android_kernel_xiaomi_sm8350/sound/pci/hda/hda_codec.c
Takashi Iwai 09f9970139 [ALSA] hda-codec - Allow multiple SPDIF devices
The current code doesn't allow multiple SPDIF devices, and causes
errors when multiple SPDIF devices are found (e.g. SPDIF out and HDMI).
This patch allows multiple SPDIF devices by incrementing the index
automatically.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2008-04-24 12:00:06 +02:00

2978 lines
77 KiB
C

/*
* Universal Interface for Intel High Definition Audio Codec
*
* Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include "hda_codec.h"
#include <sound/asoundef.h>
#include <sound/tlv.h>
#include <sound/initval.h>
#include "hda_local.h"
#include <sound/hda_hwdep.h>
#ifdef CONFIG_SND_HDA_POWER_SAVE
/* define this option here to hide as static */
static int power_save = CONFIG_SND_HDA_POWER_SAVE_DEFAULT;
module_param(power_save, int, 0644);
MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
"(in second, 0 = disable).");
#endif
/*
* vendor / preset table
*/
struct hda_vendor_id {
unsigned int id;
const char *name;
};
/* codec vendor labels */
static struct hda_vendor_id hda_vendor_ids[] = {
{ 0x10ec, "Realtek" },
{ 0x1057, "Motorola" },
{ 0x1106, "VIA" },
{ 0x111d, "IDT" },
{ 0x11d4, "Analog Devices" },
{ 0x13f6, "C-Media" },
{ 0x14f1, "Conexant" },
{ 0x434d, "C-Media" },
{ 0x8384, "SigmaTel" },
{} /* terminator */
};
/* codec presets */
#include "hda_patch.h"
#ifdef CONFIG_SND_HDA_POWER_SAVE
static void hda_power_work(struct work_struct *work);
static void hda_keep_power_on(struct hda_codec *codec);
#else
static inline void hda_keep_power_on(struct hda_codec *codec) {}
#endif
/**
* snd_hda_codec_read - send a command and get the response
* @codec: the HDA codec
* @nid: NID to send the command
* @direct: direct flag
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command and read the corresponding response.
*
* Returns the obtained response value, or -1 for an error.
*/
unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
int direct,
unsigned int verb, unsigned int parm)
{
unsigned int res;
snd_hda_power_up(codec);
mutex_lock(&codec->bus->cmd_mutex);
if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
res = codec->bus->ops.get_response(codec);
else
res = (unsigned int)-1;
mutex_unlock(&codec->bus->cmd_mutex);
snd_hda_power_down(codec);
return res;
}
/**
* snd_hda_codec_write - send a single command without waiting for response
* @codec: the HDA codec
* @nid: NID to send the command
* @direct: direct flag
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command without waiting for response.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
unsigned int verb, unsigned int parm)
{
int err;
snd_hda_power_up(codec);
mutex_lock(&codec->bus->cmd_mutex);
err = codec->bus->ops.command(codec, nid, direct, verb, parm);
mutex_unlock(&codec->bus->cmd_mutex);
snd_hda_power_down(codec);
return err;
}
/**
* snd_hda_sequence_write - sequence writes
* @codec: the HDA codec
* @seq: VERB array to send
*
* Send the commands sequentially from the given array.
* The array must be terminated with NID=0.
*/
void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
{
for (; seq->nid; seq++)
snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
}
/**
* snd_hda_get_sub_nodes - get the range of sub nodes
* @codec: the HDA codec
* @nid: NID to parse
* @start_id: the pointer to store the start NID
*
* Parse the NID and store the start NID of its sub-nodes.
* Returns the number of sub-nodes.
*/
int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
hda_nid_t *start_id)
{
unsigned int parm;
parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
if (parm == -1)
return 0;
*start_id = (parm >> 16) & 0x7fff;
return (int)(parm & 0x7fff);
}
/**
* snd_hda_get_connections - get connection list
* @codec: the HDA codec
* @nid: NID to parse
* @conn_list: connection list array
* @max_conns: max. number of connections to store
*
* Parses the connection list of the given widget and stores the list
* of NIDs.
*
* Returns the number of connections, or a negative error code.
*/
int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
hda_nid_t *conn_list, int max_conns)
{
unsigned int parm;
int i, conn_len, conns;
unsigned int shift, num_elems, mask;
hda_nid_t prev_nid;
snd_assert(conn_list && max_conns > 0, return -EINVAL);
parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
if (parm & AC_CLIST_LONG) {
/* long form */
shift = 16;
num_elems = 2;
} else {
/* short form */
shift = 8;
num_elems = 4;
}
conn_len = parm & AC_CLIST_LENGTH;
mask = (1 << (shift-1)) - 1;
if (!conn_len)
return 0; /* no connection */
if (conn_len == 1) {
/* single connection */
parm = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_CONNECT_LIST, 0);
conn_list[0] = parm & mask;
return 1;
}
/* multi connection */
conns = 0;
prev_nid = 0;
for (i = 0; i < conn_len; i++) {
int range_val;
hda_nid_t val, n;
if (i % num_elems == 0)
parm = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_CONNECT_LIST, i);
range_val = !!(parm & (1 << (shift-1))); /* ranges */
val = parm & mask;
parm >>= shift;
if (range_val) {
/* ranges between the previous and this one */
if (!prev_nid || prev_nid >= val) {
snd_printk(KERN_WARNING "hda_codec: "
"invalid dep_range_val %x:%x\n",
prev_nid, val);
continue;
}
for (n = prev_nid + 1; n <= val; n++) {
if (conns >= max_conns) {
snd_printk(KERN_ERR
"Too many connections\n");
return -EINVAL;
}
conn_list[conns++] = n;
}
} else {
if (conns >= max_conns) {
snd_printk(KERN_ERR "Too many connections\n");
return -EINVAL;
}
conn_list[conns++] = val;
}
prev_nid = val;
}
return conns;
}
/**
* snd_hda_queue_unsol_event - add an unsolicited event to queue
* @bus: the BUS
* @res: unsolicited event (lower 32bit of RIRB entry)
* @res_ex: codec addr and flags (upper 32bit or RIRB entry)
*
* Adds the given event to the queue. The events are processed in
* the workqueue asynchronously. Call this function in the interrupt
* hanlder when RIRB receives an unsolicited event.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
{
struct hda_bus_unsolicited *unsol;
unsigned int wp;
unsol = bus->unsol;
if (!unsol)
return 0;
wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
unsol->wp = wp;
wp <<= 1;
unsol->queue[wp] = res;
unsol->queue[wp + 1] = res_ex;
schedule_work(&unsol->work);
return 0;
}
/*
* process queueud unsolicited events
*/
static void process_unsol_events(struct work_struct *work)
{
struct hda_bus_unsolicited *unsol =
container_of(work, struct hda_bus_unsolicited, work);
struct hda_bus *bus = unsol->bus;
struct hda_codec *codec;
unsigned int rp, caddr, res;
while (unsol->rp != unsol->wp) {
rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
unsol->rp = rp;
rp <<= 1;
res = unsol->queue[rp];
caddr = unsol->queue[rp + 1];
if (!(caddr & (1 << 4))) /* no unsolicited event? */
continue;
codec = bus->caddr_tbl[caddr & 0x0f];
if (codec && codec->patch_ops.unsol_event)
codec->patch_ops.unsol_event(codec, res);
}
}
/*
* initialize unsolicited queue
*/
static int __devinit init_unsol_queue(struct hda_bus *bus)
{
struct hda_bus_unsolicited *unsol;
if (bus->unsol) /* already initialized */
return 0;
unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
if (!unsol) {
snd_printk(KERN_ERR "hda_codec: "
"can't allocate unsolicited queue\n");
return -ENOMEM;
}
INIT_WORK(&unsol->work, process_unsol_events);
unsol->bus = bus;
bus->unsol = unsol;
return 0;
}
/*
* destructor
*/
static void snd_hda_codec_free(struct hda_codec *codec);
static int snd_hda_bus_free(struct hda_bus *bus)
{
struct hda_codec *codec, *n;
if (!bus)
return 0;
if (bus->unsol) {
flush_scheduled_work();
kfree(bus->unsol);
}
list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
snd_hda_codec_free(codec);
}
if (bus->ops.private_free)
bus->ops.private_free(bus);
kfree(bus);
return 0;
}
static int snd_hda_bus_dev_free(struct snd_device *device)
{
struct hda_bus *bus = device->device_data;
return snd_hda_bus_free(bus);
}
/**
* snd_hda_bus_new - create a HDA bus
* @card: the card entry
* @temp: the template for hda_bus information
* @busp: the pointer to store the created bus instance
*
* Returns 0 if successful, or a negative error code.
