android_kernel_xiaomi_sm8350/arch/xtensa/mm/init.c
Jörn Engel 6ab3d5624e Remove obsolete #include <linux/config.h>
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-06-30 19:25:36 +02:00

551 lines
14 KiB
C

/*
* arch/xtensa/mm/init.c
*
* Derived from MIPS, PPC.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2001 - 2005 Tensilica Inc.
*
* Chris Zankel <chris@zankel.net>
* Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
* Marc Gauthier
* Kevin Chea
*/
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/bootmem.h>
#include <linux/swap.h>
#include <asm/pgtable.h>
#include <asm/bootparam.h>
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#define DEBUG 0
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
//static DEFINE_SPINLOCK(tlb_lock);
/*
* This flag is used to indicate that the page was mapped and modified in
* kernel space, so the cache is probably dirty at that address.
* If cache aliasing is enabled and the page color mismatches, update_mmu_cache
* synchronizes the caches if this bit is set.
*/
#define PG_cache_clean PG_arch_1
/* References to section boundaries */
extern char _ftext, _etext, _fdata, _edata, _rodata_end;
extern char __init_begin, __init_end;
/*
* mem_reserve(start, end, must_exist)
*
* Reserve some memory from the memory pool.
*
* Parameters:
* start Start of region,
* end End of region,
* must_exist Must exist in memory pool.
*
* Returns:
* 0 (memory area couldn't be mapped)
* -1 (success)
*/
int __init mem_reserve(unsigned long start, unsigned long end, int must_exist)
{
int i;
if (start == end)
return 0;
start = start & PAGE_MASK;
end = PAGE_ALIGN(end);
for (i = 0; i < sysmem.nr_banks; i++)
if (start < sysmem.bank[i].end
&& end >= sysmem.bank[i].start)
break;
if (i == sysmem.nr_banks) {
if (must_exist)
printk (KERN_WARNING "mem_reserve: [0x%0lx, 0x%0lx) "
"not in any region!\n", start, end);
return 0;
}
if (start > sysmem.bank[i].start) {
if (end < sysmem.bank[i].end) {
/* split entry */
if (sysmem.nr_banks >= SYSMEM_BANKS_MAX)
panic("meminfo overflow\n");
sysmem.bank[sysmem.nr_banks].start = end;
sysmem.bank[sysmem.nr_banks].end = sysmem.bank[i].end;
sysmem.nr_banks++;
}
sysmem.bank[i].end = start;
} else {
if (end < sysmem.bank[i].end)
sysmem.bank[i].start = end;
else {
/* remove entry */
sysmem.nr_banks--;
sysmem.bank[i].start = sysmem.bank[sysmem.nr_banks].start;
sysmem.bank[i].end = sysmem.bank[sysmem.nr_banks].end;
}
}
return -1;
}
/*
* Initialize the bootmem system and give it all the memory we have available.
*/
void __init bootmem_init(void)
{
unsigned long pfn;
unsigned long bootmap_start, bootmap_size;
int i;
max_low_pfn = max_pfn = 0;
min_low_pfn = ~0;
for (i=0; i < sysmem.nr_banks; i++) {
pfn = PAGE_ALIGN(sysmem.bank[i].start) >> PAGE_SHIFT;
if (pfn < min_low_pfn)
min_low_pfn = pfn;
pfn = PAGE_ALIGN(sysmem.bank[i].end - 1) >> PAGE_SHIFT;
if (pfn > max_pfn)
max_pfn = pfn;
}
if (min_low_pfn > max_pfn)
panic("No memory found!\n");
max_low_pfn = max_pfn < MAX_LOW_MEMORY >> PAGE_SHIFT ?
max_pfn : MAX_LOW_MEMORY >> PAGE_SHIFT;
/* Find an area to use for the bootmem bitmap. */
bootmap_size = bootmem_bootmap_pages(max_low_pfn) << PAGE_SHIFT;
bootmap_start = ~0;
for (i=0; i<sysmem.nr_banks; i++)
if (sysmem.bank[i].end - sysmem.bank[i].start >= bootmap_size) {
bootmap_start = sysmem.bank[i].start;
break;
}
if (bootmap_start == ~0UL)
panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
/* Reserve the bootmem bitmap area */
mem_reserve(bootmap_start, bootmap_start + bootmap_size, 1);
bootmap_size = init_bootmem_node(NODE_DATA(0), min_low_pfn,
bootmap_start >> PAGE_SHIFT,
max_low_pfn);
/* Add all remaining memory pieces into the bootmem map */
for (i=0; i<sysmem.nr_banks; i++)
free_bootmem(sysmem.bank[i].start,
sysmem.bank[i].end - sysmem.bank[i].start);
}
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES];
int i;
/* All pages are DMA-able, so we put them all in the DMA zone. */
zones_size[ZONE_DMA] = max_low_pfn;
for (i = 1; i < MAX_NR_ZONES; i++)
zones_size[i] = 0;
#ifdef CONFIG_HIGHMEM
zones_size[ZONE_HIGHMEM] = max_pfn - max_low_pfn;
#endif
/* Initialize the kernel's page tables. */
memset(swapper_pg_dir, 0, PAGE_SIZE);
free_area_init(zones_size);
}
/*
* Flush the mmu and reset associated register to default values.
