690c8fd31f
Signed-off-by: David S. Miller <davem@davemloft.net>
627 lines
16 KiB
C
627 lines
16 KiB
C
/* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
|
|
* bbc_envctrl.c: UltraSPARC-III environment control driver.
|
|
*
|
|
* Copyright (C) 2001 David S. Miller (davem@redhat.com)
|
|
*/
|
|
|
|
#define __KERNEL_SYSCALLS__
|
|
static int errno;
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/ebus.h>
|
|
|
|
#include "bbc_i2c.h"
|
|
#include "max1617.h"
|
|
|
|
#undef ENVCTRL_TRACE
|
|
|
|
/* WARNING: Making changes to this driver is very dangerous.
|
|
* If you misprogram the sensor chips they can
|
|
* cut the power on you instantly.
|
|
*/
|
|
|
|
/* Two temperature sensors exist in the SunBLADE-1000 enclosure.
|
|
* Both are implemented using max1617 i2c devices. Each max1617
|
|
* monitors 2 temperatures, one for one of the cpu dies and the other
|
|
* for the ambient temperature.
|
|
*
|
|
* The max1617 is capable of being programmed with power-off
|
|
* temperature values, one low limit and one high limit. These
|
|
* can be controlled independently for the cpu or ambient temperature.
|
|
* If a limit is violated, the power is simply shut off. The frequency
|
|
* with which the max1617 does temperature sampling can be controlled
|
|
* as well.
|
|
*
|
|
* Three fans exist inside the machine, all three are controlled with
|
|
* an i2c digital to analog converter. There is a fan directed at the
|
|
* two processor slots, another for the rest of the enclosure, and the
|
|
* third is for the power supply. The first two fans may be speed
|
|
* controlled by changing the voltage fed to them. The third fan may
|
|
* only be completely off or on. The third fan is meant to only be
|
|
* disabled/enabled when entering/exiting the lowest power-saving
|
|
* mode of the machine.
|
|
*
|
|
* An environmental control kernel thread periodically monitors all
|
|
* temperature sensors. Based upon the samples it will adjust the
|
|
* fan speeds to try and keep the system within a certain temperature
|
|
* range (the goal being to make the fans as quiet as possible without
|
|
* allowing the system to get too hot).
|
|
*
|
|
* If the temperature begins to rise/fall outside of the acceptable
|
|
* operating range, a periodic warning will be sent to the kernel log.
|
|
* The fans will be put on full blast to attempt to deal with this
|
|
* situation. After exceeding the acceptable operating range by a
|
|
* certain threshold, the kernel thread will shut down the system.
|
|
* Here, the thread is attempting to shut the machine down cleanly
|
|
* before the hardware based power-off event is triggered.
|
|
*/
|
|
|
|
/* These settings are in Celsius. We use these defaults only
|
|
* if we cannot interrogate the cpu-fru SEEPROM.
|
|
*/
|
|
struct temp_limits {
|
|
s8 high_pwroff, high_shutdown, high_warn;
|
|
s8 low_warn, low_shutdown, low_pwroff;
|
|
};
|
|
|
|
static struct temp_limits cpu_temp_limits[2] = {
|
|
{ 100, 85, 80, 5, -5, -10 },
|
|
{ 100, 85, 80, 5, -5, -10 },
|
|
};
|
|
|
|
static struct temp_limits amb_temp_limits[2] = {
|
|
{ 65, 55, 40, 5, -5, -10 },
|
|
{ 65, 55, 40, 5, -5, -10 },
|
|
};
|
|
|
|
enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
|
|
|
|
struct bbc_cpu_temperature {
|
|
struct bbc_cpu_temperature *next;
|
|
|
|
struct bbc_i2c_client *client;
|
|
int index;
|
|
|
|
/* Current readings, and history. */
|
|
s8 curr_cpu_temp;
|
|
s8 curr_amb_temp;
|
|
s8 prev_cpu_temp;
|
|
s8 prev_amb_temp;
|
|
s8 avg_cpu_temp;
|
|
s8 avg_amb_temp;
|
|
|
|
int sample_tick;
|
|
|
|
enum fan_action fan_todo[2];
|
|
#define FAN_AMBIENT 0
|
|
#define FAN_CPU 1
|
|
};
|
|
|
|
struct bbc_cpu_temperature *all_bbc_temps;
|
|
|
|
struct bbc_fan_control {
|
|
struct bbc_fan_control *next;
|
|
|
|
struct bbc_i2c_client *client;
|
|
int index;
|
|
|
|
int psupply_fan_on;
|
|
int cpu_fan_speed;
|
|
int system_fan_speed;
|
|
};
|
|
|
|
struct bbc_fan_control *all_bbc_fans;
|
|
|
|
#define CPU_FAN_REG 0xf0
|
|
#define SYS_FAN_REG 0xf2
|
|
#define PSUPPLY_FAN_REG 0xf4
|
|
|
|
#define FAN_SPEED_MIN 0x0c
|
|
#define FAN_SPEED_MAX 0x3f
|
|
|
|
#define PSUPPLY_FAN_ON 0x1f
|
|
#define PSUPPLY_FAN_OFF 0x00
|
|
|
|
static void set_fan_speeds(struct bbc_fan_control *fp)
|
|
{
|
|
/* Put temperatures into range so we don't mis-program
|
|
* the hardware.