*/
int __devinit snd_hda_bus_new(struct snd_card *card,
const struct hda_bus_template *temp,
struct hda_bus **busp)
{
struct hda_bus *bus;
int err;
static struct snd_device_ops dev_ops = {
.dev_free = snd_hda_bus_dev_free,
};
snd_assert(temp, return -EINVAL);
snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
if (busp)
*busp = NULL;
bus = kzalloc(sizeof(*bus), GFP_KERNEL);
if (bus == NULL) {
snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
return -ENOMEM;
}
bus->card = card;
bus->private_data = temp->private_data;
bus->pci = temp->pci;
bus->modelname = temp->modelname;
bus->ops = temp->ops;
mutex_init(&bus->cmd_mutex);
INIT_LIST_HEAD(&bus->codec_list);
err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
if (err < 0) {
snd_hda_bus_free(bus);
return err;
}
if (busp)
*busp = bus;
return 0;
}
#ifdef CONFIG_SND_HDA_GENERIC
#define is_generic_config(codec) \
(codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
#else
#define is_generic_config(codec) 0
#endif
/*
* find a matching codec preset
*/
static const struct hda_codec_preset __devinit *
find_codec_preset(struct hda_codec *codec)
{
const struct hda_codec_preset **tbl, *preset;
if (is_generic_config(codec))
return NULL; /* use the generic parser */
for (tbl = hda_preset_tables; *tbl; tbl++) {
for (preset = *tbl; preset->id; preset++) {
u32 mask = preset->mask;
if (preset->afg && preset->afg != codec->afg)
continue;
if (preset->mfg && preset->mfg != codec->mfg)
continue;
if (!mask)
mask = ~0;
if (preset->id == (codec->vendor_id & mask) &&
(!preset->rev ||
preset->rev == codec->revision_id))
return preset;
}
}
return NULL;
}
/*
* snd_hda_get_codec_name - store the codec name
*/
void snd_hda_get_codec_name(struct hda_codec *codec,
char *name, int namelen)
{
const struct hda_vendor_id *c;
const char *vendor = NULL;
u16 vendor_id = codec->vendor_id >> 16;
char tmp[16];
for (c = hda_vendor_ids; c->id; c++) {
if (c->id == vendor_id) {
vendor = c->name;
break;
}
}
if (!vendor) {
sprintf(tmp, "Generic %04x", vendor_id);
vendor = tmp;
}
if (codec->preset && codec->preset->name)
snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
else
snprintf(name, namelen, "%s ID %x", vendor,
codec->vendor_id & 0xffff);
}
/*
* look for an AFG and MFG nodes
*/
static void __devinit setup_fg_nodes(struct hda_codec *codec)
{
int i, total_nodes;
hda_nid_t nid;
total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
for (i = 0; i < total_nodes; i++, nid++) {
unsigned int func;
func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
switch (func & 0xff) {
case AC_GRP_AUDIO_FUNCTION:
codec->afg = nid;
break;
case AC_GRP_MODEM_FUNCTION:
codec->mfg = nid;
break;
default:
break;
}
}
}
/*
* read widget caps for each widget and store in cache
*/
static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
{
int i;
hda_nid_t nid;
codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
&codec->start_nid);
codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
if (!codec->wcaps)
return -ENOMEM;
nid = codec->start_nid;
for (i = 0; i < codec->num_nodes; i++, nid++)
codec->wcaps[i] = snd_hda_param_read(codec, nid,
AC_PAR_AUDIO_WIDGET_CAP);
return 0;
}
static void init_hda_cache(struct hda_cache_rec *cache,
unsigned int record_size);
static void free_hda_cache(struct hda_cache_rec *cache);
/*
* codec destructor
*/
static void snd_hda_codec_free(struct hda_codec *codec)
{
if (!codec)
return;
#ifdef CONFIG_SND_HDA_POWER_SAVE
cancel_delayed_work(&codec->power_work);
flush_scheduled_work();
#endif
list_del(&codec->list);
codec->bus->caddr_tbl[codec->addr] = NULL;
if (codec->patch_ops.free)
codec->patch_ops.free(codec);
free_hda_cache(&codec->amp_cache);
free_hda_cache(&codec->cmd_cache);
kfree(codec->wcaps);
kfree(codec);
}
/**
* snd_hda_codec_new - create a HDA codec
* @bus: the bus to assign
* @codec_addr: the codec address
* @codecp: the pointer to store the generated codec
*
* Returns 0 if successful, or a negative error code.
*/
int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
struct hda_codec **codecp)
{
struct hda_codec *codec;
char component[13];
int err;
snd_assert(bus, return -EINVAL);
snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
if (bus->caddr_tbl[codec_addr]) {
snd_printk(KERN_ERR "hda_codec: "
"address 0x%x is already occupied\n", codec_addr);
return -EBUSY;
}
codec = kzalloc(sizeof(*codec), GFP_KERNEL);
if (codec == NULL) {
snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
return -ENOMEM;
}
codec->bus = bus;
codec->addr = codec_addr;
mutex_init(&codec->spdif_mutex);
init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
#ifdef CONFIG_SND_HDA_POWER_SAVE
INIT_DELAYED_WORK(&codec->power_work, hda_power_work);
/* snd_hda_codec_new() marks the codec as power-up, and leave it as is.
* the caller has to power down appropriatley after initialization
* phase.
*/
hda_keep_power_on(codec);
#endif
list_add_tail(&codec->list, &bus->codec_list);
bus->caddr_tbl[codec_addr] = codec;
codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
AC_PAR_VENDOR_ID);
if (codec->vendor_id == -1)
/* read again, hopefully the access method was corrected
* in the last read...
*/
codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
AC_PAR_VENDOR_ID);
codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
AC_PAR_SUBSYSTEM_ID);
codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
AC_PAR_REV_ID);
setup_fg_nodes(codec);
if (!codec->afg && !codec->mfg) {
snd_printdd("hda_codec: no AFG or MFG node found\n");
snd_hda_codec_free(codec);
return -ENODEV;
}
if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
snd_hda_codec_free(codec);
return -ENOMEM;
}
if (!codec->subsystem_id) {
hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
codec->subsystem_id =
snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_SUBSYSTEM_ID, 0);
}
codec->preset = find_codec_preset(codec);
/* audio codec should override the mixer name */
if (codec->afg || !*bus->card->mixername)
snd_hda_get_codec_name(codec, bus->card->mixername,
sizeof(bus->card->mixername));
if (is_generic_config(codec)) {
err = snd_hda_parse_generic_codec(codec);
goto patched;
}
if (codec->preset && codec->preset->patch) {
err = codec->preset->patch(codec);
goto patched;
}
/* call the default parser */
err = snd_hda_parse_generic_codec(codec);
if (err < 0)
printk(KERN_ERR "hda-codec: No codec parser is available\n");
patched:
if (err < 0) {
snd_hda_codec_free(codec);
return err;
}
if (codec->patch_ops.unsol_event)
init_unsol_queue(bus);
snd_hda_codec_proc_new(codec);
#ifdef CONFIG_SND_HDA_HWDEP
snd_hda_create_hwdep(codec);
#endif
sprintf(component, "HDA:%08x", codec->vendor_id);
snd_component_add(codec->bus->card, component);
if (codecp)
*codecp = codec;
return 0;
}
/**
* snd_hda_codec_setup_stream - set up the codec for streaming
* @codec: the CODEC to set up
* @nid: the NID to set up
* @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
* @channel_id: channel id to pass, zero based.
* @format: stream format.