*/
void __init init_mmu (void)
{
/* Writing zeros to the <t>TLBCFG special registers ensure
* that valid values exist in the register. For existing
* PGSZID<w> fields, zero selects the first element of the
* page-size array. For nonexistant PGSZID<w> fields, zero is
* the best value to write. Also, when changing PGSZID<w>
* fields, the corresponding TLB must be flushed.
*/
set_itlbcfg_register (0);
set_dtlbcfg_register (0);
flush_tlb_all ();
/* Set rasid register to a known value. */
set_rasid_register (ASID_ALL_RESERVED);
/* Set PTEVADDR special register to the start of the page
* table, which is in kernel mappable space (ie. not
* statically mapped). This register's value is undefined on
* reset.
*/
set_ptevaddr_register (PGTABLE_START);
}
/*
* Initialize memory pages.
*/
void __init mem_init(void)
{
unsigned long codesize, reservedpages, datasize, initsize;
unsigned long highmemsize, tmp, ram;
max_mapnr = num_physpages = max_low_pfn;
high_memory = (void *) __va(max_mapnr << PAGE_SHIFT);
highmemsize = 0;
#ifdef CONFIG_HIGHMEM
#error HIGHGMEM not implemented in init.c
#endif
totalram_pages += free_all_bootmem();
reservedpages = ram = 0;
for (tmp = 0; tmp < max_low_pfn; tmp++) {
ram++;
if (PageReserved(mem_map+tmp))
reservedpages++;
}
codesize = (unsigned long) &_etext - (unsigned long) &_ftext;
datasize = (unsigned long) &_edata - (unsigned long) &_fdata;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, "
"%ldk data, %ldk init %ldk highmem)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
ram << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10,
highmemsize >> 10);
}
void
free_reserved_mem(void *start, void *end)
{
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
init_page_count(virt_to_page(start));
free_page((unsigned long)start);
totalram_pages++;
}
}
#ifdef CONFIG_BLK_DEV_INITRD
extern int initrd_is_mapped;
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (initrd_is_mapped) {
free_reserved_mem((void*)start, (void*)end);
printk ("Freeing initrd memory: %ldk freed\n",(end-start)>>10);
}
}
#endif
void free_initmem(void)
{
free_reserved_mem(&__init_begin, &__init_end);
printk("Freeing unused kernel memory: %dk freed\n",
(&__init_end - &__init_begin) >> 10);
}
void show_mem(void)
{
int i, free = 0, total = 0, reserved = 0;
int shared = 0, cached = 0;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
i = max_mapnr;
while (i-- > 0) {
total++;
if (PageReserved(mem_map+i))
reserved++;
else if (PageSwapCache(mem_map+i))
cached++;
else if (!page_count(mem_map + i))
free++;
else
shared += page_count(mem_map + i) - 1;
}
printk("%d pages of RAM\n", total);
printk("%d reserved pages\n", reserved);
printk("%d pages shared\n", shared);
printk("%d pages swap cached\n",cached);
printk("%d free pages\n", free);
}
/* ------------------------------------------------------------------------- */
#if (DCACHE_WAY_SIZE > PAGE_SIZE)
/*
* With cache aliasing, the page color of the page in kernel space and user
* space might mismatch. We temporarily map the page to a different virtual
* address with the same color and clear the page there.
*/
void clear_user_page(void *kaddr, unsigned long vaddr, struct page* page)
{
/* There shouldn't be any entries for this page. */
__flush_invalidate_dcache_page_phys(__pa(page_address(page)));
if (!PAGE_COLOR_EQ(vaddr, kaddr)) {
unsigned long v, p;
/* Temporarily map page to DTLB_WAY_DCACHE_ALIAS0. */
spin_lock(&tlb_lock);
p = (unsigned long)pte_val((mk_pte(page,PAGE_KERNEL)));
kaddr = (void*)PAGE_COLOR_MAP0(vaddr);
v = (unsigned long)kaddr | DTLB_WAY_DCACHE_ALIAS0;
__asm__ __volatile__("wdtlb %0,%1; dsync" : :"a" (p), "a" (v));
clear_page(kaddr);
spin_unlock(&tlb_lock);
} else {
clear_page(kaddr);
}
/* We need to make sure that i$ and d$ are coherent. */
clear_bit(PG_cache_clean, &page->flags);
}
/*
* With cache aliasing, we have to make sure that the page color of the page
* in kernel space matches that of the virtual user address before we read
* the page. If the page color differ, we create a temporary DTLB entry with
* the corrent page color and use this 'temporary' address as the source.
* We then use the same approach as in clear_user_page and copy the data
* to the kernel space and clear the PG_cache_clean bit to synchronize caches
* later.
*
* Note:
* Instead of using another 'way' for the temporary DTLB entry, we could
* probably use the same entry that points to the kernel address (after
* saving the original value and restoring it when we are done).
