct drm_encoder *drm_enc,
struct sde_encoder_kickoff_params *params)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
int i, num_active_phys;
bool master_assigned = false;
if (!drm_enc || !params)
return;
sde_enc = to_sde_encoder_virt(drm_enc);
if (sde_enc->num_phys_encs <= 1)
return;
/* count bits set */
num_active_phys = hweight_long(params->affected_displays);
SDE_DEBUG_ENC(sde_enc, "affected_displays 0x%lx num_active_phys %d\n",
params->affected_displays, num_active_phys);
SDE_EVT32_VERBOSE(DRMID(drm_enc), params->affected_displays,
num_active_phys);
/* for left/right only update, ppsplit master switches interface */
_sde_encoder_ppsplit_swap_intf_for_right_only_update(drm_enc,
&params->affected_displays, num_active_phys);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
enum sde_enc_split_role prv_role, new_role;
bool active = false;
phys = sde_enc->phys_encs[i];
if (!phys || !phys->ops.update_split_role || !phys->hw_pp)
continue;
active = test_bit(i, &params->affected_displays);
prv_role = phys->split_role;
if (active && num_active_phys == 1)
new_role = ENC_ROLE_SOLO;
else if (active && !master_assigned)
new_role = ENC_ROLE_MASTER;
else if (active)
new_role = ENC_ROLE_SLAVE;
else
new_role = ENC_ROLE_SKIP;
phys->ops.update_split_role(phys, new_role);
if (new_role == ENC_ROLE_SOLO || new_role == ENC_ROLE_MASTER) {
sde_enc->cur_master = phys;
master_assigned = true;
}
SDE_DEBUG_ENC(sde_enc, "pp %d role prv %d new %d active %d\n",
phys->hw_pp->idx - PINGPONG_0, prv_role,
phys->split_role, active);
SDE_EVT32(DRMID(drm_enc), params->affected_displays,
phys->hw_pp->idx - PINGPONG_0, prv_role,
phys->split_role, active, num_active_phys);
}
}
bool sde_encoder_check_curr_mode(struct drm_encoder *drm_enc, u32 mode)
{
struct sde_encoder_virt *sde_enc;
struct msm_display_info *disp_info;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return false;
}
sde_enc = to_sde_encoder_virt(drm_enc);
disp_info = &sde_enc->disp_info;
return (disp_info->curr_panel_mode == mode);
}
void sde_encoder_trigger_rsc_state_change(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
int ret = 0;
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc)
return;
mutex_lock(&sde_enc->rc_lock);
/*
* In dual display case when secondary comes out of
* idle make sure RSC solver mode is disabled before
* setting CTL_PREPARE.
*/
if (!sde_enc->cur_master ||
!sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE) ||
sde_enc->disp_info.display_type == SDE_CONNECTOR_PRIMARY ||
sde_enc->rc_state != SDE_ENC_RC_STATE_IDLE)
goto end;
/* enable all the clks and resources */
ret = _sde_encoder_resource_control_helper(drm_enc, true);
if (ret) {
SDE_ERROR_ENC(sde_enc, "rc in state %d\n", sde_enc->rc_state);
SDE_EVT32(DRMID(drm_enc), sde_enc->rc_state, SDE_EVTLOG_ERROR);
goto end;
}
_sde_encoder_update_rsc_client(drm_enc, true);
SDE_EVT32(DRMID(drm_enc), sde_enc->rc_state, SDE_ENC_RC_STATE_ON);
sde_enc->rc_state = SDE_ENC_RC_STATE_ON;
end:
mutex_unlock(&sde_enc->rc_lock);
}
void sde_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
unsigned int i;
struct sde_hw_ctl *ctl;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->hw_ctl && (phys == sde_enc->cur_master) &&
sde_encoder_check_curr_mode(drm_enc,
MSM_DISPLAY_CMD_MODE)) {
ctl = phys->hw_ctl;
if (ctl->ops.trigger_pending)
/* update only for command mode primary ctl */
ctl->ops.trigger_pending(ctl);
}
}
sde_enc->idle_pc_restore = false;
}
static void sde_encoder_esd_trigger_work_handler(struct kthread_work *work)
{
struct sde_encoder_virt *sde_enc = container_of(work,
struct sde_encoder_virt, esd_trigger_work);
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
sde_encoder_resource_control(&sde_enc->base,
SDE_ENC_RC_EVENT_KICKOFF);
}
static void sde_encoder_input_event_work_handler(struct kthread_work *work)
{
struct sde_encoder_virt *sde_enc = container_of(work,
struct sde_encoder_virt, input_event_work);
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
sde_encoder_resource_control(&sde_enc->base,
SDE_ENC_RC_EVENT_EARLY_WAKEUP);
}
static void sde_encoder_early_wakeup_work_handler(struct kthread_work *work)
{
struct sde_encoder_virt *sde_enc = container_of(work,
struct sde_encoder_virt, early_wakeup_work);
if (!sde_enc) {
SDE_ERROR("invalid sde encoder\n");
return;
}
SDE_ATRACE_BEGIN("encoder_early_wakeup");
sde_encoder_resource_control(&sde_enc->base,
SDE_ENC_RC_EVENT_EARLY_WAKEUP);
SDE_ATRACE_END("encoder_early_wakeup");
}
void sde_encoder_early_wakeup(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = NULL;
struct msm_drm_thread *disp_thread = NULL;
struct msm_drm_private *priv = NULL;
priv = drm_enc->dev->dev_private;
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE)) {
SDE_DEBUG_ENC(sde_enc,
"should only early wake up command mode display\n");
return;
}
if (!sde_enc->crtc || (sde_enc->crtc->index
>= ARRAY_SIZE(priv->event_thread))) {
SDE_DEBUG_ENC(sde_enc, "invalid CRTC: %d or crtc index: %d\n",
sde_enc->crtc == NULL,
sde_enc->crtc ? sde_enc->crtc->index : -EINVAL);
return;
}
disp_thread = &priv->disp_thread[sde_enc->crtc->index];
SDE_ATRACE_BEGIN("queue_early_wakeup_work");
kthread_queue_work(&disp_thread->worker,
&sde_enc->early_wakeup_work);
SDE_ATRACE_END("queue_early_wakeup_work");
}
int sde_encoder_poll_line_counts(struct drm_encoder *drm_enc)
{
static const uint64_t timeout_us = 50000;
static const uint64_t sleep_us = 20;
struct sde_encoder_virt *sde_enc;
ktime_t cur_ktime, exp_ktime;
uint32_t line_count, tmp, i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
if (!sde_enc->cur_master ||
!sde_enc->cur_master->ops.get_line_count) {