*/
void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
u32 stream_tag,
int channel_id, int format)
{
if (!nid)
return;
snd_printdd("hda_codec_setup_stream: "
"NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
nid, stream_tag, channel_id, format);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
(stream_tag << 4) | channel_id);
msleep(1);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
}
/*
* amp access functions
*/
/* FIXME: more better hash key? */
#define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
#define INFO_AMP_CAPS (1<<0)
#define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
/* initialize the hash table */
static void __devinit init_hda_cache(struct hda_cache_rec *cache,
unsigned int record_size)
{
memset(cache, 0, sizeof(*cache));
memset(cache->hash, 0xff, sizeof(cache->hash));
cache->record_size = record_size;
}
static void free_hda_cache(struct hda_cache_rec *cache)
{
kfree(cache->buffer);
}
/* query the hash. allocate an entry if not found. */
static struct hda_cache_head *get_alloc_hash(struct hda_cache_rec *cache,
u32 key)
{
u16 idx = key % (u16)ARRAY_SIZE(cache->hash);
u16 cur = cache->hash[idx];
struct hda_cache_head *info;
while (cur != 0xffff) {
info = (struct hda_cache_head *)(cache->buffer +
cur * cache->record_size);
if (info->key == key)
return info;
cur = info->next;
}
/* add a new hash entry */
if (cache->num_entries >= cache->size) {
/* reallocate the array */
unsigned int new_size = cache->size + 64;
void *new_buffer;
new_buffer = kcalloc(new_size, cache->record_size, GFP_KERNEL);
if (!new_buffer) {
snd_printk(KERN_ERR "hda_codec: "
"can't malloc amp_info\n");
return NULL;
}
if (cache->buffer) {
memcpy(new_buffer, cache->buffer,
cache->size * cache->record_size);
kfree(cache->buffer);
}
cache->size = new_size;
cache->buffer = new_buffer;
}
cur = cache->num_entries++;
info = (struct hda_cache_head *)(cache->buffer +
cur * cache->record_size);
info->key = key;
info->val = 0;
info->next = cache->hash[idx];
cache->hash[idx] = cur;
return info;
}
/* query and allocate an amp hash entry */
static inline struct hda_amp_info *
get_alloc_amp_hash(struct hda_codec *codec, u32 key)
{
return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key);
}
/*
* query AMP capabilities for the given widget and direction
*/
u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
{
struct hda_amp_info *info;
info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
if (!info)
return 0;
if (!(info->head.val & INFO_AMP_CAPS)) {
if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
nid = codec->afg;
info->amp_caps = snd_hda_param_read(codec, nid,
direction == HDA_OUTPUT ?
AC_PAR_AMP_OUT_CAP :
AC_PAR_AMP_IN_CAP);
if (info->amp_caps)
info->head.val |= INFO_AMP_CAPS;
}
return info->amp_caps;
}
int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
unsigned int caps)
{
struct hda_amp_info *info;
info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
if (!info)
return -EINVAL;
info->amp_caps = caps;
info->head.val |= INFO_AMP_CAPS;
return 0;
}
/*
* read the current volume to info
* if the cache exists, read the cache value.
*/
static unsigned int get_vol_mute(struct hda_codec *codec,
struct hda_amp_info *info, hda_nid_t nid,
int ch, int direction, int index)
{
u32 val, parm;
if (info->head.val & INFO_AMP_VOL(ch))
return info->vol[ch];
parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
parm |= index;
val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_AMP_GAIN_MUTE, parm);
info->vol[ch] = val & 0xff;
info->head.val |= INFO_AMP_VOL(ch);
return info->vol[ch];
}
/*
* write the current volume in info to the h/w and update the cache
*/
static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
hda_nid_t nid, int ch, int direction, int index,
int val)
{
u32 parm;
parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
parm |= index << AC_AMP_SET_INDEX_SHIFT;
parm |= val;
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
info->vol[ch] = val;
}
/*
* read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
*/
int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int index)
{
struct hda_amp_info *info;
info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
if (!info)
return 0;
return get_vol_mute(codec, info, nid, ch, direction, index);
}
/*
* update the AMP value, mask = bit mask to set, val = the value
*/
int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int idx, int mask, int val)
{
struct hda_amp_info *info;
info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
if (!info)
return 0;
val &= mask;
val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
if (info->vol[ch] == val)
return 0;
put_vol_mute(codec, info, nid, ch, direction, idx, val);
return 1;
}
/*
* update the AMP stereo with the same mask and value
*/
int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid,
int direction, int idx, int mask, int val)
{
int ch, ret = 0;
for (ch = 0; ch < 2; ch++)
ret |= snd_hda_codec_amp_update(codec, nid, ch, direction,
idx, mask, val);
return ret;
}
#ifdef SND_HDA_NEEDS_RESUME
/* resume the all amp commands from the cache */
void snd_hda_codec_resume_amp(struct hda_codec *codec)
{
struct hda_amp_info *buffer = codec->amp_cache.buffer;
int i;
for (i = 0; i < codec->amp_cache.size; i++, buffer++) {
u32 key = buffer->head.key;
hda_nid_t nid;
unsigned int idx, dir, ch;
if (!key)
continue;
nid = key & 0xff;
idx = (key >> 16) & 0xff;
dir = (key >> 24) & 0xff;
for (ch = 0; ch < 2; ch++) {
if (!(buffer->head.val & INFO_AMP_VOL(ch)))
continue;
put_vol_mute(codec, buffer, nid, ch, dir, idx,
buffer->vol[ch]);
}
}
}
#endif /* SND_HDA_NEEDS_RESUME */
/*
* AMP control callbacks
*/
/* retrieve parameters from private_value */
#define get_amp_nid(kc) ((kc)->private_value & 0xffff)
#define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
#define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
#define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
/* volume */
int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
u16 nid = get_amp_nid(kcontrol);
u8 chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
u32 caps;
caps = query_amp_caps(codec, nid, dir);
/* num steps */
caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
if (!caps) {
printk(KERN_WARNING "hda_codec: "
"num_steps = 0 for NID=0x%x (ctl = %s)\n", nid,
kcontrol->id.name);
return -EINVAL;
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = caps;
return 0;
}
int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
if (chs & 1)
*valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx)
& HDA_AMP_VOLMASK;
if (chs & 2)
*valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx)
& HDA_AMP_VOLMASK;
return 0;
}
int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
int change = 0;
snd_hda_power_up(codec);
if (chs & 1) {
change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
0x7f, *valp);
valp++;
}
if (chs & 2)
change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
0x7f, *valp);
snd_hda_power_down(codec);
return change;
}
int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *_tlv)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int dir = get_amp_direction(kcontrol);
u32 caps, val1, val2;
if (size < 4 * sizeof(unsigned int))
return -ENOMEM;
caps = query_amp_caps(codec, nid, dir);
val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
val2 = (val2 + 1) * 25;
val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
val1 = ((int)val1) * ((int)val2);
if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
return -EFAULT;
if (put_user(2 * sizeof(unsigned int), _tlv + 1))
return -EFAULT;
if (put_user(val1, _tlv + 2))
return -EFAULT;
if (put_user(val2, _tlv + 3))
return -EFAULT;
return 0;
}
/*
* set (static) TLV for virtual master volume; recalculated as max 0dB
*/
void snd_hda_set_vmaster_tlv(struct hda_codec *codec, hda_nid_t nid, int dir,
unsigned int *tlv)
{
u32 caps;
int nums, step;
caps = query_amp_caps(codec, nid, dir);
nums = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
step = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
step = (step + 1) * 25;
tlv[0] = SNDRV_CTL_TLVT_DB_SCALE;
tlv[1] = 2 * sizeof(unsigned int);
tlv[2] = -nums * step;
tlv[3] = step;
}
/* find a mixer control element with the given name */
static struct snd_kcontrol *
_snd_hda_find_mixer_ctl(struct hda_codec *codec,
const char *name, int idx)
{
struct snd_ctl_elem_id id;
memset(&id, 0, sizeof(id));
id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
id.index = idx;
strcpy(id.name, name);
return snd_ctl_find_id(codec->bus->card, &id);
}
struct snd_kcontrol *snd_hda_find_mixer_ctl(struct hda_codec *codec,
const char *name)
{
return _snd_hda_find_mixer_ctl(codec, name, 0);
}
/* create a virtual master control and add slaves */
int snd_hda_add_vmaster(struct hda_codec *codec, char *name,
unsigned int *tlv, const char **slaves)
{
struct snd_kcontrol *kctl;
const char **s;
int err;
for (s = slaves; *s && !snd_hda_find_mixer_ctl(codec, *s); s++)
;
if (!*s) {
snd_printdd("No slave found for %s\n", name);
return 0;
}
kctl = snd_ctl_make_virtual_master(name, tlv);
if (!kctl)
return -ENOMEM;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0)
return err;
for (s = slaves; *s; s++) {
struct snd_kcontrol *sctl;
sctl = snd_hda_find_mixer_ctl(codec, *s);
if (!sctl) {
snd_printdd("Cannot find slave %s, skipped\n", *s);
continue;
}
err = snd_ctl_add_slave(kctl, sctl);
if (err < 0)
return err;
}
return 0;
}
/* switch */
int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int chs = get_amp_channels(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
if (chs & 1)
*valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
HDA_AMP_MUTE) ? 0 : 1;
if (chs & 2)
*valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
HDA_AMP_MUTE) ? 0 : 1;
return 0;
}
int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
int change = 0;
snd_hda_power_up(codec);
if (chs & 1) {
change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
HDA_AMP_MUTE,
*valp ? 0 : HDA_AMP_MUTE);
valp++;
}
if (chs & 2)
change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
HDA_AMP_MUTE,
*valp ? 0 : HDA_AMP_MUTE);
#ifdef CONFIG_SND_HDA_POWER_SAVE
if (codec->patch_ops.check_power_status)
codec->patch_ops.check_power_status(codec, nid);
#endif
snd_hda_power_down(codec);
return change;
}
/*
* bound volume controls
*
* bind multiple volumes (# indices, from 0)
*/
#define AMP_VAL_IDX_SHIFT 19
#define AMP_VAL_IDX_MASK (0x0f<<19)
int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned long pval;
int err;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
pval = kcontrol->private_value;
kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
kcontrol->private_value = pval;
mutex_unlock(&codec->spdif_mutex);
return err;
}
int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned long pval;
int i, indices, err = 0, change = 0;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
pval = kcontrol->private_value;
indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
for (i = 0; i < indices; i++) {
kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
(i << AMP_VAL_IDX_SHIFT);
err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
if (err < 0)
break;
change |= err;
}
kcontrol->private_value = pval;
mutex_unlock(&codec->spdif_mutex);
return err < 0 ? err : change;
}
/*
* generic bound volume/swtich controls
*/
int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
int err;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
c = (struct hda_bind_ctls *)kcontrol->private_value;
kcontrol->private_value = *c->values;
err = c->ops->info(kcontrol, uinfo);
kcontrol->private_value = (long)c;
mutex_unlock(&codec->spdif_mutex);
return err;
}
int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
int err;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
c = (struct hda_bind_ctls *)kcontrol->private_value;
kcontrol->private_value = *c->values;
err = c->ops->get(kcontrol, ucontrol);
kcontrol->private_value = (long)c;
mutex_unlock(&codec->spdif_mutex);
return err;
}
int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
unsigned long *vals;
int err = 0, change = 0;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
c = (struct hda_bind_ctls *)kcontrol->private_value;
for (vals = c->values; *vals; vals++) {
kcontrol->private_value = *vals;
err = c->ops->put(kcontrol, ucontrol);
if (err < 0)
break;
change |= err;
}
kcontrol->private_value = (long)c;
mutex_unlock(&codec->spdif_mutex);
return err < 0 ? err : change;
}
int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *tlv)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
int err;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
c = (struct hda_bind_ctls *)kcontrol->private_value;
kcontrol->private_value = *c->values;
err = c->ops->tlv(kcontrol, op_flag, size, tlv);
kcontrol->private_value = (long)c;
mutex_unlock(&codec->spdif_mutex);
return err;
}
struct hda_ctl_ops snd_hda_bind_vol = {
.info = snd_hda_mixer_amp_volume_info,
.get = snd_hda_mixer_amp_volume_get,
.put = snd_hda_mixer_amp_volume_put,
.tlv = snd_hda_mixer_amp_tlv
};
struct hda_ctl_ops snd_hda_bind_sw = {
.info = snd_hda_mixer_amp_switch_info,
.get = snd_hda_mixer_amp_switch_get,
.put = snd_hda_mixer_amp_switch_put,
.tlv = snd_hda_mixer_amp_tlv
};
/*
* SPDIF out controls
*/
static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_CON_EMPHASIS_5015 |
IEC958_AES0_CON_NOT_COPYRIGHT;
ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
IEC958_AES1_CON_ORIGINAL;
return 0;
}
static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_PRO_EMPHASIS_5015;
return 0;
}
static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
return 0;
}
/* convert from SPDIF status bits to HDA SPDIF bits
* bit 0 (DigEn) is always set zero (to be filled later)
*/
static unsigned short convert_from_spdif_status(unsigned int sbits)
{
unsigned short val = 0;
if (sbits & IEC958_AES0_PROFESSIONAL)
val |= AC_DIG1_PROFESSIONAL;
if (sbits & IEC958_AES0_NONAUDIO)
val |= AC_DIG1_NONAUDIO;
if (sbits & IEC958_AES0_PROFESSIONAL) {
if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
IEC958_AES0_PRO_EMPHASIS_5015)
val |= AC_DIG1_EMPHASIS;
} else {
if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
IEC958_AES0_CON_EMPHASIS_5015)
val |= AC_DIG1_EMPHASIS;
if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
val |= AC_DIG1_COPYRIGHT;
if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
val |= AC_DIG1_LEVEL;
val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
}
return val;
}
/* convert to SPDIF status bits from HDA SPDIF bits
*/
static unsigned int convert_to_spdif_status(unsigned short val)
{
unsigned int sbits = 0;
if (val & AC_DIG1_NONAUDIO)
sbits |= IEC958_AES0_NONAUDIO;
if (val & AC_DIG1_PROFESSIONAL)
sbits |= IEC958_AES0_PROFESSIONAL;
if (sbits & IEC958_AES0_PROFESSIONAL) {
if (sbits & AC_DIG1_EMPHASIS)
sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
} else {
if (val & AC_DIG1_EMPHASIS)
sbits |= IEC958_AES0_CON_EMPHASIS_5015;
if (!(val & AC_DIG1_COPYRIGHT))
sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
if (val & AC_DIG1_LEVEL)
sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
sbits |= val & (0x7f << 8);
}
return sbits;
}
static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
int change;
mutex_lock(&codec->spdif_mutex);
codec->spdif_status = ucontrol->value.iec958.status[0] |
((unsigned int)ucontrol->value.iec958.status[1] << 8) |
((unsigned int)ucontrol->value.iec958.status[2] << 16) |
((unsigned int)ucontrol->value.iec958.status[3] << 24);
val = convert_from_spdif_status(codec->spdif_status);
val |= codec->spdif_ctls & 1;
change = codec->spdif_ctls != val;
codec->spdif_ctls = val;
if (change) {
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_DIGI_CONVERT_1,
val & 0xff);
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_DIGI_CONVERT_2,
val >> 8);
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
#define snd_hda_spdif_out_switch_info snd_ctl_boolean_mono_info
static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
return 0;
}
static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
int change;
mutex_lock(&codec->spdif_mutex);
val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
if (ucontrol->value.integer.value[0])
val |= AC_DIG1_ENABLE;
change = codec->spdif_ctls != val;
if (change) {
codec->spdif_ctls = val;
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_DIGI_CONVERT_1,
val & 0xff);
/* unmute amp switch (if any) */
if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
(val & AC_DIG1_ENABLE))
snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
HDA_AMP_MUTE, 0);
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
static struct snd_kcontrol_new dig_mixes[] = {
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_cmask_get,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_pmask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_default_get,
.put = snd_hda_spdif_default_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
.info = snd_hda_spdif_out_switch_info,
.get = snd_hda_spdif_out_switch_get,
.put = snd_hda_spdif_out_switch_put,
},
{ } /* end */
};
#define SPDIF_MAX_IDX 4 /* 4 instances should be enough to probe */
/**
* snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
* @codec: the HDA codec
* @nid: audio out widget NID
*
* Creates controls related with the SPDIF output.
* Called from each patch supporting the SPDIF out.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
{
int err;
struct snd_kcontrol *kctl;
struct snd_kcontrol_new *dig_mix;
int idx;
for (idx = 0; idx < SPDIF_MAX_IDX; idx++) {
if (!_snd_hda_find_mixer_ctl(codec, "IEC958 Playback Switch",
idx))
break;
}
if (idx >= SPDIF_MAX_IDX) {
printk(KERN_ERR "hda_codec: too many IEC958 outputs\n");
return -EBUSY;
}
for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
kctl = snd_ctl_new1(dig_mix, codec);
kctl->id.index = idx;
kctl->private_value = nid;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0)
return err;
}
codec->spdif_ctls =
snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DIGI_CONVERT_1, 0);
codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
return 0;
}
/*
* SPDIF input
*/
#define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = codec->spdif_in_enable;
return 0;
}
static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned int val = !!ucontrol->value.integer.value[0];
int change;
mutex_lock(&codec->spdif_mutex);
change = codec->spdif_in_enable != val;
if (change) {
codec->spdif_in_enable = val;
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_DIGI_CONVERT_1, val);
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
unsigned int sbits;
val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0);
sbits = convert_to_spdif_status(val);
ucontrol->value.iec958.status[0] = sbits;
ucontrol->value.iec958.status[1] = sbits >> 8;
ucontrol->value.iec958.status[2] = sbits >> 16;
ucontrol->value.iec958.status[3] = sbits >> 24;
return 0;
}
static struct snd_kcontrol_new dig_in_ctls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
.info = snd_hda_spdif_in_switch_info,
.get = snd_hda_spdif_in_switch_get,
.put = snd_hda_spdif_in_switch_put,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_in_status_get,
},
{ } /* end */
};
/**
* snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
* @codec: the HDA codec
* @nid: audio in widget NID
*
* Creates controls related with the SPDIF input.
