android_kernel_xiaomi_sm8350/drivers/ata/sata_fsl.c
Tejun Heo ff2aeb1eb6 libata: convert to chained sg
libata used private sg iterator to handle padding sg.  Now that sg can
be chained, padding can be handled using standard sg ops.  Convert to
chained sg.

* s/qc->__sg/qc->sg/

* s/qc->pad_sgent/qc->extra_sg[]/.  Because chaining consumes one sg
  entry.  There need to be two extra sg entries.  The renaming is also
  for future addition of other extra sg entries.

* Padding setup is moved into ata_sg_setup_extra() which is organized
  in a way that future addition of other extra sg entries is easy.

* qc->orig_n_elem is unused and removed.

* qc->n_elem now contains the number of sg entries that LLDs should
  map.  qc->mapped_n_elem is added to carry the original number of
  mapped sgs for unmapping.

* The last sg of the original sg list is used to chain to extra sg
  list.  The original last sg is pointed to by qc->last_sg and the
  content is stored in qc->saved_last_sg.  It's restored during
  ata_sg_clean().

* All sg walking code has been updated.  Unnecessary assertions and
  checks for conditions the core layer already guarantees are removed.

Signed-off-by: Tejun Heo <htejun@gmail.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2008-01-23 05:24:14 -05:00