SDE_DEBUG_ENC(sde_enc, "can't get master line count\n");
SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_ERROR);
return -EINVAL;
}
exp_ktime = ktime_add_ms(ktime_get(), timeout_us / 1000);
line_count = sde_enc->cur_master->ops.get_line_count(
sde_enc->cur_master);
for (i = 0; i < (timeout_us * 2 / sleep_us); ++i) {
tmp = line_count;
line_count = sde_enc->cur_master->ops.get_line_count(
sde_enc->cur_master);
if (line_count < tmp) {
SDE_EVT32(DRMID(drm_enc), line_count);
return 0;
}
cur_ktime = ktime_get();
if (ktime_compare_safe(exp_ktime, cur_ktime) <= 0)
break;
usleep_range(sleep_us / 2, sleep_us);
}
SDE_EVT32(DRMID(drm_enc), line_count, SDE_EVTLOG_ERROR);
return -ETIMEDOUT;
}
static int _helper_flush_qsync(struct sde_encoder_phys *phys_enc)
{
struct drm_encoder *drm_enc;
struct sde_rm_hw_iter rm_iter;
bool lm_valid = false;
bool intf_valid = false;
if (!phys_enc || !phys_enc->parent) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
drm_enc = phys_enc->parent;
/* Flush the interfaces for AVR update or Qsync with INTF TE */
if (phys_enc->intf_mode == INTF_MODE_VIDEO ||
(phys_enc->intf_mode == INTF_MODE_CMD &&
phys_enc->has_intf_te)) {
sde_rm_init_hw_iter(&rm_iter, drm_enc->base.id,
SDE_HW_BLK_INTF);
while (sde_rm_get_hw(&phys_enc->sde_kms->rm, &rm_iter)) {
struct sde_hw_intf *hw_intf =
(struct sde_hw_intf *)rm_iter.hw;
if (!hw_intf)
continue;
if (phys_enc->hw_ctl->ops.update_bitmask)
phys_enc->hw_ctl->ops.update_bitmask(
phys_enc->hw_ctl,
SDE_HW_FLUSH_INTF,
hw_intf->idx, 1);
intf_valid = true;
}
if (!intf_valid) {
SDE_ERROR_ENC(to_sde_encoder_virt(drm_enc),
"intf not found to flush\n");
return -EFAULT;
}
} else {
sde_rm_init_hw_iter(&rm_iter, drm_enc->base.id, SDE_HW_BLK_LM);
while (sde_rm_get_hw(&phys_enc->sde_kms->rm, &rm_iter)) {
struct sde_hw_mixer *hw_lm =
(struct sde_hw_mixer *)rm_iter.hw;
if (!hw_lm)
continue;
/* update LM flush for HW without INTF TE */
if (phys_enc->hw_ctl->ops.update_bitmask_mixer)
phys_enc->hw_ctl->ops.update_bitmask_mixer(
phys_enc->hw_ctl,
hw_lm->idx, 1);
lm_valid = true;
}
if (!lm_valid) {
SDE_ERROR_ENC(to_sde_encoder_virt(drm_enc),
"lm not found to flush\n");
return -EFAULT;
}
}
return 0;
}
static void _sde_encoder_helper_hdr_plus_mempool_update(
struct sde_encoder_virt *sde_enc)
{
struct sde_connector_dyn_hdr_metadata *dhdr_meta = NULL;
struct sde_hw_mdp *mdptop = NULL;
sde_enc->dynamic_hdr_updated = false;
if (sde_enc->cur_master) {
mdptop = sde_enc->cur_master->hw_mdptop;
dhdr_meta = sde_connector_get_dyn_hdr_meta(
sde_enc->cur_master->connector);
}
if (!mdptop || !dhdr_meta || !dhdr_meta->dynamic_hdr_update)
return;
if (mdptop->ops.set_hdr_plus_metadata) {
sde_enc->dynamic_hdr_updated = true;
mdptop->ops.set_hdr_plus_metadata(
mdptop, dhdr_meta->dynamic_hdr_payload,
dhdr_meta->dynamic_hdr_payload_size,
sde_enc->cur_master->intf_idx == INTF_0 ?
0 : 1);
}
}
void sde_encoder_needs_hw_reset(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc);
struct sde_encoder_phys *phys;
int i;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.hw_reset)
phys->ops.hw_reset(phys);
}
}
int sde_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc,
struct sde_encoder_kickoff_params *params)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
struct sde_kms *sde_kms = NULL;
struct sde_crtc *sde_crtc;
bool needs_hw_reset = false, is_cmd_mode;
int i, rc, ret = 0;
struct msm_display_info *disp_info;
if (!drm_enc || !params || !drm_enc->dev ||
!drm_enc->dev->dev_private) {
SDE_ERROR("invalid args\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
sde_kms = sde_encoder_get_kms(drm_enc);
if (!sde_kms)
return -EINVAL;
disp_info = &sde_enc->disp_info;
sde_crtc = to_sde_crtc(sde_enc->crtc);
SDE_DEBUG_ENC(sde_enc, "\n");
SDE_EVT32(DRMID(drm_enc));
is_cmd_mode = sde_encoder_check_curr_mode(drm_enc,
MSM_DISPLAY_CMD_MODE);
if (sde_enc->cur_master && sde_enc->cur_master->connector
&& is_cmd_mode)
sde_enc->frame_trigger_mode = sde_connector_get_property(
sde_enc->cur_master->connector->state,
CONNECTOR_PROP_CMD_FRAME_TRIGGER_MODE);
_sde_encoder_helper_hdr_plus_mempool_update(sde_enc);
/* prepare for next kickoff, may include waiting on previous kickoff */
SDE_ATRACE_BEGIN("sde_encoder_prepare_for_kickoff");
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
params->frame_trigger_mode = sde_enc->frame_trigger_mode;
params->recovery_events_enabled =
sde_enc->recovery_events_enabled;
if (phys) {
if (phys->ops.prepare_for_kickoff) {
rc = phys->ops.prepare_for_kickoff(
phys, params);
if (rc)
ret = rc;
}
if (phys->enable_state == SDE_ENC_ERR_NEEDS_HW_RESET)
needs_hw_reset = true;
_sde_encoder_setup_dither(phys);
if (sde_enc->cur_master &&
sde_connector_is_qsync_updated(
sde_enc->cur_master->connector)) {
_helper_flush_qsync(phys);
if (is_cmd_mode)
_sde_encoder_update_rsc_client(drm_enc,
true);
}
}
}
rc = sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_KICKOFF);
if (rc) {
SDE_ERROR_ENC(sde_enc, "resource kickoff failed rc %d\n", rc);
ret = rc;
goto end;
}
/* if any phys needs reset, reset all phys, in-order */
if (needs_hw_reset)
sde_encoder_needs_hw_reset(drm_enc);
_sde_encoder_update_master(drm_enc, params);
_sde_encoder_update_roi(drm_enc);
if (sde_enc->cur_master && sde_enc->cur_master->connector) {
rc = sde_connector_pre_kickoff(sde_enc->cur_master->connector);
if (rc) {
SDE_ERROR_ENC(sde_enc, "kickoff conn%d failed rc %d\n",
sde_enc->cur_master->connector->base.id,
rc);
ret = rc;
}
}
if (sde_enc->cur_master &&
((is_cmd_mode && sde_enc->cur_master->cont_splash_enabled) ||
!sde_enc->cur_master->cont_splash_enabled)) {
rc = sde_encoder_dce_setup(sde_enc, params);