* Called from each patch supporting the SPDIF in.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
{
int err;
struct snd_kcontrol *kctl;
struct snd_kcontrol_new *dig_mix;
int idx;
for (idx = 0; idx < SPDIF_MAX_IDX; idx++) {
if (!_snd_hda_find_mixer_ctl(codec, "IEC958 Capture Switch",
idx))
break;
}
if (idx >= SPDIF_MAX_IDX) {
printk(KERN_ERR "hda_codec: too many IEC958 inputs\n");
return -EBUSY;
}
for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
kctl = snd_ctl_new1(dig_mix, codec);
kctl->private_value = nid;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0)
return err;
}
codec->spdif_in_enable =
snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DIGI_CONVERT_1, 0) &
AC_DIG1_ENABLE;
return 0;
}
#ifdef SND_HDA_NEEDS_RESUME
/*
* command cache
*/
/* build a 32bit cache key with the widget id and the command parameter */
#define build_cmd_cache_key(nid, verb) ((verb << 8) | nid)
#define get_cmd_cache_nid(key) ((key) & 0xff)
#define get_cmd_cache_cmd(key) (((key) >> 8) & 0xffff)
/**
* snd_hda_codec_write_cache - send a single command with caching
* @codec: the HDA codec
* @nid: NID to send the command
* @direct: direct flag
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command without waiting for response.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid,
int direct, unsigned int verb, unsigned int parm)
{
int err;
snd_hda_power_up(codec);
mutex_lock(&codec->bus->cmd_mutex);
err = codec->bus->ops.command(codec, nid, direct, verb, parm);
if (!err) {
struct hda_cache_head *c;
u32 key = build_cmd_cache_key(nid, verb);
c = get_alloc_hash(&codec->cmd_cache, key);
if (c)
c->val = parm;
}
mutex_unlock(&codec->bus->cmd_mutex);
snd_hda_power_down(codec);
return err;
}
/* resume the all commands from the cache */
void snd_hda_codec_resume_cache(struct hda_codec *codec)
{
struct hda_cache_head *buffer = codec->cmd_cache.buffer;
int i;
for (i = 0; i < codec->cmd_cache.size; i++, buffer++) {
u32 key = buffer->key;
if (!key)
continue;
snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0,
get_cmd_cache_cmd(key), buffer->val);
}
}
/**
* snd_hda_sequence_write_cache - sequence writes with caching
* @codec: the HDA codec
* @seq: VERB array to send
*
* Send the commands sequentially from the given array.
* Thte commands are recorded on cache for power-save and resume.
* The array must be terminated with NID=0.
*/
void snd_hda_sequence_write_cache(struct hda_codec *codec,
const struct hda_verb *seq)
{
for (; seq->nid; seq++)
snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb,
seq->param);
}
#endif /* SND_HDA_NEEDS_RESUME */
/*
* set power state of the codec
*/
static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
unsigned int power_state)
{
hda_nid_t nid;
int i;
snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
power_state);
msleep(10); /* partial workaround for "azx_get_response timeout" */
nid = codec->start_nid;
for (i = 0; i < codec->num_nodes; i++, nid++) {
unsigned int wcaps = get_wcaps(codec, nid);
if (wcaps & AC_WCAP_POWER) {
unsigned int wid_type = (wcaps & AC_WCAP_TYPE) >>
AC_WCAP_TYPE_SHIFT;
if (wid_type == AC_WID_PIN) {
unsigned int pincap;
/*
* don't power down the widget if it controls
* eapd and EAPD_BTLENABLE is set.
*/
pincap = snd_hda_param_read(codec, nid,
AC_PAR_PIN_CAP);
if (pincap & AC_PINCAP_EAPD) {
int eapd = snd_hda_codec_read(codec,
nid, 0,
AC_VERB_GET_EAPD_BTLENABLE, 0);
eapd &= 0x02;
if (power_state == AC_PWRST_D3 && eapd)
continue;
}
}
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_POWER_STATE,
power_state);
}
}
if (power_state == AC_PWRST_D0) {
unsigned long end_time;
int state;
msleep(10);
/* wait until the codec reachs to D0 */
end_time = jiffies + msecs_to_jiffies(500);
do {
state = snd_hda_codec_read(codec, fg, 0,
AC_VERB_GET_POWER_STATE, 0);
if (state == power_state)
break;
msleep(1);
} while (time_after_eq(end_time, jiffies));
}
}
#ifdef SND_HDA_NEEDS_RESUME
/*
* call suspend and power-down; used both from PM and power-save
*/
static void hda_call_codec_suspend(struct hda_codec *codec)
{
if (codec->patch_ops.suspend)
codec->patch_ops.suspend(codec, PMSG_SUSPEND);
hda_set_power_state(codec,
codec->afg ? codec->afg : codec->mfg,
AC_PWRST_D3);
#ifdef CONFIG_SND_HDA_POWER_SAVE
cancel_delayed_work(&codec->power_work);
codec->power_on = 0;
codec->power_transition = 0;
#endif
}
/*
* kick up codec; used both from PM and power-save
*/
static void hda_call_codec_resume(struct hda_codec *codec)
{
hda_set_power_state(codec,
codec->afg ? codec->afg : codec->mfg,
AC_PWRST_D0);
if (codec->patch_ops.resume)
codec->patch_ops.resume(codec);
else {
if (codec->patch_ops.init)
codec->patch_ops.init(codec);
snd_hda_codec_resume_amp(codec);
snd_hda_codec_resume_cache(codec);
}
}
#endif /* SND_HDA_NEEDS_RESUME */
/**
* snd_hda_build_controls - build mixer controls
* @bus: the BUS
*
* Creates mixer controls for each codec included in the bus.
*
* Returns 0 if successful, otherwise a negative error code.
*/
int __devinit snd_hda_build_controls(struct hda_bus *bus)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
int err = 0;
/* fake as if already powered-on */
hda_keep_power_on(codec);
/* then fire up */
hda_set_power_state(codec,
codec->afg ? codec->afg : codec->mfg,
AC_PWRST_D0);
/* continue to initialize... */
if (codec->patch_ops.init)
err = codec->patch_ops.init(codec);
if (!err && codec->patch_ops.build_controls)
err = codec->patch_ops.build_controls(codec);
snd_hda_power_down(codec);
if (err < 0)
return err;
}
return 0;
}
/*
* stream formats
*/
struct hda_rate_tbl {
unsigned int hz;
unsigned int alsa_bits;
unsigned int hda_fmt;
};
static struct hda_rate_tbl rate_bits[] = {
/* rate in Hz, ALSA rate bitmask, HDA format value */
/* autodetected value used in snd_hda_query_supported_pcm */
{ 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
{ 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
{ 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
{ 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
{ 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
{ 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
{ 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
{ 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
{ 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
{ 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
{ 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
#define AC_PAR_PCM_RATE_BITS 11
/* up to bits 10, 384kHZ isn't supported properly */
/* not autodetected value */
{ 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
{ 0 } /* terminator */
};
/**
* snd_hda_calc_stream_format - calculate format bitset
* @rate: the sample rate
* @channels: the number of channels
* @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
* @maxbps: the max. bps
*
* Calculate the format bitset from the given rate, channels and th PCM format.
*
* Return zero if invalid.