*/
void copy_user_page(void* to, void* from, unsigned long vaddr,
struct page* to_page)
{
/* There shouldn't be any entries for the new page. */
__flush_invalidate_dcache_page_phys(__pa(page_address(to_page)));
spin_lock(&tlb_lock);
if (!PAGE_COLOR_EQ(vaddr, from)) {
unsigned long v, p, t;
__asm__ __volatile__ ("pdtlb %1,%2; rdtlb1 %0,%1"
: "=a"(p), "=a"(t) : "a"(from));
from = (void*)PAGE_COLOR_MAP0(vaddr);
v = (unsigned long)from | DTLB_WAY_DCACHE_ALIAS0;
__asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v));
}
if (!PAGE_COLOR_EQ(vaddr, to)) {
unsigned long v, p;
p = (unsigned long)pte_val((mk_pte(to_page,PAGE_KERNEL)));
to = (void*)PAGE_COLOR_MAP1(vaddr);
v = (unsigned long)to | DTLB_WAY_DCACHE_ALIAS1;
__asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v));
}
copy_page(to, from);
spin_unlock(&tlb_lock);
/* We need to make sure that i$ and d$ are coherent. */
clear_bit(PG_cache_clean, &to_page->flags);
}
/*
* Any time the kernel writes to a user page cache page, or it is about to
* read from a page cache page this routine is called.
*
* Note:
* The kernel currently only provides one architecture bit in the page
* flags that we use for I$/D$ coherency. Maybe, in future, we can
* use a sepearte bit for deferred dcache aliasing:
* If the page is not mapped yet, we only need to set a flag,
* if mapped, we need to invalidate the page.
*/
// FIXME: we probably need this for WB caches not only for Page Coloring..
void flush_dcache_page(struct page *page)
{
unsigned long addr = __pa(page_address(page));
struct address_space *mapping = page_mapping(page);
__flush_invalidate_dcache_page_phys(addr);
if (!test_bit(PG_cache_clean, &page->flags))
return;
/* If this page hasn't been mapped, yet, handle I$/D$ coherency later.*/
#if 0
if (mapping && !mapping_mapped(mapping))
clear_bit(PG_cache_clean, &page->flags);
else
#endif
__invalidate_icache_page_phys(addr);
}
void flush_cache_range(struct vm_area_struct* vma, unsigned long s,
unsigned long e)
{
__flush_invalidate_cache_all();
}
void flush_cache_page(struct vm_area_struct* vma, unsigned long address,
unsigned long pfn)
{
struct page *page = pfn_to_page(pfn);
/* Remove any entry for the old mapping. */
if (current->active_mm == vma->vm_mm) {
unsigned long addr = __pa(page_address(page));
__flush_invalidate_dcache_page_phys(addr);
if ((vma->vm_flags & VM_EXEC) != 0)
__invalidate_icache_page_phys(addr);
} else {
BUG();
}
}
#endif /* (DCACHE_WAY_SIZE > PAGE_SIZE) */
pte_t* pte_alloc_one_kernel (struct mm_struct* mm, unsigned long addr)
{
pte_t* pte = (pte_t*)__get_free_pages(GFP_KERNEL|__GFP_REPEAT, 0);
if (likely(pte)) {
pte_t* ptep = (pte_t*)(pte_val(*pte) + PAGE_OFFSET);
int i;
for (i = 0; i < 1024; i++, ptep++)
pte_clear(mm, addr, ptep);
}
return pte;
}
struct page* pte_alloc_one(struct mm_struct *mm, unsigned long addr)
{
struct page *page;
page = alloc_pages(GFP_KERNEL | __GFP_REPEAT, 0);
if (likely(page)) {
pte_t* ptep = kmap_atomic(page, KM_USER0);
int i;
for (i = 0; i < 1024; i++, ptep++)
pte_clear(mm, addr, ptep);
kunmap_atomic(ptep, KM_USER0);
}
return page;
}
/*
* Handle D$/I$ coherency.
*
* Note:
* We only have one architecture bit for the page flags, so we cannot handle
* cache aliasing, yet.
*/
void
update_mmu_cache(struct vm_area_struct * vma, unsigned long addr, pte_t pte)
{
unsigned long pfn = pte_pfn(pte);
struct page *page;
unsigned long vaddr = addr & PAGE_MASK;
if (!pfn_valid(pfn))
return;
page = pfn_to_page(pfn);
invalidate_itlb_mapping(addr);
invalidate_dtlb_mapping(addr);
/* We have a new mapping. Use it. */
write_dtlb_entry(pte, dtlb_probe(addr));
/* If the processor can execute from this page, synchronize D$/I$. */
if ((vma->vm_flags & VM_EXEC) != 0) {
write_itlb_entry(pte, itlb_probe(addr));
/* Synchronize caches, if not clean. */
if (!test_and_set_bit(PG_cache_clean, &page->flags)) {
__flush_dcache_page(vaddr);
__invalidate_icache_page(vaddr);
}
}
}