if (rc) {
SDE_ERROR_ENC(sde_enc, "failed to setup DSC: %d\n", rc);
ret = rc;
}
}
sde_encoder_dce_flush(sde_enc);
if (sde_enc->cur_master && !sde_enc->cur_master->cont_splash_enabled)
sde_configure_qdss(sde_enc, sde_enc->cur_master->hw_qdss,
sde_enc->cur_master, sde_kms->qdss_enabled);
end:
SDE_ATRACE_END("sde_encoder_prepare_for_kickoff");
return ret;
}
/**
* _sde_encoder_reset_ctl_hw - reset h/w configuration for all ctl's associated
* with the specified encoder, and unstage all pipes from it
* @encoder: encoder pointer
* Returns: 0 on success
*/
static int _sde_encoder_reset_ctl_hw(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
unsigned int i;
int rc = 0;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_ATRACE_BEGIN("encoder_release_lm");
SDE_DEBUG_ENC(sde_enc, "\n");
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (!phys)
continue;
SDE_EVT32(DRMID(drm_enc), phys->intf_idx - INTF_0);
rc = sde_encoder_helper_reset_mixers(phys, NULL);
if (rc)
SDE_EVT32(DRMID(drm_enc), rc, SDE_EVTLOG_ERROR);
}
SDE_ATRACE_END("encoder_release_lm");
return rc;
}
void sde_encoder_kickoff(struct drm_encoder *drm_enc, bool is_error,
bool config_changed)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
unsigned int i;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
SDE_ATRACE_BEGIN("encoder_kickoff");
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
/* create a 'no pipes' commit to release buffers on errors */
if (is_error)
_sde_encoder_reset_ctl_hw(drm_enc);
if (sde_enc->delay_kickoff) {
u32 loop_count = 20;
u32 sleep = DELAY_KICKOFF_POLL_TIMEOUT_US / loop_count;
for (i = 0; i < loop_count; i++) {
usleep_range(sleep, sleep * 2);
if (!sde_enc->delay_kickoff)
break;
}
SDE_EVT32(DRMID(drm_enc), i, SDE_EVTLOG_FUNC_CASE1);
}
/* All phys encs are ready to go, trigger the kickoff */
_sde_encoder_kickoff_phys(sde_enc, config_changed);
/* allow phys encs to handle any post-kickoff business */
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.handle_post_kickoff)
phys->ops.handle_post_kickoff(phys);
}
SDE_ATRACE_END("encoder_kickoff");
}
void sde_encoder_helper_get_pp_line_count(struct drm_encoder *drm_enc,
struct sde_hw_pp_vsync_info *info)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
int i, ret;
if (!drm_enc || !info)
return;
sde_enc = to_sde_encoder_virt(drm_enc);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->hw_intf && phys->hw_pp
&& phys->hw_intf->ops.get_vsync_info) {
ret = phys->hw_intf->ops.get_vsync_info(
phys->hw_intf, &info[i]);
if (!ret) {
info[i].pp_idx = phys->hw_pp->idx - PINGPONG_0;
info[i].intf_idx = phys->hw_intf->idx - INTF_0;
}
}
}
}
int sde_encoder_helper_reset_mixers(struct sde_encoder_phys *phys_enc,
struct drm_framebuffer *fb)
{
struct drm_encoder *drm_enc;
struct sde_hw_mixer_cfg mixer;
struct sde_rm_hw_iter lm_iter;
bool lm_valid = false;
if (!phys_enc || !phys_enc->parent) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
drm_enc = phys_enc->parent;
memset(&mixer, 0, sizeof(mixer));
/* reset associated CTL/LMs */
if (phys_enc->hw_ctl->ops.clear_all_blendstages)
phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
sde_rm_init_hw_iter(&lm_iter, drm_enc->base.id, SDE_HW_BLK_LM);
while (sde_rm_get_hw(&phys_enc->sde_kms->rm, &lm_iter)) {
struct sde_hw_mixer *hw_lm = (struct sde_hw_mixer *)lm_iter.hw;
if (!hw_lm)
continue;
/* need to flush LM to remove it */
if (phys_enc->hw_ctl->ops.update_bitmask_mixer)
phys_enc->hw_ctl->ops.update_bitmask_mixer(
phys_enc->hw_ctl,
hw_lm->idx, 1);
if (fb) {
/* assume a single LM if targeting a frame buffer */
if (lm_valid)
continue;
mixer.out_height = fb->height;
mixer.out_width = fb->width;
if (hw_lm->ops.setup_mixer_out)
hw_lm->ops.setup_mixer_out(hw_lm, &mixer);
}
lm_valid = true;
/* only enable border color on LM */
if (phys_enc->hw_ctl->ops.setup_blendstage)
phys_enc->hw_ctl->ops.setup_blendstage(
phys_enc->hw_ctl, hw_lm->idx, NULL, false);
}
if (!lm_valid) {
SDE_ERROR_ENC(to_sde_encoder_virt(drm_enc), "lm not found\n");
return -EFAULT;
}
return 0;
}
int sde_encoder_prepare_commit(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys;
int i, rc = 0, ret = 0;
struct sde_hw_ctl *ctl;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
/* update the qsync parameters for the current frame */
if (sde_enc->cur_master)
sde_connector_set_qsync_params(
sde_enc->cur_master->connector);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (phys && phys->ops.prepare_commit)
phys->ops.prepare_commit(phys);
if (phys && phys->enable_state == SDE_ENC_ERR_NEEDS_HW_RESET)
ret = -ETIMEDOUT;
if (phys && phys->hw_ctl) {
ctl = phys->hw_ctl;
/*
* avoid clearing the pending flush during the first
* frame update after idle power collpase as the
* restore path would have updated the pending flush
*/
if (!sde_enc->idle_pc_restore &&
ctl->ops.clear_pending_flush)
ctl->ops.clear_pending_flush(ctl);
}
}
if (sde_enc->cur_master && sde_enc->cur_master->connector) {
rc = sde_connector_prepare_commit(
sde_enc->cur_master->connector);
if (rc)
SDE_ERROR_ENC(sde_enc,
"prepare commit failed conn %d rc %d\n",
sde_enc->cur_master->connector->base.id,
rc);
}
return ret;
}
void sde_encoder_helper_setup_misr(struct sde_encoder_phys *phys_enc,
bool enable, u32 frame_count)
{
if (!phys_enc)
return;
if (phys_enc->hw_intf && phys_enc->hw_intf->ops.setup_misr)
phys_enc->hw_intf->ops.setup_misr(phys_enc->hw_intf,
enable, frame_count);
}
int sde_encoder_helper_collect_misr(struct sde_encoder_phys *phys_enc,
bool nonblock, u32 *misr_value)
{
if (!phys_enc)
return -EINVAL;
return phys_enc->hw_intf && phys_enc->hw_intf->ops.collect_misr ?