|
|
*/
|
|
if (fp->cpu_fan_speed < FAN_SPEED_MIN)
|
|
fp->cpu_fan_speed = FAN_SPEED_MIN;
|
|
if (fp->cpu_fan_speed > FAN_SPEED_MAX)
|
|
fp->cpu_fan_speed = FAN_SPEED_MAX;
|
|
if (fp->system_fan_speed < FAN_SPEED_MIN)
|
|
fp->system_fan_speed = FAN_SPEED_MIN;
|
|
if (fp->system_fan_speed > FAN_SPEED_MAX)
|
|
fp->system_fan_speed = FAN_SPEED_MAX;
|
|
#ifdef ENVCTRL_TRACE
|
|
printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
|
|
fp->index,
|
|
fp->cpu_fan_speed, fp->system_fan_speed);
|
|
#endif
|
|
|
|
bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
|
|
bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
|
|
bbc_i2c_writeb(fp->client,
|
|
(fp->psupply_fan_on ?
|
|
PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
|
|
PSUPPLY_FAN_REG);
|
|
}
|
|
|
|
static void get_current_temps(struct bbc_cpu_temperature *tp)
|
|
{
|
|
tp->prev_amb_temp = tp->curr_amb_temp;
|
|
bbc_i2c_readb(tp->client,
|
|
(unsigned char *) &tp->curr_amb_temp,
|
|
MAX1617_AMB_TEMP);
|
|
tp->prev_cpu_temp = tp->curr_cpu_temp;
|
|
bbc_i2c_readb(tp->client,
|
|
(unsigned char *) &tp->curr_cpu_temp,
|
|
MAX1617_CPU_TEMP);
|
|
#ifdef ENVCTRL_TRACE
|
|
printk("temp%d: cpu(%d C) amb(%d C)\n",
|
|
tp->index,
|
|
(int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
|
|
#endif
|
|
}
|
|
|
|
|
|
static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
|
|
{
|
|
static int shutting_down = 0;
|
|
static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
|
|
char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
|
|
char *type = "???";
|
|
s8 val = -1;
|
|
|
|
if (shutting_down != 0)
|
|
return;
|
|
|
|
if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
|
|
tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
|
|
type = "ambient";
|
|
val = tp->curr_amb_temp;
|
|
} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
|
|
tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
|
|
type = "CPU";
|
|
val = tp->curr_cpu_temp;
|
|
}
|
|
|
|
printk(KERN_CRIT "temp%d: Outside of safe %s "
|
|
"operating temperature, %d C.\n",
|
|
tp->index, type, val);
|
|
|
|
printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
|
|
|
|
shutting_down = 1;
|
|
if (execve("/sbin/shutdown", argv, envp) < 0)
|
|
printk(KERN_CRIT "envctrl: shutdown execution failed\n");
|
|
}
|
|
|
|
#define WARN_INTERVAL (30 * HZ)
|
|
|
|
static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
|
|
if (tp->curr_amb_temp >=
|
|
amb_temp_limits[tp->index].high_warn) {
|
|
printk(KERN_WARNING "temp%d: "
|
|
"Above safe ambient operating temperature, %d C.\n",
|
|
tp->index, (int) tp->curr_amb_temp);
|
|
ret = 1;
|
|
} else if (tp->curr_amb_temp <
|
|
amb_temp_limits[tp->index].low_warn) {
|
|
printk(KERN_WARNING "temp%d: "
|
|
"Below safe ambient operating temperature, %d C.\n",
|
|
tp->index, (int) tp->curr_amb_temp);
|
|
ret = 1;
|
|
}
|
|
if (ret)
|
|
*last_warn = jiffies;
|
|
} else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
|
|
tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
|
|
ret = 1;
|
|
|
|
/* Now check the shutdown limits. */
|
|
if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
|
|
tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
|
|
do_envctrl_shutdown(tp);
|
|
ret = 1;
|
|
}
|
|
|
|
if (ret) {
|
|
tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
|
|
} else if ((tick & (8 - 1)) == 0) {
|
|
s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
|
|
s8 amb_goal_lo;
|
|
|
|
amb_goal_lo = amb_goal_hi - 3;
|
|
|
|
/* We do not try to avoid 'too cold' events. Basically we
|
|
* only try to deal with over-heating and fan noise reduction.