1398 lines
36 KiB
C

/*
* drivers/ata/sata_fsl.c
*
* Freescale 3.0Gbps SATA device driver
*
* Author: Ashish Kalra <ashish.kalra@freescale.com>
* Li Yang <leoli@freescale.com>
*
* Copyright (c) 2006-2007 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <linux/libata.h>
#include <asm/io.h>
#include <linux/of_platform.h>
/* Controller information */
enum {
SATA_FSL_QUEUE_DEPTH = 16,
SATA_FSL_MAX_PRD = 63,
SATA_FSL_MAX_PRD_USABLE = SATA_FSL_MAX_PRD - 1,
SATA_FSL_MAX_PRD_DIRECT = 16, /* Direct PRDT entries */
SATA_FSL_HOST_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_MMIO | ATA_FLAG_PIO_DMA |
ATA_FLAG_NCQ),
SATA_FSL_HOST_LFLAGS = ATA_LFLAG_SKIP_D2H_BSY,
SATA_FSL_MAX_CMDS = SATA_FSL_QUEUE_DEPTH,
SATA_FSL_CMD_HDR_SIZE = 16, /* 4 DWORDS */
SATA_FSL_CMD_SLOT_SIZE = (SATA_FSL_MAX_CMDS * SATA_FSL_CMD_HDR_SIZE),
/*
* SATA-FSL host controller supports a max. of (15+1) direct PRDEs, and
* chained indirect PRDEs upto a max count of 63.
* We are allocating an array of 63 PRDEs contigiously, but PRDE#15 will
* be setup as an indirect descriptor, pointing to it's next
* (contigious) PRDE. Though chained indirect PRDE arrays are
* supported,it will be more efficient to use a direct PRDT and
* a single chain/link to indirect PRDE array/PRDT.
*/
SATA_FSL_CMD_DESC_CFIS_SZ = 32,
SATA_FSL_CMD_DESC_SFIS_SZ = 32,
SATA_FSL_CMD_DESC_ACMD_SZ = 16,
SATA_FSL_CMD_DESC_RSRVD = 16,
SATA_FSL_CMD_DESC_SIZE = (SATA_FSL_CMD_DESC_CFIS_SZ +
SATA_FSL_CMD_DESC_SFIS_SZ +
SATA_FSL_CMD_DESC_ACMD_SZ +
SATA_FSL_CMD_DESC_RSRVD +
SATA_FSL_MAX_PRD * 16),
SATA_FSL_CMD_DESC_OFFSET_TO_PRDT =
(SATA_FSL_CMD_DESC_CFIS_SZ +
SATA_FSL_CMD_DESC_SFIS_SZ +
SATA_FSL_CMD_DESC_ACMD_SZ +
SATA_FSL_CMD_DESC_RSRVD),
SATA_FSL_CMD_DESC_AR_SZ = (SATA_FSL_CMD_DESC_SIZE * SATA_FSL_MAX_CMDS),
SATA_FSL_PORT_PRIV_DMA_SZ = (SATA_FSL_CMD_SLOT_SIZE +
SATA_FSL_CMD_DESC_AR_SZ),
/*
* MPC8315 has two SATA controllers, SATA1 & SATA2
* (one port per controller)
* MPC837x has 2/4 controllers, one port per controller
*/
SATA_FSL_MAX_PORTS = 1,
SATA_FSL_IRQ_FLAG = IRQF_SHARED,
};
/*
* Host Controller command register set - per port
*/
enum {
CQ = 0,
CA = 8,
CC = 0x10,
CE = 0x18,
DE = 0x20,
CHBA = 0x24,
HSTATUS = 0x28,
HCONTROL = 0x2C,
CQPMP = 0x30,
SIGNATURE = 0x34,
ICC = 0x38,
/*
* Host Status Register (HStatus) bitdefs
*/
ONLINE = (1 << 31),
GOING_OFFLINE = (1 << 30),
BIST_ERR = (1 << 29),
FATAL_ERR_HC_MASTER_ERR = (1 << 18),
FATAL_ERR_PARITY_ERR_TX = (1 << 17),
FATAL_ERR_PARITY_ERR_RX = (1 << 16),
FATAL_ERR_DATA_UNDERRUN = (1 << 13),
FATAL_ERR_DATA_OVERRUN = (1 << 12),
FATAL_ERR_CRC_ERR_TX = (1 << 11),
FATAL_ERR_CRC_ERR_RX = (1 << 10),
FATAL_ERR_FIFO_OVRFL_TX = (1 << 9),
FATAL_ERR_FIFO_OVRFL_RX = (1 << 8),
FATAL_ERROR_DECODE = FATAL_ERR_HC_MASTER_ERR |
FATAL_ERR_PARITY_ERR_TX |
FATAL_ERR_PARITY_ERR_RX |
FATAL_ERR_DATA_UNDERRUN |
FATAL_ERR_DATA_OVERRUN |
FATAL_ERR_CRC_ERR_TX |
FATAL_ERR_CRC_ERR_RX |
FATAL_ERR_FIFO_OVRFL_TX | FATAL_ERR_FIFO_OVRFL_RX,
INT_ON_FATAL_ERR = (1 << 5),
INT_ON_PHYRDY_CHG = (1 << 4),
INT_ON_SIGNATURE_UPDATE = (1 << 3),
INT_ON_SNOTIFY_UPDATE = (1 << 2),
INT_ON_SINGL_DEVICE_ERR = (1 << 1),
INT_ON_CMD_COMPLETE = 1,
INT_ON_ERROR = INT_ON_FATAL_ERR |
INT_ON_PHYRDY_CHG | INT_ON_SINGL_DEVICE_ERR,
/*
* Host Control Register (HControl) bitdefs
*/
HCONTROL_ONLINE_PHY_RST = (1 << 31),
HCONTROL_FORCE_OFFLINE = (1 << 30),
HCONTROL_PARITY_PROT_MOD = (1 << 14),
HCONTROL_DPATH_PARITY = (1 << 12),
HCONTROL_SNOOP_ENABLE = (1 << 10),