phys_enc->hw_intf->ops.collect_misr(phys_enc->hw_intf,
nonblock, misr_value) : -ENOTSUPP;
}
#ifdef CONFIG_DEBUG_FS
static int _sde_encoder_status_show(struct seq_file *s, void *data)
{
struct sde_encoder_virt *sde_enc;
int i;
if (!s || !s->private)
return -EINVAL;
sde_enc = s->private;
mutex_lock(&sde_enc->enc_lock);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys)
continue;
seq_printf(s, "intf:%d vsync:%8d underrun:%8d ",
phys->intf_idx - INTF_0,
atomic_read(&phys->vsync_cnt),
atomic_read(&phys->underrun_cnt));
switch (phys->intf_mode) {
case INTF_MODE_VIDEO:
seq_puts(s, "mode: video\n");
break;
case INTF_MODE_CMD:
seq_puts(s, "mode: command\n");
break;
case INTF_MODE_WB_BLOCK:
seq_puts(s, "mode: wb block\n");
break;
case INTF_MODE_WB_LINE:
seq_puts(s, "mode: wb line\n");
break;
default:
seq_puts(s, "mode: ???\n");
break;
}
}
mutex_unlock(&sde_enc->enc_lock);
return 0;
}
static int _sde_encoder_debugfs_status_open(struct inode *inode,
struct file *file)
{
return single_open(file, _sde_encoder_status_show, inode->i_private);
}
static ssize_t _sde_encoder_misr_setup(struct file *file,
const char __user *user_buf, size_t count, loff_t *ppos)
{
struct sde_encoder_virt *sde_enc;
char buf[MISR_BUFF_SIZE + 1];
size_t buff_copy;
u32 frame_count, enable;
struct sde_kms *sde_kms = NULL;
struct drm_encoder *drm_enc;
if (!file || !file->private_data)
return -EINVAL;
sde_enc = file->private_data;
if (!sde_enc)
return -EINVAL;
sde_kms = sde_encoder_get_kms(&sde_enc->base);
if (!sde_kms)
return -EINVAL;
drm_enc = &sde_enc->base;
if (sde_kms_is_secure_session_inprogress(sde_kms)) {
SDE_DEBUG_ENC(sde_enc, "misr enable/disable not allowed\n");
return -ENOTSUPP;
}
buff_copy = min_t(size_t, count, MISR_BUFF_SIZE);
if (copy_from_user(buf, user_buf, buff_copy))
return -EINVAL;
buf[buff_copy] = 0; /* end of string */
if (sscanf(buf, "%u %u", &enable, &frame_count) != 2)
return -EINVAL;
sde_enc->misr_enable = enable;
sde_enc->misr_reconfigure = true;
sde_enc->misr_frame_count = frame_count;
return count;
}
static ssize_t _sde_encoder_misr_read(struct file *file,
char __user *user_buff, size_t count, loff_t *ppos)
{
struct sde_encoder_virt *sde_enc;
struct sde_kms *sde_kms = NULL;
struct drm_encoder *drm_enc;
struct sde_vm_ops *vm_ops;
int i = 0, len = 0;
char buf[MISR_BUFF_SIZE + 1] = {'\0'};
int rc;
if (*ppos)
return 0;
if (!file || !file->private_data)
return -EINVAL;
sde_enc = file->private_data;
sde_kms = sde_encoder_get_kms(&sde_enc->base);
if (!sde_kms)
return -EINVAL;
if (sde_kms_is_secure_session_inprogress(sde_kms)) {
SDE_DEBUG_ENC(sde_enc, "misr read not allowed\n");
return -ENOTSUPP;
}
drm_enc = &sde_enc->base;
rc = pm_runtime_get_sync(drm_enc->dev->dev);
if (rc < 0)
return rc;
vm_ops = sde_vm_get_ops(sde_kms);
sde_vm_lock(sde_kms);
if (vm_ops && vm_ops->vm_owns_hw && !vm_ops->vm_owns_hw(sde_kms)) {
SDE_DEBUG("op not supported due to HW unavailablity\n");
rc = -EOPNOTSUPP;
goto end;
}
if (!sde_enc->misr_enable) {
len += scnprintf(buf + len, MISR_BUFF_SIZE - len,
"disabled\n");
goto buff_check;
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
u32 misr_value = 0;
if (!phys || !phys->ops.collect_misr) {
len += scnprintf(buf + len, MISR_BUFF_SIZE - len,
"invalid\n");
SDE_ERROR_ENC(sde_enc, "invalid misr ops\n");
continue;
}
rc = phys->ops.collect_misr(phys, false, &misr_value);
if (rc) {
len += scnprintf(buf + len, MISR_BUFF_SIZE - len,
"invalid\n");
SDE_ERROR_ENC(sde_enc, "failed to collect misr %d\n",
rc);
continue;
} else {
len += scnprintf(buf + len, MISR_BUFF_SIZE - len,
"Intf idx:%d\n",
phys->intf_idx - INTF_0);
len += scnprintf(buf + len, MISR_BUFF_SIZE - len,
"0x%x\n", misr_value);
}
}
buff_check:
if (count <= len) {
len = 0;
goto end;
}
if (copy_to_user(user_buff, buf, len)) {
len = -EFAULT;
goto end;
}
*ppos += len; /* increase offset */
end:
sde_vm_unlock(sde_kms);
pm_runtime_put_sync(drm_enc->dev->dev);
return len;
}
static int _sde_encoder_init_debugfs(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
struct sde_kms *sde_kms;
int i;
static const struct file_operations debugfs_status_fops = {
.open = _sde_encoder_debugfs_status_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations debugfs_misr_fops = {
.open = simple_open,
.read = _sde_encoder_misr_read,
.write = _sde_encoder_misr_setup,
};
char name[SDE_NAME_SIZE];
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
sde_kms = sde_encoder_get_kms(drm_enc);
if (!sde_kms) {
SDE_ERROR("invalid sde_kms\n");
return -EINVAL;
}
snprintf(name, SDE_NAME_SIZE, "encoder%u", drm_enc->base.id);
/* create overall sub-directory for the encoder */
sde_enc->debugfs_root = debugfs_create_dir(name,
drm_enc->dev->primary->debugfs_root);