|
|
*/
|
|
if (tp->avg_amb_temp < amb_goal_hi) {
|
|
if (tp->avg_amb_temp >= amb_goal_lo)
|
|
tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
|
|
else
|
|
tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
|
|
} else {
|
|
tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
|
|
}
|
|
} else {
|
|
tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
|
|
}
|
|
}
|
|
|
|
static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
|
|
if (tp->curr_cpu_temp >=
|
|
cpu_temp_limits[tp->index].high_warn) {
|
|
printk(KERN_WARNING "temp%d: "
|
|
"Above safe CPU operating temperature, %d C.\n",
|
|
tp->index, (int) tp->curr_cpu_temp);
|
|
ret = 1;
|
|
} else if (tp->curr_cpu_temp <
|
|
cpu_temp_limits[tp->index].low_warn) {
|
|
printk(KERN_WARNING "temp%d: "
|
|
"Below safe CPU operating temperature, %d C.\n",
|
|
tp->index, (int) tp->curr_cpu_temp);
|
|
ret = 1;
|
|
}
|
|
if (ret)
|
|
*last_warn = jiffies;
|
|
} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
|
|
tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
|
|
ret = 1;
|
|
|
|
/* Now check the shutdown limits. */
|
|
if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
|
|
tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
|
|
do_envctrl_shutdown(tp);
|
|
ret = 1;
|
|
}
|
|
|
|
if (ret) {
|
|
tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
|
|
} else if ((tick & (8 - 1)) == 0) {
|
|
s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
|
|
s8 cpu_goal_lo;
|
|
|
|
cpu_goal_lo = cpu_goal_hi - 3;
|
|
|
|
/* We do not try to avoid 'too cold' events. Basically we
|
|
* only try to deal with over-heating and fan noise reduction.
|
|
*/
|
|
if (tp->avg_cpu_temp < cpu_goal_hi) {
|
|
if (tp->avg_cpu_temp >= cpu_goal_lo)
|
|
tp->fan_todo[FAN_CPU] = FAN_SAME;
|
|
else
|
|
tp->fan_todo[FAN_CPU] = FAN_SLOWER;
|
|
} else {
|
|
tp->fan_todo[FAN_CPU] = FAN_FASTER;
|
|
}
|
|
} else {
|
|
tp->fan_todo[FAN_CPU] = FAN_SAME;
|
|
}
|
|
}
|
|
|
|
static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
|
|
{
|
|
tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
|
|
tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
|
|
|
|
analyze_ambient_temp(tp, last_warn, tp->sample_tick);
|
|
analyze_cpu_temp(tp, last_warn, tp->sample_tick);
|
|
|
|
tp->sample_tick++;
|
|
}
|
|
|
|
static enum fan_action prioritize_fan_action(int which_fan)
|
|
{
|
|
struct bbc_cpu_temperature *tp;
|
|
enum fan_action decision = FAN_STATE_MAX;
|
|
|
|
/* Basically, prioritize what the temperature sensors
|
|
* recommend we do, and perform that action on all the
|
|
* fans.