*/
unsigned int snd_hda_calc_stream_format(unsigned int rate,
unsigned int channels,
unsigned int format,
unsigned int maxbps)
{
int i;
unsigned int val = 0;
for (i = 0; rate_bits[i].hz; i++)
if (rate_bits[i].hz == rate) {
val = rate_bits[i].hda_fmt;
break;
}
if (!rate_bits[i].hz) {
snd_printdd("invalid rate %d\n", rate);
return 0;
}
if (channels == 0 || channels > 8) {
snd_printdd("invalid channels %d\n", channels);
return 0;
}
val |= channels - 1;
switch (snd_pcm_format_width(format)) {
case 8: val |= 0x00; break;
case 16: val |= 0x10; break;
case 20:
case 24:
case 32:
if (maxbps >= 32)
val |= 0x40;
else if (maxbps >= 24)
val |= 0x30;
else
val |= 0x20;
break;
default:
snd_printdd("invalid format width %d\n",
snd_pcm_format_width(format));
return 0;
}
return val;
}
/**
* snd_hda_query_supported_pcm - query the supported PCM rates and formats
* @codec: the HDA codec
* @nid: NID to query
* @ratesp: the pointer to store the detected rate bitflags
* @formatsp: the pointer to store the detected formats
* @bpsp: the pointer to store the detected format widths
*
* Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
* or @bsps argument is ignored.
*
* Returns 0 if successful, otherwise a negative error code.
*/
int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
{
int i;
unsigned int val, streams;
val = 0;
if (nid != codec->afg &&
(get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
if (val == -1)
return -EIO;
}
if (!val)
val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
if (ratesp) {
u32 rates = 0;
for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
if (val & (1 << i))
rates |= rate_bits[i].alsa_bits;
}
*ratesp = rates;
}
if (formatsp || bpsp) {
u64 formats = 0;
unsigned int bps;
unsigned int wcaps;
wcaps = get_wcaps(codec, nid);
streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
if (streams == -1)
return -EIO;
if (!streams) {
streams = snd_hda_param_read(codec, codec->afg,
AC_PAR_STREAM);
if (streams == -1)
return -EIO;
}
bps = 0;
if (streams & AC_SUPFMT_PCM) {
if (val & AC_SUPPCM_BITS_8) {
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (val & AC_SUPPCM_BITS_16) {
formats |= SNDRV_PCM_FMTBIT_S16_LE;
bps = 16;
}
if (wcaps & AC_WCAP_DIGITAL) {
if (val & AC_SUPPCM_BITS_32)
formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
AC_SUPPCM_BITS_32)) {
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_32)
bps = 32;
else if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
}
}
else if (streams == AC_SUPFMT_FLOAT32) {
/* should be exclusive */
formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
bps = 32;
} else if (streams == AC_SUPFMT_AC3) {
/* should be exclusive */
/* temporary hack: we have still no proper support
* for the direct AC3 stream...
*/
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (formatsp)
*formatsp = formats;
if (bpsp)
*bpsp = bps;
}
return 0;
}
/**
* snd_hda_is_supported_format - check whether the given node supports
* the format val
*
* Returns 1 if supported, 0 if not.
*/
int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
unsigned int format)
{
int i;
unsigned int val = 0, rate, stream;
if (nid != codec->afg &&
(get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
if (val == -1)
return 0;
}
if (!val) {
val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
if (val == -1)
return 0;
}
rate = format & 0xff00;
for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
if (rate_bits[i].hda_fmt == rate) {
if (val & (1 << i))
break;
return 0;
}
if (i >= AC_PAR_PCM_RATE_BITS)
return 0;
stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
if (stream == -1)
return 0;
if (!stream && nid != codec->afg)
stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
if (!stream || stream == -1)
return 0;
if (stream & AC_SUPFMT_PCM) {
switch (format & 0xf0) {
case 0x00:
if (!(val & AC_SUPPCM_BITS_8))
return 0;
break;
case 0x10:
if (!(val & AC_SUPPCM_BITS_16))
return 0;
break;
case 0x20:
if (!(val & AC_SUPPCM_BITS_20))
return 0;
break;
case 0x30:
if (!(val & AC_SUPPCM_BITS_24))
return 0;
break;
case 0x40:
if (!(val & AC_SUPPCM_BITS_32))
return 0;
break;
default:
return 0;
}
} else {
/* FIXME: check for float32 and AC3? */
}
return 1;
}
/*
* PCM stuff
*/
static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
return 0;
}
static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
return 0;
}
static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
return 0;
}
static int __devinit set_pcm_default_values(struct hda_codec *codec,
struct hda_pcm_stream *info)
{
/* query support PCM information from the given NID */
if (info->nid && (!info->rates || !info->formats)) {
snd_hda_query_supported_pcm(codec, info->nid,
info->rates ? NULL : &info->rates,
info->formats ? NULL : &info->formats,
info->maxbps ? NULL : &info->maxbps);
}
if (info->ops.open == NULL)
info->ops.open = hda_pcm_default_open_close;
if (info->ops.close == NULL)
info->ops.close = hda_pcm_default_open_close;
if (info->ops.prepare == NULL) {
snd_assert(info->nid, return -EINVAL);
info->ops.prepare = hda_pcm_default_prepare;
}
if (info->ops.cleanup == NULL) {
snd_assert(info->nid, return -EINVAL);
info->ops.cleanup = hda_pcm_default_cleanup;
}
return 0;
}
/**
* snd_hda_build_pcms - build PCM information
* @bus: the BUS
*
* Create PCM information for each codec included in the bus.
*
* The build_pcms codec patch is requested to set up codec->num_pcms and
* codec->pcm_info properly. The array is referred by the top-level driver
* to create its PCM instances.
* The allocated codec->pcm_info should be released in codec->patch_ops.free
* callback.
*
* At least, substreams, channels_min and channels_max must be filled for
* each stream. substreams = 0 indicates that the stream doesn't exist.
* When rates and/or formats are zero, the supported values are queried
* from the given nid. The nid is used also by the default ops.prepare
* and ops.cleanup callbacks.
*
* The driver needs to call ops.open in its open callback. Similarly,
* ops.close is supposed to be called in the close callback.
* ops.prepare should be called in the prepare or hw_params callback
* with the proper parameters for set up.
* ops.cleanup should be called in hw_free for clean up of streams.
*
* This function returns 0 if successfull, or a negative error code.
*/
int __devinit snd_hda_build_pcms(struct hda_bus *bus)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
unsigned int pcm, s;
int err;
if (!codec->patch_ops.build_pcms)
continue;
err = codec->patch_ops.build_pcms(codec);
if (err < 0)
return err;
for (pcm = 0; pcm < codec->num_pcms; pcm++) {
for (s = 0; s < 2; s++) {
struct hda_pcm_stream *info;
info = &codec->pcm_info[pcm].stream[s];
if (!info->substreams)
continue;
err = set_pcm_default_values(codec, info);
if (err < 0)
return err;
}
}
}
return 0;
}
/**
* snd_hda_check_board_config - compare the current codec with the config table
* @codec: the HDA codec
* @num_configs: number of config enums
* @models: array of model name strings
* @tbl: configuration table, terminated by null entries
*
* Compares the modelname or PCI subsystem id of the current codec with the
* given configuration table. If a matching entry is found, returns its
* config value (supposed to be 0 or positive).
*
* If no entries are matching, the function returns a negative value.
*/
int snd_hda_check_board_config(struct hda_codec *codec,
int num_configs, const char **models,
const struct snd_pci_quirk *tbl)
{
if (codec->bus->modelname && models) {
int i;
for (i = 0; i < num_configs; i++) {
if (models[i] &&
!strcmp(codec->bus->modelname, models[i])) {
snd_printd(KERN_INFO "hda_codec: model '%s' is "
"selected\n", models[i]);
return i;
}
}
}
if (!codec->bus->pci || !tbl)
return -1;
tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
if (!tbl)
return -1;
if (tbl->value >= 0 && tbl->value < num_configs) {
#ifdef CONFIG_SND_DEBUG_DETECT
char tmp[10];
const char *model = NULL;
if (models)
model = models[tbl->value];
if (!model) {
sprintf(tmp, "#%d", tbl->value);
model = tmp;
}
snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
"for config %x:%x (%s)\n",
model, tbl->subvendor, tbl->subdevice,
(tbl->name ? tbl->name : "Unknown device"));
#endif
return tbl->value;
}
return -1;
}
/**
* snd_hda_add_new_ctls - create controls from the array
* @codec: the HDA codec
* @knew: the array of struct snd_kcontrol_new
*
* This helper function creates and add new controls in the given array.