if (!sde_enc->debugfs_root)
return -ENOMEM;
/* don't error check these */
debugfs_create_file("status", 0400,
sde_enc->debugfs_root, sde_enc, &debugfs_status_fops);
debugfs_create_file("misr_data", 0600,
sde_enc->debugfs_root, sde_enc, &debugfs_misr_fops);
debugfs_create_bool("idle_power_collapse", 0600, sde_enc->debugfs_root,
&sde_enc->idle_pc_enabled);
debugfs_create_u32("frame_trigger_mode", 0400, sde_enc->debugfs_root,
&sde_enc->frame_trigger_mode);
for (i = 0; i < sde_enc->num_phys_encs; i++)
if (sde_enc->phys_encs[i] &&
sde_enc->phys_encs[i]->ops.late_register)
sde_enc->phys_encs[i]->ops.late_register(
sde_enc->phys_encs[i],
sde_enc->debugfs_root);
return 0;
}
static void _sde_encoder_destroy_debugfs(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
if (!drm_enc)
return;
sde_enc = to_sde_encoder_virt(drm_enc);
debugfs_remove_recursive(sde_enc->debugfs_root);
}
#else
static int _sde_encoder_init_debugfs(struct drm_encoder *drm_enc)
{
return 0;
}
static void _sde_encoder_destroy_debugfs(struct drm_encoder *drm_enc)
{
}
#endif
static int sde_encoder_late_register(struct drm_encoder *encoder)
{
return _sde_encoder_init_debugfs(encoder);
}
static void sde_encoder_early_unregister(struct drm_encoder *encoder)
{
_sde_encoder_destroy_debugfs(encoder);
}
static int sde_encoder_virt_add_phys_encs(
struct msm_display_info *disp_info,
struct sde_encoder_virt *sde_enc,
struct sde_enc_phys_init_params *params)
{
struct sde_encoder_phys *enc = NULL;
u32 display_caps = disp_info->capabilities;
SDE_DEBUG_ENC(sde_enc, "\n");
/*
* We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
* in this function, check up-front.
*/
if (sde_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
ARRAY_SIZE(sde_enc->phys_encs)) {
SDE_ERROR_ENC(sde_enc, "too many physical encoders %d\n",
sde_enc->num_phys_encs);
return -EINVAL;
}
if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
enc = sde_encoder_phys_vid_init(params);
if (IS_ERR_OR_NULL(enc)) {
SDE_ERROR_ENC(sde_enc, "failed to init vid enc: %ld\n",
PTR_ERR(enc));
return !enc ? -EINVAL : PTR_ERR(enc);
}
sde_enc->phys_vid_encs[sde_enc->num_phys_encs] = enc;
}
if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
enc = sde_encoder_phys_cmd_init(params);
if (IS_ERR_OR_NULL(enc)) {
SDE_ERROR_ENC(sde_enc, "failed to init cmd enc: %ld\n",
PTR_ERR(enc));
return !enc ? -EINVAL : PTR_ERR(enc);
}
sde_enc->phys_cmd_encs[sde_enc->num_phys_encs] = enc;
}
if (disp_info->curr_panel_mode == MSM_DISPLAY_VIDEO_MODE)
sde_enc->phys_encs[sde_enc->num_phys_encs] =
sde_enc->phys_vid_encs[sde_enc->num_phys_encs];
else
sde_enc->phys_encs[sde_enc->num_phys_encs] =
sde_enc->phys_cmd_encs[sde_enc->num_phys_encs];
++sde_enc->num_phys_encs;
return 0;
}
static int sde_encoder_virt_add_phys_enc_wb(struct sde_encoder_virt *sde_enc,
struct sde_enc_phys_init_params *params)
{
struct sde_encoder_phys *enc = NULL;
if (!sde_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
SDE_DEBUG_ENC(sde_enc, "\n");
if (sde_enc->num_phys_encs + 1 >= ARRAY_SIZE(sde_enc->phys_encs)) {
SDE_ERROR_ENC(sde_enc, "too many physical encoders %d\n",
sde_enc->num_phys_encs);
return -EINVAL;
}
enc = sde_encoder_phys_wb_init(params);
if (IS_ERR_OR_NULL(enc)) {
SDE_ERROR_ENC(sde_enc, "failed to init wb enc: %ld\n",
PTR_ERR(enc));
return !enc ? -EINVAL : PTR_ERR(enc);
}
sde_enc->phys_encs[sde_enc->num_phys_encs] = enc;
++sde_enc->num_phys_encs;
return 0;
}
static int sde_encoder_setup_display(struct sde_encoder_virt *sde_enc,
struct sde_kms *sde_kms,
struct msm_display_info *disp_info,
int *drm_enc_mode)
{
int ret = 0;
int i = 0;
enum sde_intf_type intf_type;
struct sde_encoder_virt_ops parent_ops = {
sde_encoder_vblank_callback,
sde_encoder_underrun_callback,
sde_encoder_frame_done_callback,
sde_encoder_get_qsync_fps_callback,
};
struct sde_enc_phys_init_params phys_params;
if (!sde_enc || !sde_kms) {
SDE_ERROR("invalid arg(s), enc %d kms %d\n",
!sde_enc, !sde_kms);
return -EINVAL;
}
memset(&phys_params, 0, sizeof(phys_params));
phys_params.sde_kms = sde_kms;
phys_params.parent = &sde_enc->base;
phys_params.parent_ops = parent_ops;
phys_params.enc_spinlock = &sde_enc->enc_spinlock;
phys_params.vblank_ctl_lock = &sde_enc->vblank_ctl_lock;
SDE_DEBUG("\n");
if (disp_info->intf_type == DRM_MODE_CONNECTOR_DSI) {
*drm_enc_mode = DRM_MODE_ENCODER_DSI;
intf_type = INTF_DSI;
} else if (disp_info->intf_type == DRM_MODE_CONNECTOR_eDP) {
*drm_enc_mode = DRM_MODE_ENCODER_TMDS;
intf_type = INTF_DP;
} else if (disp_info->intf_type == DRM_MODE_CONNECTOR_HDMIA) {
*drm_enc_mode = DRM_MODE_ENCODER_TMDS;
intf_type = INTF_HDMI;
} else if (disp_info->intf_type == DRM_MODE_CONNECTOR_DisplayPort) {
if (disp_info->capabilities & MSM_DISPLAY_CAP_MST_MODE)