|
|
*/
|
|
for (tp = all_bbc_temps; tp; tp = tp->next) {
|
|
if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
|
|
decision = FAN_FULLBLAST;
|
|
break;
|
|
}
|
|
if (tp->fan_todo[which_fan] == FAN_SAME &&
|
|
decision != FAN_FASTER)
|
|
decision = FAN_SAME;
|
|
else if (tp->fan_todo[which_fan] == FAN_FASTER)
|
|
decision = FAN_FASTER;
|
|
else if (decision != FAN_FASTER &&
|
|
decision != FAN_SAME &&
|
|
tp->fan_todo[which_fan] == FAN_SLOWER)
|
|
decision = FAN_SLOWER;
|
|
}
|
|
if (decision == FAN_STATE_MAX)
|
|
decision = FAN_SAME;
|
|
|
|
return decision;
|
|
}
|
|
|
|
static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
|
|
{
|
|
enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
|
|
int ret;
|
|
|
|
if (decision == FAN_SAME)
|
|
return 0;
|
|
|
|
ret = 1;
|
|
if (decision == FAN_FULLBLAST) {
|
|
if (fp->system_fan_speed >= FAN_SPEED_MAX)
|
|
ret = 0;
|
|
else
|
|
fp->system_fan_speed = FAN_SPEED_MAX;
|
|
} else {
|
|
if (decision == FAN_FASTER) {
|
|
if (fp->system_fan_speed >= FAN_SPEED_MAX)
|
|
ret = 0;
|
|
else
|
|
fp->system_fan_speed += 2;
|
|
} else {
|
|
int orig_speed = fp->system_fan_speed;
|
|
|
|
if (orig_speed <= FAN_SPEED_MIN ||
|
|
orig_speed <= (fp->cpu_fan_speed - 3))
|
|
ret = 0;
|
|
else
|
|
fp->system_fan_speed -= 1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
|
|
{
|
|
enum fan_action decision = prioritize_fan_action(FAN_CPU);
|
|
int ret;
|
|
|
|
if (decision == FAN_SAME)
|
|
return 0;
|
|
|
|
ret = 1;
|
|
if (decision == FAN_FULLBLAST) {
|
|
if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
|
|
ret = 0;
|
|
else
|
|
fp->cpu_fan_speed = FAN_SPEED_MAX;
|
|
} else {
|
|
if (decision == FAN_FASTER) {
|
|
if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
|
|
ret = 0;
|
|
else {
|
|
fp->cpu_fan_speed += 2;
|
|
if (fp->system_fan_speed <
|
|
(fp->cpu_fan_speed - 3))
|
|
fp->system_fan_speed =
|
|
fp->cpu_fan_speed - 3;
|
|
}
|
|
} else {
|
|
if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
|
|
ret = 0;
|
|
else
|
|
fp->cpu_fan_speed -= 1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
|
|
{
|
|
int new;
|
|
|
|
new = maybe_new_ambient_fan_speed(fp);
|
|
new |= maybe_new_cpu_fan_speed(fp);
|
|
|
|
if (new)
|
|
set_fan_speeds(fp);
|
|
}
|
|
|
|
static void fans_full_blast(void)
|
|
{
|
|
struct bbc_fan_control *fp;
|
|
|
|
/* Since we will not be monitoring things anymore, put
|
|
* the fans on full blast.
|
|
*/
|
|
for (fp = all_bbc_fans; fp; fp = fp->next) {
|
|
fp->cpu_fan_speed = FAN_SPEED_MAX;
|
|
fp->system_fan_speed = FAN_SPEED_MAX;
|
|
fp->psupply_fan_on = 1;
|
|
set_fan_speeds(fp);
|
|
}
|
|
}
|
|
|
|
#define POLL_INTERVAL (5 * 1000)
|
|
static unsigned long last_warning_jiffies;
|
|
static struct task_struct *kenvctrld_task;
|
|
|
|
static int kenvctrld(void *__unused)
|
|
{
|
|
printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
|
|
last_warning_jiffies = jiffies - WARN_INTERVAL;
|
|
for (;;) {
|
|
struct bbc_cpu_temperature *tp;
|
|
struct bbc_fan_control *fp;
|
|
|
|
msleep_interruptible(POLL_INTERVAL);
|
|
if (kthread_should_stop())
|
|
break;
|
|
|
|
for (tp = all_bbc_temps; tp; tp = tp->next) {
|
|
get_current_temps(tp);
|
|
analyze_temps(tp, &last_warning_jiffies);
|
|
}
|
|
for (fp = all_bbc_fans; fp; fp = fp->next)
|
|
maybe_new_fan_speeds(fp);
|
|
}
|
|
printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
|
|
|
|
fans_full_blast();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
|
|
{
|
|
struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
|
|
|
|
if (!tp)
|
|
return;
|
|
memset(tp, 0, sizeof(*tp));
|
|
tp->client = bbc_i2c_attach(echild);
|
|
if (!tp->client) {
|
|
kfree(tp);
|
|
return;
|
|
}
|
|
|
|
tp->index = temp_idx;
|
|
{
|
|
struct bbc_cpu_temperature **tpp = &all_bbc_temps;
|
|
while (*tpp)
|
|
tpp = &((*tpp)->next);
|
|
tp->next = NULL;
|
|
*tpp = tp;
|
|
}
|
|
|
|
/* Tell it to convert once every 5 seconds, clear all cfg
|
|
* bits.