* The array must be terminated with an empty entry as terminator.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
{
int err;
for (; knew->name; knew++) {
struct snd_kcontrol *kctl;
kctl = snd_ctl_new1(knew, codec);
if (!kctl)
return -ENOMEM;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0) {
if (!codec->addr)
return err;
kctl = snd_ctl_new1(knew, codec);
if (!kctl)
return -ENOMEM;
kctl->id.device = codec->addr;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0)
return err;
}
}
return 0;
}
#ifdef CONFIG_SND_HDA_POWER_SAVE
static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
unsigned int power_state);
static void hda_power_work(struct work_struct *work)
{
struct hda_codec *codec =
container_of(work, struct hda_codec, power_work.work);
if (!codec->power_on || codec->power_count) {
codec->power_transition = 0;
return;
}
hda_call_codec_suspend(codec);
if (codec->bus->ops.pm_notify)
codec->bus->ops.pm_notify(codec);
}
static void hda_keep_power_on(struct hda_codec *codec)
{
codec->power_count++;
codec->power_on = 1;
}
void snd_hda_power_up(struct hda_codec *codec)
{
codec->power_count++;
if (codec->power_on || codec->power_transition)
return;
codec->power_on = 1;
if (codec->bus->ops.pm_notify)
codec->bus->ops.pm_notify(codec);
hda_call_codec_resume(codec);
cancel_delayed_work(&codec->power_work);
codec->power_transition = 0;
}
void snd_hda_power_down(struct hda_codec *codec)
{
--codec->power_count;
if (!codec->power_on || codec->power_count || codec->power_transition)
return;
if (power_save) {
codec->power_transition = 1; /* avoid reentrance */
schedule_delayed_work(&codec->power_work,
msecs_to_jiffies(power_save * 1000));
}
}
int snd_hda_check_amp_list_power(struct hda_codec *codec,
struct hda_loopback_check *check,
hda_nid_t nid)
{
struct hda_amp_list *p;
int ch, v;
if (!check->amplist)
return 0;
for (p = check->amplist; p->nid; p++) {
if (p->nid == nid)
break;
}
if (!p->nid)
return 0; /* nothing changed */
for (p = check->amplist; p->nid; p++) {
for (ch = 0; ch < 2; ch++) {
v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir,
p->idx);
if (!(v & HDA_AMP_MUTE) && v > 0) {
if (!check->power_on) {
check->power_on = 1;
snd_hda_power_up(codec);
}
return 1;
}
}
}
if (check->power_on) {
check->power_on = 0;
snd_hda_power_down(codec);
}
return 0;
}
#endif
/*
* Channel mode helper
*/
int snd_hda_ch_mode_info(struct hda_codec *codec,
struct snd_ctl_elem_info *uinfo,
const struct hda_channel_mode *chmode,
int num_chmodes)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = num_chmodes;
if (uinfo->value.enumerated.item >= num_chmodes)
uinfo->value.enumerated.item = num_chmodes - 1;
sprintf(uinfo->value.enumerated.name, "%dch",
chmode[uinfo->value.enumerated.item].channels);
return 0;
}
int snd_hda_ch_mode_get(struct hda_codec *codec,
struct snd_ctl_elem_value *ucontrol,
const struct hda_channel_mode *chmode,
int num_chmodes,
int max_channels)
{
int i;
for (i = 0; i < num_chmodes; i++) {
if (max_channels == chmode[i].channels) {
ucontrol->value.enumerated.item[0] = i;
break;
}
}
return 0;
}
int snd_hda_ch_mode_put(struct hda_codec *codec,
struct snd_ctl_elem_value *ucontrol,
const struct hda_channel_mode *chmode,
int num_chmodes,
int *max_channelsp)
{
unsigned int mode;
mode = ucontrol->value.enumerated.item[0];
if (mode >= num_chmodes)
return -EINVAL;
if (*max_channelsp == chmode[mode].channels)
return 0;
/* change the current channel setting */
*max_channelsp = chmode[mode].channels;
if (chmode[mode].sequence)
snd_hda_sequence_write_cache(codec, chmode[mode].sequence);
return 1;
}
/*
* input MUX helper
*/
int snd_hda_input_mux_info(const struct hda_input_mux *imux,
struct snd_ctl_elem_info *uinfo)
{
unsigned int index;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = imux->num_items;
if (!imux->num_items)
return 0;
index = uinfo->value.enumerated.item;
if (index >= imux->num_items)
index = imux->num_items - 1;
strcpy(uinfo->value.enumerated.name, imux->items[index].label);
return 0;
}
int snd_hda_input_mux_put(struct hda_codec *codec,
const struct hda_input_mux *imux,
struct snd_ctl_elem_value *ucontrol,
hda_nid_t nid,
unsigned int *cur_val)
{
unsigned int idx;
if (!imux->num_items)
return 0;
idx = ucontrol->value.enumerated.item[0];
if (idx >= imux->num_items)
idx = imux->num_items - 1;
if (*cur_val == idx)
return 0;
snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
imux->items[idx].index);
*cur_val = idx;
return 1;
}
/*
* Multi-channel / digital-out PCM helper functions
*/
/* setup SPDIF output stream */
static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
unsigned int stream_tag, unsigned int format)
{
/* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
if (codec->spdif_ctls & AC_DIG1_ENABLE)
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
/* turn on again (if needed) */
if (codec->spdif_ctls & AC_DIG1_ENABLE)
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
codec->spdif_ctls & 0xff);
}
/*
* open the digital out in the exclusive mode
*/
int snd_hda_multi_out_dig_open(struct hda_codec *codec,
struct hda_multi_out *mout)
{
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
/* already opened as analog dup; reset it once */
snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
mout->dig_out_used = HDA_DIG_EXCLUSIVE;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
struct hda_multi_out *mout,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
mutex_lock(&codec->spdif_mutex);
setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/*
* release the digital out
*/
int snd_hda_multi_out_dig_close(struct hda_codec *codec,
struct hda_multi_out *mout)
{
mutex_lock(&codec->spdif_mutex);
mout->dig_out_used = 0;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/*
* set up more restrictions for analog out
*/
int snd_hda_multi_out_analog_open(struct hda_codec *codec,
struct hda_multi_out *mout,
struct snd_pcm_substream *substream)
{
substream->runtime->hw.channels_max = mout->max_channels;
return snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS, 2);
}
/*
* set up the i/o for analog out
* when the digital out is available, copy the front out to digital out, too.
*/
int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
struct hda_multi_out *mout,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
hda_nid_t *nids = mout->dac_nids;
int chs = substream->runtime->channels;
int i;
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
if (chs == 2 &&
snd_hda_is_supported_format(codec, mout->dig_out_nid,
format) &&
!(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
mout->dig_out_used = HDA_DIG_ANALOG_DUP;
setup_dig_out_stream(codec, mout->dig_out_nid,
stream_tag, format);
} else {
mout->dig_out_used = 0;
snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
0, 0, 0);
}
}
mutex_unlock(&codec->spdif_mutex);
/* front */
snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
0, format);
if (!mout->no_share_stream &&
mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
/* headphone out will just decode front left/right (stereo) */
snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
0, format);
/* extra outputs copied from front */
for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
if (!mout->no_share_stream && mout->extra_out_nid[i])
snd_hda_codec_setup_stream(codec,
mout->extra_out_nid[i],
stream_tag, 0, format);
/* surrounds */
for (i = 1; i < mout->num_dacs; i++) {
if (chs >= (i + 1) * 2) /* independent out */
snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
i * 2, format);
else if (!mout->no_share_stream) /* copy front */
snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
0, format);
}
return 0;
}
/*
* clean up the setting for analog out
*/
int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
struct hda_multi_out *mout)
{
hda_nid_t *nids = mout->dac_nids;
int i;
for (i = 0; i < mout->num_dacs; i++)
snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
if (mout->hp_nid)
snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
if (mout->extra_out_nid[i])
snd_hda_codec_setup_stream(codec,
mout->extra_out_nid[i],
0, 0, 0);
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
mout->dig_out_used = 0;
}
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/*
* Helper for automatic ping configuration
*/
static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
{
for (; *list; list++)
if (*list == nid)
return 1;
return 0;
}
/*
* Sort an associated group of pins according to their sequence numbers.
*/
static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
int num_pins)
{
int i, j;
short seq;
hda_nid_t nid;
for (i = 0; i < num_pins; i++) {
for (j = i + 1; j < num_pins; j++) {
if (sequences[i] > sequences[j]) {
seq = sequences[i];
sequences[i] = sequences[j];
sequences[j] = seq;
nid = pins[i];
pins[i] = pins[j];
pins[j] = nid;
}
}
}
}
/*
* Parse all pin widgets and store the useful pin nids to cfg
*
* The number of line-outs or any primary output is stored in line_outs,
* and the corresponding output pins are assigned to line_out_pins[],
* in the order of front, rear, CLFE, side, ...