*drm_enc_mode = DRM_MODE_ENCODER_DPMST;
else
*drm_enc_mode = DRM_MODE_ENCODER_TMDS;
intf_type = INTF_DP;
} else if (disp_info->intf_type == DRM_MODE_CONNECTOR_VIRTUAL) {
*drm_enc_mode = DRM_MODE_ENCODER_VIRTUAL;
intf_type = INTF_WB;
} else {
SDE_ERROR_ENC(sde_enc, "unsupported display interface type\n");
return -EINVAL;
}
WARN_ON(disp_info->num_of_h_tiles < 1);
sde_enc->display_num_of_h_tiles = disp_info->num_of_h_tiles;
sde_enc->te_source = disp_info->te_source;
SDE_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
(disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
sde_enc->idle_pc_enabled = sde_kms->catalog->has_idle_pc;
sde_enc->input_event_enabled = sde_kms->catalog->wakeup_with_touch;
mutex_lock(&sde_enc->enc_lock);
for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
/*
* Left-most tile is at index 0, content is controller id
* h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
* h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
*/
u32 controller_id = disp_info->h_tile_instance[i];
if (disp_info->num_of_h_tiles > 1) {
if (i == 0)
phys_params.split_role = ENC_ROLE_MASTER;
else
phys_params.split_role = ENC_ROLE_SLAVE;
} else {
phys_params.split_role = ENC_ROLE_SOLO;
}
SDE_DEBUG("h_tile_instance %d = %d, split_role %d\n",
i, controller_id, phys_params.split_role);
if (sde_enc->ops.phys_init) {
struct sde_encoder_phys *enc;
enc = sde_enc->ops.phys_init(intf_type,
controller_id,
&phys_params);
if (enc) {
sde_enc->phys_encs[sde_enc->num_phys_encs] =
enc;
++sde_enc->num_phys_encs;
} else
SDE_ERROR_ENC(sde_enc,
"failed to add phys encs\n");
continue;
}
if (intf_type == INTF_WB) {
phys_params.intf_idx = INTF_MAX;
phys_params.wb_idx = sde_encoder_get_wb(
sde_kms->catalog,
intf_type, controller_id);
if (phys_params.wb_idx == WB_MAX) {
SDE_ERROR_ENC(sde_enc,
"could not get wb: type %d, id %d\n",
intf_type, controller_id);
ret = -EINVAL;
}
} else {
phys_params.wb_idx = WB_MAX;
phys_params.intf_idx = sde_encoder_get_intf(
sde_kms->catalog, intf_type,
controller_id);
if (phys_params.intf_idx == INTF_MAX) {
SDE_ERROR_ENC(sde_enc,
"could not get wb: type %d, id %d\n",
intf_type, controller_id);
ret = -EINVAL;
}
}
if (!ret) {
if (intf_type == INTF_WB)
ret = sde_encoder_virt_add_phys_enc_wb(sde_enc,
&phys_params);
else
ret = sde_encoder_virt_add_phys_encs(
disp_info,
sde_enc,
&phys_params);
if (ret)
SDE_ERROR_ENC(sde_enc,
"failed to add phys encs\n");
}
}
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *vid_phys = sde_enc->phys_vid_encs[i];
struct sde_encoder_phys *cmd_phys = sde_enc->phys_cmd_encs[i];
if (vid_phys) {
atomic_set(&vid_phys->vsync_cnt, 0);
atomic_set(&vid_phys->underrun_cnt, 0);
}
if (cmd_phys) {
atomic_set(&cmd_phys->vsync_cnt, 0);
atomic_set(&cmd_phys->underrun_cnt, 0);
}
}
mutex_unlock(&sde_enc->enc_lock);
return ret;
}
static const struct drm_encoder_helper_funcs sde_encoder_helper_funcs = {
.mode_set = sde_encoder_virt_mode_set,
.disable = sde_encoder_virt_disable,
.enable = sde_encoder_virt_enable,
.atomic_check = sde_encoder_virt_atomic_check,
};
static const struct drm_encoder_funcs sde_encoder_funcs = {
.destroy = sde_encoder_destroy,
.late_register = sde_encoder_late_register,
.early_unregister = sde_encoder_early_unregister,
};
struct drm_encoder *sde_encoder_init_with_ops(
struct drm_device *dev,
struct msm_display_info *disp_info,
const struct sde_encoder_ops *ops)
{
struct msm_drm_private *priv = dev->dev_private;
struct sde_kms *sde_kms = to_sde_kms(priv->kms);
struct drm_encoder *drm_enc = NULL;
struct sde_encoder_virt *sde_enc = NULL;
int drm_enc_mode = DRM_MODE_ENCODER_NONE;
char name[SDE_NAME_SIZE];
int ret = 0, i, intf_index = INTF_MAX;
struct sde_encoder_phys *phys = NULL;
sde_enc = kzalloc(sizeof(*sde_enc), GFP_KERNEL);
if (!sde_enc) {
ret = -ENOMEM;
goto fail;
}
if (ops)
sde_enc->ops = *ops;
mutex_init(&sde_enc->enc_lock);
ret = sde_encoder_setup_display(sde_enc, sde_kms, disp_info,
&drm_enc_mode);
if (ret)
goto fail;
sde_enc->cur_master = NULL;
spin_lock_init(&sde_enc->enc_spinlock);
mutex_init(&sde_enc->vblank_ctl_lock);
for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
atomic_set(&sde_enc->frame_done_cnt[i], 0);
drm_enc = &sde_enc->base;
drm_encoder_init(dev, drm_enc, &sde_encoder_funcs, drm_enc_mode, NULL);
drm_encoder_helper_add(drm_enc, &sde_encoder_helper_funcs);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys = sde_enc->phys_encs[i];
if (!phys)
continue;
if (phys->ops.is_master && phys->ops.is_master(phys))
intf_index = phys->intf_idx - INTF_0;
}
snprintf(name, SDE_NAME_SIZE, "rsc_enc%u", drm_enc->base.id);
sde_enc->rsc_client = sde_rsc_client_create(SDE_RSC_INDEX, name,
(disp_info->display_type == SDE_CONNECTOR_PRIMARY) ?