|
|
*/
|
|
bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
|
|
bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
|
|
|
|
/* Program the hard temperature limits into the chip. */
|
|
bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
|
|
MAX1617_WR_AMB_HIGHLIM);
|
|
bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
|
|
MAX1617_WR_AMB_LOWLIM);
|
|
bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
|
|
MAX1617_WR_CPU_HIGHLIM);
|
|
bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
|
|
MAX1617_WR_CPU_LOWLIM);
|
|
|
|
get_current_temps(tp);
|
|
tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
|
|
tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
|
|
|
|
tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
|
|
tp->fan_todo[FAN_CPU] = FAN_SAME;
|
|
}
|
|
|
|
static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
|
|
{
|
|
struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
|
|
|
|
if (!fp)
|
|
return;
|
|
memset(fp, 0, sizeof(*fp));
|
|
fp->client = bbc_i2c_attach(echild);
|
|
if (!fp->client) {
|
|
kfree(fp);
|
|
return;
|
|
}
|
|
|
|
fp->index = fan_idx;
|
|
|
|
{
|
|
struct bbc_fan_control **fpp = &all_bbc_fans;
|
|
while (*fpp)
|
|
fpp = &((*fpp)->next);
|
|
fp->next = NULL;
|
|
*fpp = fp;
|
|
}
|
|
|
|
/* The i2c device controlling the fans is write-only.
|
|
* So the only way to keep track of the current power
|
|
* level fed to the fans is via software. Choose half
|
|
* power for cpu/system and 'on' fo the powersupply fan
|
|
* and set it now.
|
|
*/
|
|
fp->psupply_fan_on = 1;
|
|
fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
|
|
fp->cpu_fan_speed += FAN_SPEED_MIN;
|
|
fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
|
|
fp->system_fan_speed += FAN_SPEED_MIN;
|
|
|
|
set_fan_speeds(fp);
|
|
}
|
|
|
|
int bbc_envctrl_init(void)
|
|
{
|
|
struct linux_ebus_child *echild;
|
|
int temp_index = 0;
|
|
int fan_index = 0;
|
|
int devidx = 0;
|
|
|
|
while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
|
|
if (!strcmp(echild->prom_node->name, "temperature"))
|
|
attach_one_temp(echild, temp_index++);
|
|
if (!strcmp(echild->prom_node->name, "fan-control"))
|
|
attach_one_fan(echild, fan_index++);
|
|
}
|
|
if (temp_index != 0 && fan_index != 0) {
|
|
kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
|
|
if (IS_ERR(kenvctrld_task))
|
|
return PTR_ERR(kenvctrld_task);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_one_temp(struct bbc_cpu_temperature *tp)
|
|
{
|
|
bbc_i2c_detach(tp->client);
|
|
kfree(tp);
|
|
}
|
|
|
|
static void destroy_one_fan(struct bbc_fan_control *fp)
|
|
{
|
|
bbc_i2c_detach(fp->client);
|
|
kfree(fp);
|
|
}
|
|
|
|
void bbc_envctrl_cleanup(void)
|
|
{
|
|
struct bbc_cpu_temperature *tp;
|
|
struct bbc_fan_control *fp;
|
|
|
|
kthread_stop(kenvctrld_task);
|
|
|
|
tp = all_bbc_temps;
|
|
while (tp != NULL) {
|
|
struct bbc_cpu_temperature *next = tp->next;
|
|
destroy_one_temp(tp);
|
|
tp = next;
|
|
}
|
|
all_bbc_temps = NULL;
|
|
|
|
fp = all_bbc_fans;
|
|
while (fp != NULL) {
|
|
struct bbc_fan_control *next = fp->next;
|
|
destroy_one_fan(fp);
|
|
fp = next;
|
|
}
|
|
all_bbc_fans = NULL;
|
|
}
|