HCONTROL_PMP_ATTACHED = (1 << 9),
HCONTROL_COPYOUT_STATFIS = (1 << 8),
IE_ON_FATAL_ERR = (1 << 5),
IE_ON_PHYRDY_CHG = (1 << 4),
IE_ON_SIGNATURE_UPDATE = (1 << 3),
IE_ON_SNOTIFY_UPDATE = (1 << 2),
IE_ON_SINGL_DEVICE_ERR = (1 << 1),
IE_ON_CMD_COMPLETE = 1,
DEFAULT_PORT_IRQ_ENABLE_MASK = IE_ON_FATAL_ERR | IE_ON_PHYRDY_CHG |
IE_ON_SIGNATURE_UPDATE |
IE_ON_SINGL_DEVICE_ERR | IE_ON_CMD_COMPLETE,
EXT_INDIRECT_SEG_PRD_FLAG = (1 << 31),
DATA_SNOOP_ENABLE = (1 << 22),
};
/*
* SATA Superset Registers
*/
enum {
SSTATUS = 0,
SERROR = 4,
SCONTROL = 8,
SNOTIFY = 0xC,
};
/*
* Control Status Register Set
*/
enum {
TRANSCFG = 0,
TRANSSTATUS = 4,
LINKCFG = 8,
LINKCFG1 = 0xC,
LINKCFG2 = 0x10,
LINKSTATUS = 0x14,
LINKSTATUS1 = 0x18,
PHYCTRLCFG = 0x1C,
COMMANDSTAT = 0x20,
};
/* PHY (link-layer) configuration control */
enum {
PHY_BIST_ENABLE = 0x01,
};
/*
* Command Header Table entry, i.e, command slot
* 4 Dwords per command slot, command header size == 64 Dwords.
*/
struct cmdhdr_tbl_entry {
u32 cda;
u32 prde_fis_len;
u32 ttl;
u32 desc_info;
};
/*
* Description information bitdefs
*/
enum {
VENDOR_SPECIFIC_BIST = (1 << 10),
CMD_DESC_SNOOP_ENABLE = (1 << 9),
FPDMA_QUEUED_CMD = (1 << 8),
SRST_CMD = (1 << 7),
BIST = (1 << 6),
ATAPI_CMD = (1 << 5),
};
/*
* Command Descriptor
*/
struct command_desc {
u8 cfis[8 * 4];
u8 sfis[8 * 4];
u8 acmd[4 * 4];
u8 fill[4 * 4];
u32 prdt[SATA_FSL_MAX_PRD_DIRECT * 4];
u32 prdt_indirect[(SATA_FSL_MAX_PRD - SATA_FSL_MAX_PRD_DIRECT) * 4];
};
/*
* Physical region table descriptor(PRD)
*/
struct prde {
u32 dba;
u8 fill[2 * 4];
u32 ddc_and_ext;
};
/*
* ata_port private data
* This is our per-port instance data.
*/
struct sata_fsl_port_priv {
struct cmdhdr_tbl_entry *cmdslot;
dma_addr_t cmdslot_paddr;
struct command_desc *cmdentry;
dma_addr_t cmdentry_paddr;
/*
* SATA FSL controller has a Status FIS which should contain the
* received D2H FIS & taskfile registers. This SFIS is present in
* the command descriptor, and to have a ready reference to it,
* we are caching it here, quite similar to what is done in H/W on
* AHCI compliant devices by copying taskfile fields to a 32-bit
* register.
*/
struct ata_taskfile tf;
};
/*
* ata_port->host_set private data
*/
struct sata_fsl_host_priv {
void __iomem *hcr_base;
void __iomem *ssr_base;
void __iomem *csr_base;
int irq;
};
static inline unsigned int sata_fsl_tag(unsigned int tag,
void __iomem *hcr_base)
{
/* We let libATA core do actual (queue) tag allocation */
/* all non NCQ/queued commands should have tag#0 */
if (ata_tag_internal(tag)) {
DPRINTK("mapping internal cmds to tag#0\n");
return 0;
}
if (unlikely(tag >= SATA_FSL_QUEUE_DEPTH)) {
DPRINTK("tag %d invalid : out of range\n", tag);
return 0;
}
if (unlikely((ioread32(hcr_base + CQ)) & (1 << tag))) {
DPRINTK("tag %d invalid : in use!!\n", tag);
return 0;
}
return tag;
}
static void sata_fsl_setup_cmd_hdr_entry(struct sata_fsl_port_priv *pp,
unsigned int tag, u32 desc_info,
u32 data_xfer_len, u8 num_prde,
u8 fis_len)
{
dma_addr_t cmd_descriptor_address;
cmd_descriptor_address = pp->cmdentry_paddr +
tag * SATA_FSL_CMD_DESC_SIZE;
/* NOTE: both data_xfer_len & fis_len are Dword counts */
pp->cmdslot[tag].cda = cpu_to_le32(cmd_descriptor_address);
pp->cmdslot[tag].prde_fis_len =
cpu_to_le32((num_prde << 16) | (fis_len << 2));
pp->cmdslot[tag].ttl = cpu_to_le32(data_xfer_len & ~0x03);
pp->cmdslot[tag].desc_info = cpu_to_le32(desc_info | (tag & 0x1F));
VPRINTK("cda=0x%x, prde_fis_len=0x%x, ttl=0x%x, di=0x%x\n",