SDE_RSC_PRIMARY_DISP_CLIENT :
SDE_RSC_EXTERNAL_DISP_CLIENT, intf_index + 1);
if (IS_ERR_OR_NULL(sde_enc->rsc_client)) {
SDE_DEBUG("sde rsc client create failed :%ld\n",
PTR_ERR(sde_enc->rsc_client));
sde_enc->rsc_client = NULL;
}
if (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE &&
sde_enc->input_event_enabled) {
ret = _sde_encoder_input_handler(sde_enc);
if (ret)
SDE_ERROR(
"input handler registration failed, rc = %d\n", ret);
}
mutex_init(&sde_enc->rc_lock);
kthread_init_delayed_work(&sde_enc->delayed_off_work,
sde_encoder_off_work);
sde_enc->vblank_enabled = false;
sde_enc->qdss_status = false;
kthread_init_work(&sde_enc->input_event_work,
sde_encoder_input_event_work_handler);
kthread_init_work(&sde_enc->early_wakeup_work,
sde_encoder_early_wakeup_work_handler);
kthread_init_work(&sde_enc->esd_trigger_work,
sde_encoder_esd_trigger_work_handler);
memcpy(&sde_enc->disp_info, disp_info, sizeof(*disp_info));
SDE_DEBUG_ENC(sde_enc, "created\n");
return drm_enc;
fail:
SDE_ERROR("failed to create encoder\n");
if (drm_enc)
sde_encoder_destroy(drm_enc);
return ERR_PTR(ret);
}
struct drm_encoder *sde_encoder_init(
struct drm_device *dev,
struct msm_display_info *disp_info)
{
return sde_encoder_init_with_ops(dev, disp_info, NULL);
}
int sde_encoder_wait_for_event(struct drm_encoder *drm_enc,
enum msm_event_wait event)
{
int (*fn_wait)(struct sde_encoder_phys *phys_enc) = NULL;
struct sde_encoder_virt *sde_enc = NULL;
int i, ret = 0;
char atrace_buf[32];
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(drm_enc);
SDE_DEBUG_ENC(sde_enc, "\n");
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
switch (event) {
case MSM_ENC_COMMIT_DONE:
fn_wait = phys->ops.wait_for_commit_done;
break;
case MSM_ENC_TX_COMPLETE:
fn_wait = phys->ops.wait_for_tx_complete;
break;
case MSM_ENC_VBLANK:
fn_wait = phys->ops.wait_for_vblank;
break;
case MSM_ENC_ACTIVE_REGION:
fn_wait = phys->ops.wait_for_active;
break;
default:
SDE_ERROR_ENC(sde_enc, "unknown wait event %d\n",
event);
return -EINVAL;
}
if (phys && fn_wait) {
snprintf(atrace_buf, sizeof(atrace_buf),
"wait_completion_event_%d", event);
SDE_ATRACE_BEGIN(atrace_buf);
ret = fn_wait(phys);
SDE_ATRACE_END(atrace_buf);
if (ret)
return ret;
}
}
return ret;
}
void sde_encoder_helper_get_jitter_bounds_ns(struct drm_encoder *drm_enc,
u64 *l_bound, u64 *u_bound)
{
struct sde_encoder_virt *sde_enc;
u64 jitter_ns, frametime_ns;
struct msm_mode_info *info;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
sde_enc = to_sde_encoder_virt(drm_enc);
info = &sde_enc->mode_info;
frametime_ns = (1 * 1000000000) / info->frame_rate;
jitter_ns = info->jitter_numer * frametime_ns;
do_div(jitter_ns, info->jitter_denom * 100);
*l_bound = frametime_ns - jitter_ns;
*u_bound = frametime_ns + jitter_ns;
}
u32 sde_encoder_get_fps(struct drm_encoder *drm_enc)
{
struct sde_encoder_virt *sde_enc;
if (!drm_enc) {
SDE_ERROR("invalid encoder\n");
return 0;
}
sde_enc = to_sde_encoder_virt(drm_enc);
return sde_enc->mode_info.frame_rate;
}
enum sde_intf_mode sde_encoder_get_intf_mode(struct drm_encoder *encoder)
{
struct sde_encoder_virt *sde_enc = NULL;
int i;
if (!encoder) {
SDE_ERROR("invalid encoder\n");
return INTF_MODE_NONE;
}
sde_enc = to_sde_encoder_virt(encoder);
if (sde_enc->cur_master)
return sde_enc->cur_master->intf_mode;
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (phys)
return phys->intf_mode;
}
return INTF_MODE_NONE;
}
static void _sde_encoder_cache_hw_res_cont_splash(
struct drm_encoder *encoder,
struct sde_kms *sde_kms)
{
int i, idx;
struct sde_encoder_virt *sde_enc;
struct sde_encoder_phys *phys_enc;
struct sde_rm_hw_iter dsc_iter, pp_iter, ctl_iter, intf_iter;
sde_enc = to_sde_encoder_virt(encoder);
sde_rm_init_hw_iter(&pp_iter, encoder->base.id, SDE_HW_BLK_PINGPONG);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
sde_enc->hw_pp[i] = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &pp_iter))
break;
sde_enc->hw_pp[i] = (struct sde_hw_pingpong *) pp_iter.hw;
}
sde_rm_init_hw_iter(&dsc_iter, encoder->base.id, SDE_HW_BLK_DSC);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
sde_enc->hw_dsc[i] = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &dsc_iter))
break;
sde_enc->hw_dsc[i] = (struct sde_hw_dsc *) dsc_iter.hw;
}
/*
* If we have multiple phys encoders with one controller, make
* sure to populate the controller pointer in both phys encoders.
*/
for (idx = 0; idx < sde_enc->num_phys_encs; idx++) {
phys_enc = sde_enc->phys_encs[idx];
phys_enc->hw_ctl = NULL;
sde_rm_init_hw_iter(&ctl_iter, encoder->base.id,
SDE_HW_BLK_CTL);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
if (sde_rm_get_hw(&sde_kms->rm, &ctl_iter)) {
phys_enc->hw_ctl =
(struct sde_hw_ctl *) ctl_iter.hw;
pr_debug("HW CTL intf_idx:%d hw_ctl:[0x%pK]\n",
phys_enc->intf_idx, phys_enc->hw_ctl);
}
}
}
sde_rm_init_hw_iter(&intf_iter, encoder->base.id, SDE_HW_BLK_INTF);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
phys->hw_intf = NULL;
if (!sde_rm_get_hw(&sde_kms->rm, &intf_iter))
break;
phys->hw_intf = (struct sde_hw_intf *) intf_iter.hw;
}
}
/**
* sde_encoder_update_caps_for_cont_splash - update encoder settings during
* device bootup when cont_splash is enabled
* @drm_enc: Pointer to drm encoder structure
* @splash_display: Pointer to sde_splash_display corresponding to this encoder
* @enable: boolean indicates enable or displae state of splash
* @Return: true if successful in updating the encoder structure
*/
int sde_encoder_update_caps_for_cont_splash(struct drm_encoder *encoder,
struct sde_splash_display *splash_display, bool enable)