*
* If more extra outputs (speaker and headphone) are found, the pins are
* assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
* is detected, one of speaker of HP pins is assigned as the primary
* output, i.e. to line_out_pins[0]. So, line_outs is always positive
* if any analog output exists.
*
* The analog input pins are assigned to input_pins array.
* The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
* respectively.
*/
int snd_hda_parse_pin_def_config(struct hda_codec *codec,
struct auto_pin_cfg *cfg,
hda_nid_t *ignore_nids)
{
hda_nid_t nid, end_nid;
short seq, assoc_line_out, assoc_speaker;
short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
short sequences_hp[ARRAY_SIZE(cfg->hp_pins)];
memset(cfg, 0, sizeof(*cfg));
memset(sequences_line_out, 0, sizeof(sequences_line_out));
memset(sequences_speaker, 0, sizeof(sequences_speaker));
memset(sequences_hp, 0, sizeof(sequences_hp));
assoc_line_out = assoc_speaker = 0;
end_nid = codec->start_nid + codec->num_nodes;
for (nid = codec->start_nid; nid < end_nid; nid++) {
unsigned int wid_caps = get_wcaps(codec, nid);
unsigned int wid_type =
(wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
unsigned int def_conf;
short assoc, loc;
/* read all default configuration for pin complex */
if (wid_type != AC_WID_PIN)
continue;
/* ignore the given nids (e.g. pc-beep returns error) */
if (ignore_nids && is_in_nid_list(nid, ignore_nids))
continue;
def_conf = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_CONFIG_DEFAULT, 0);
if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
continue;
loc = get_defcfg_location(def_conf);
switch (get_defcfg_device(def_conf)) {
case AC_JACK_LINE_OUT:
seq = get_defcfg_sequence(def_conf);
assoc = get_defcfg_association(def_conf);
if (!(wid_caps & AC_WCAP_STEREO))
if (!cfg->mono_out_pin)
cfg->mono_out_pin = nid;
if (!assoc)
continue;
if (!assoc_line_out)
assoc_line_out = assoc;
else if (assoc_line_out != assoc)
continue;
if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
continue;
cfg->line_out_pins[cfg->line_outs] = nid;
sequences_line_out[cfg->line_outs] = seq;
cfg->line_outs++;
break;
case AC_JACK_SPEAKER:
seq = get_defcfg_sequence(def_conf);
assoc = get_defcfg_association(def_conf);
if (! assoc)
continue;
if (! assoc_speaker)
assoc_speaker = assoc;
else if (assoc_speaker != assoc)
continue;
if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
continue;
cfg->speaker_pins[cfg->speaker_outs] = nid;
sequences_speaker[cfg->speaker_outs] = seq;
cfg->speaker_outs++;
break;
case AC_JACK_HP_OUT:
seq = get_defcfg_sequence(def_conf);
assoc = get_defcfg_association(def_conf);
if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
continue;
cfg->hp_pins[cfg->hp_outs] = nid;
sequences_hp[cfg->hp_outs] = (assoc << 4) | seq;
cfg->hp_outs++;
break;
case AC_JACK_MIC_IN: {
int preferred, alt;
if (loc == AC_JACK_LOC_FRONT) {
preferred = AUTO_PIN_FRONT_MIC;
alt = AUTO_PIN_MIC;
} else {
preferred = AUTO_PIN_MIC;
alt = AUTO_PIN_FRONT_MIC;
}
if (!cfg->input_pins[preferred])
cfg->input_pins[preferred] = nid;
else if (!cfg->input_pins[alt])
cfg->input_pins[alt] = nid;
break;
}
case AC_JACK_LINE_IN:
if (loc == AC_JACK_LOC_FRONT)
cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
else
cfg->input_pins[AUTO_PIN_LINE] = nid;
break;
case AC_JACK_CD:
cfg->input_pins[AUTO_PIN_CD] = nid;
break;
case AC_JACK_AUX:
cfg->input_pins[AUTO_PIN_AUX] = nid;
break;
case AC_JACK_SPDIF_OUT:
cfg->dig_out_pin = nid;
break;
case AC_JACK_SPDIF_IN:
cfg->dig_in_pin = nid;
break;
}
}
/* sort by sequence */
sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
cfg->line_outs);
sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
cfg->speaker_outs);
sort_pins_by_sequence(cfg->hp_pins, sequences_hp,
cfg->hp_outs);
/* if we have only one mic, make it AUTO_PIN_MIC */
if (!cfg->input_pins[AUTO_PIN_MIC] &&
cfg->input_pins[AUTO_PIN_FRONT_MIC]) {
cfg->input_pins[AUTO_PIN_MIC] =
cfg->input_pins[AUTO_PIN_FRONT_MIC];
cfg->input_pins[AUTO_PIN_FRONT_MIC] = 0;
}
/* ditto for line-in */
if (!cfg->input_pins[AUTO_PIN_LINE] &&
cfg->input_pins[AUTO_PIN_FRONT_LINE]) {
cfg->input_pins[AUTO_PIN_LINE] =
cfg->input_pins[AUTO_PIN_FRONT_LINE];
cfg->input_pins[AUTO_PIN_FRONT_LINE] = 0;
}
/*
* FIX-UP: if no line-outs are detected, try to use speaker or HP pin
* as a primary output
*/
if (!cfg->line_outs) {
if (cfg->speaker_outs) {
cfg->line_outs = cfg->speaker_outs;
memcpy(cfg->line_out_pins, cfg->speaker_pins,
sizeof(cfg->speaker_pins));
cfg->speaker_outs = 0;
memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
} else if (cfg->hp_outs) {
cfg->line_outs = cfg->hp_outs;
memcpy(cfg->line_out_pins, cfg->hp_pins,
sizeof(cfg->hp_pins));
cfg->hp_outs = 0;
memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
cfg->line_out_type = AUTO_PIN_HP_OUT;
}
}
/* Reorder the surround channels
* ALSA sequence is front/surr/clfe/side
* HDA sequence is:
* 4-ch: front/surr => OK as it is
* 6-ch: front/clfe/surr
* 8-ch: front/clfe/rear/side|fc
*/
switch (cfg->line_outs) {
case 3:
case 4:
nid = cfg->line_out_pins[1];
cfg->line_out_pins[1] = cfg->line_out_pins[2];
cfg->line_out_pins[2] = nid;
break;
}
/*
* debug prints of the parsed results
*/
snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
cfg->line_out_pins[2], cfg->line_out_pins[3],
cfg->line_out_pins[4]);
snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
cfg->speaker_outs, cfg->speaker_pins[0],
cfg->speaker_pins[1], cfg->speaker_pins[2],
cfg->speaker_pins[3], cfg->speaker_pins[4]);
snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
cfg->hp_outs, cfg->hp_pins[0],
cfg->hp_pins[1], cfg->hp_pins[2],
cfg->hp_pins[3], cfg->hp_pins[4]);
snd_printd(" mono: mono_out=0x%x\n", cfg->mono_out_pin);
snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
" cd=0x%x, aux=0x%x\n",
cfg->input_pins[AUTO_PIN_MIC],
cfg->input_pins[AUTO_PIN_FRONT_MIC],
cfg->input_pins[AUTO_PIN_LINE],
cfg->input_pins[AUTO_PIN_FRONT_LINE],
cfg->input_pins[AUTO_PIN_CD],
cfg->input_pins[AUTO_PIN_AUX]);
return 0;
}
/* labels for input pins */
const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
"Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
};
#ifdef CONFIG_PM
/*
* power management
*/
/**
* snd_hda_suspend - suspend the codecs
* @bus: the HDA bus
* @state: suspsend state
*
* Returns 0 if successful.
*/
int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
#ifdef CONFIG_SND_HDA_POWER_SAVE
if (!codec->power_on)
continue;
#endif
hda_call_codec_suspend(codec);
}
return 0;
}
/**
* snd_hda_resume - resume the codecs
* @bus: the HDA bus
* @state: resume state
*
* Returns 0 if successful.
*
* This fucntion is defined only when POWER_SAVE isn't set.
* In the power-save mode, the codec is resumed dynamically.
*/
int snd_hda_resume(struct hda_bus *bus)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
if (snd_hda_codec_needs_resume(codec))
hda_call_codec_resume(codec);
}
return 0;
}
#ifdef CONFIG_SND_HDA_POWER_SAVE
int snd_hda_codecs_inuse(struct hda_bus *bus)
{
struct hda_codec *codec;
list_for_each_entry(codec, &bus->codec_list, list) {
if (snd_hda_codec_needs_resume(codec))
return 1;
}
return 0;
}
#endif
#endif