{
struct sde_encoder_virt *sde_enc;
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct drm_connector *conn = NULL;
struct sde_connector *sde_conn = NULL;
struct sde_connector_state *sde_conn_state = NULL;
struct drm_display_mode *drm_mode = NULL;
struct sde_encoder_phys *phys_enc;
int ret = 0, i;
if (!encoder) {
SDE_ERROR("invalid drm enc\n");
return -EINVAL;
}
sde_enc = to_sde_encoder_virt(encoder);
sde_kms = sde_encoder_get_kms(&sde_enc->base);
if (!sde_kms) {
SDE_ERROR("invalid sde_kms\n");
return -EINVAL;
}
priv = encoder->dev->dev_private;
if (!priv->num_connectors) {
SDE_ERROR_ENC(sde_enc, "No connectors registered\n");
return -EINVAL;
}
SDE_DEBUG_ENC(sde_enc,
"num of connectors: %d\n", priv->num_connectors);
SDE_DEBUG_ENC(sde_enc, "enable: %d\n", enable);
if (!enable) {
for (i = 0; i < sde_enc->num_phys_encs; i++) {
phys_enc = sde_enc->phys_encs[i];
if (phys_enc)
phys_enc->cont_splash_enabled = false;
}
return ret;
}
if (!splash_display) {
SDE_ERROR_ENC(sde_enc, "invalid splash data\n");
return -EINVAL;
}
for (i = 0; i < priv->num_connectors; i++) {
SDE_DEBUG_ENC(sde_enc, "connector id: %d\n",
priv->connectors[i]->base.id);
sde_conn = to_sde_connector(priv->connectors[i]);
if (!sde_conn->encoder) {
SDE_DEBUG_ENC(sde_enc,
"encoder not attached to connector\n");
continue;
}
if (sde_conn->encoder->base.id
== encoder->base.id) {
conn = (priv->connectors[i]);
break;
}
}
if (!conn || !conn->state) {
SDE_ERROR_ENC(sde_enc, "connector not found\n");
return -EINVAL;
}
sde_conn_state = to_sde_connector_state(conn->state);
if (!sde_conn->ops.get_mode_info) {
SDE_ERROR_ENC(sde_enc, "conn: get_mode_info ops not found\n");
return -EINVAL;
}
ret = sde_connector_get_mode_info(&sde_conn->base,
&encoder->crtc->state->adjusted_mode,
&sde_conn_state->mode_info);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"conn: ->get_mode_info failed. ret=%d\n", ret);
return ret;
}
if (sde_conn->encoder) {
conn->state->best_encoder = sde_conn->encoder;
SDE_DEBUG_ENC(sde_enc,
"configured cstate->best_encoder to ID = %d\n",
conn->state->best_encoder->base.id);
} else {
SDE_ERROR_ENC(sde_enc, "No encoder mapped to connector=%d\n",
conn->base.id);
}
ret = sde_rm_reserve(&sde_kms->rm, encoder, encoder->crtc->state,
conn->state, false);
if (ret) {
SDE_ERROR_ENC(sde_enc,
"failed to reserve hw resources, %d\n", ret);
return ret;
}
SDE_DEBUG_ENC(sde_enc, "connector topology = %llu\n",
sde_connector_get_topology_name(conn));
drm_mode = &encoder->crtc->state->adjusted_mode;
SDE_DEBUG_ENC(sde_enc, "hdisplay = %d, vdisplay = %d\n",
drm_mode->hdisplay, drm_mode->vdisplay);
drm_set_preferred_mode(conn, drm_mode->hdisplay, drm_mode->vdisplay);
if (encoder->bridge) {
SDE_DEBUG_ENC(sde_enc, "Bridge mapped to encoder\n");
/*
* For cont-splash use case, we update the mode
* configurations manually. This will skip the
* usually mode set call when actual frame is
* pushed from framework. The bridge needs to
* be updated with the current drm mode by
* calling the bridge mode set ops.
*/
if (encoder->bridge->funcs) {
SDE_DEBUG_ENC(sde_enc, "calling mode_set\n");
encoder->bridge->funcs->mode_set(encoder->bridge,
drm_mode, drm_mode);
}
} else {
SDE_ERROR_ENC(sde_enc, "No bridge attached to encoder\n");
}
_sde_encoder_cache_hw_res_cont_splash(encoder, sde_kms);
for (i = 0; i < sde_enc->num_phys_encs; i++) {
struct sde_encoder_phys *phys = sde_enc->phys_encs[i];
if (!phys) {
SDE_ERROR_ENC(sde_enc,
"phys encoders not initialized\n");
return -EINVAL;
}
/* update connector for master and slave phys encoders */
phys->connector = conn;
phys->cont_splash_enabled = true;
phys->hw_pp = sde_enc->hw_pp[i];
if (phys->ops.cont_splash_mode_set)
phys->ops.cont_splash_mode_set(phys, drm_mode);
if (phys->ops.is_master && phys->ops.is_master(phys))
sde_enc->cur_master = phys;
}
return ret;
}
int sde_encoder_display_failure_notification(struct drm_encoder *enc,
bool skip_pre_kickoff)
{
struct msm_drm_thread *event_thread = NULL;
struct msm_drm_private *priv = NULL;
struct sde_encoder_virt *sde_enc = NULL;
if (!enc || !enc->dev || !enc->dev->dev_private) {
SDE_ERROR("invalid parameters\n");
return -EINVAL;
}
priv = enc->dev->dev_private;
sde_enc = to_sde_encoder_virt(enc);
if (!sde_enc->crtc || (sde_enc->crtc->index
>= ARRAY_SIZE(priv->event_thread))) {
SDE_DEBUG_ENC(sde_enc,
"invalid cached CRTC: %d or crtc index: %d\n",
sde_enc->crtc == NULL,
sde_enc->crtc ? sde_enc->crtc->index : -EINVAL);
return -EINVAL;
}
SDE_EVT32_VERBOSE(DRMID(enc));
event_thread = &priv->event_thread[sde_enc->crtc->index];
if (!skip_pre_kickoff) {
sde_enc->delay_kickoff = true;
kthread_queue_work(&event_thread->worker,
&sde_enc->esd_trigger_work);
kthread_flush_work(&sde_enc->esd_trigger_work);
}
/*
* panel may stop generating te signal (vsync) during esd failure. rsc
* hardware may hang without vsync. Avoid rsc hang by generating the
* vsync from watchdog timer instead of panel.
*/
sde_encoder_helper_switch_vsync(enc, true);
if (!skip_pre_kickoff) {
sde_encoder_wait_for_event(enc, MSM_ENC_TX_COMPLETE);
sde_enc->delay_kickoff = false;
}
return 0;
}
bool sde_encoder_recovery_events_enabled(struct drm_encoder *encoder)
{
struct sde_encoder_virt *sde_enc;
if (!encoder) {
SDE_ERROR("invalid drm enc\n");
return false;
}
sde_enc = to_sde_encoder_virt(encoder);
return sde_enc->recovery_events_enabled;
}
void sde_encoder_enable_recovery_event(struct drm_encoder *encoder)
{
struct sde_encoder_virt *sde_enc;
if (!encoder) {
SDE_ERROR("invalid drm enc\n");
return;
}
sde_enc = to_sde_encoder_virt(encoder);
sde_enc->recovery_events_enabled = true;
}