pp->cmdslot[tag].cda,
pp->cmdslot[tag].prde_fis_len,
pp->cmdslot[tag].ttl, pp->cmdslot[tag].desc_info);
}
static unsigned int sata_fsl_fill_sg(struct ata_queued_cmd *qc, void *cmd_desc,
u32 *ttl, dma_addr_t cmd_desc_paddr)
{
struct scatterlist *sg;
unsigned int num_prde = 0;
u32 ttl_dwords = 0;
unsigned int si;
/*
* NOTE : direct & indirect prdt's are contigiously allocated
*/
struct prde *prd = (struct prde *)&((struct command_desc *)
cmd_desc)->prdt;
struct prde *prd_ptr_to_indirect_ext = NULL;
unsigned indirect_ext_segment_sz = 0;
dma_addr_t indirect_ext_segment_paddr;
unsigned int si;
VPRINTK("SATA FSL : cd = 0x%x, prd = 0x%x\n", cmd_desc, prd);
indirect_ext_segment_paddr = cmd_desc_paddr +
SATA_FSL_CMD_DESC_OFFSET_TO_PRDT + SATA_FSL_MAX_PRD_DIRECT * 16;
for_each_sg(qc->sg, sg, qc->n_elem, si) {
dma_addr_t sg_addr = sg_dma_address(sg);
u32 sg_len = sg_dma_len(sg);
VPRINTK("SATA FSL : fill_sg, sg_addr = 0x%x, sg_len = %d\n",
sg_addr, sg_len);
/* warn if each s/g element is not dword aligned */
if (sg_addr & 0x03)
ata_port_printk(qc->ap, KERN_ERR,
"s/g addr unaligned : 0x%x\n", sg_addr);
if (sg_len & 0x03)
ata_port_printk(qc->ap, KERN_ERR,
"s/g len unaligned : 0x%x\n", sg_len);
if ((num_prde == (SATA_FSL_MAX_PRD_DIRECT - 1)) &&
(qc->n_iter + 1 != qc->n_elem)) {
VPRINTK("setting indirect prde\n");
prd_ptr_to_indirect_ext = prd;
prd->dba = cpu_to_le32(indirect_ext_segment_paddr);
indirect_ext_segment_sz = 0;
++prd;
++num_prde;
}
ttl_dwords += sg_len;
prd->dba = cpu_to_le32(sg_addr);
prd->ddc_and_ext =
cpu_to_le32(DATA_SNOOP_ENABLE | (sg_len & ~0x03));
VPRINTK("sg_fill, ttl=%d, dba=0x%x, ddc=0x%x\n",
ttl_dwords, prd->dba, prd->ddc_and_ext);
++num_prde;
++prd;
if (prd_ptr_to_indirect_ext)
indirect_ext_segment_sz += sg_len;
}
if (prd_ptr_to_indirect_ext) {
/* set indirect extension flag along with indirect ext. size */
prd_ptr_to_indirect_ext->ddc_and_ext =
cpu_to_le32((EXT_INDIRECT_SEG_PRD_FLAG |
DATA_SNOOP_ENABLE |
(indirect_ext_segment_sz & ~0x03)));
}
*ttl = ttl_dwords;
return num_prde;
}
static void sata_fsl_qc_prep(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct sata_fsl_port_priv *pp = ap->private_data;
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
unsigned int tag = sata_fsl_tag(qc->tag, hcr_base);
struct command_desc *cd;
u32 desc_info = CMD_DESC_SNOOP_ENABLE;
u32 num_prde = 0;
u32 ttl_dwords = 0;
dma_addr_t cd_paddr;
cd = (struct command_desc *)pp->cmdentry + tag;
cd_paddr = pp->cmdentry_paddr + tag * SATA_FSL_CMD_DESC_SIZE;
ata_tf_to_fis(&qc->tf, 0, 1, (u8 *) &cd->cfis);
VPRINTK("Dumping cfis : 0x%x, 0x%x, 0x%x\n",
cd->cfis[0], cd->cfis[1], cd->cfis[2]);
if (qc->tf.protocol == ATA_PROT_NCQ) {
VPRINTK("FPDMA xfer,Sctor cnt[0:7],[8:15] = %d,%d\n",
cd->cfis[3], cd->cfis[11]);
}
/* setup "ACMD - atapi command" in cmd. desc. if this is ATAPI cmd */
if (ata_is_atapi(qc->tf.protocol)) {
desc_info |= ATAPI_CMD;
memset((void *)&cd->acmd, 0, 32);
memcpy((void *)&cd->acmd, qc->cdb, qc->dev->cdb_len);
}
if (qc->flags & ATA_QCFLAG_DMAMAP)
num_prde = sata_fsl_fill_sg(qc, (void *)cd,
&ttl_dwords, cd_paddr);
if (qc->tf.protocol == ATA_PROT_NCQ)
desc_info |= FPDMA_QUEUED_CMD;
sata_fsl_setup_cmd_hdr_entry(pp, tag, desc_info, ttl_dwords,
num_prde, 5);
VPRINTK("SATA FSL : xx_qc_prep, di = 0x%x, ttl = %d, num_prde = %d\n",
desc_info, ttl_dwords, num_prde);
}
static unsigned int sata_fsl_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
unsigned int tag = sata_fsl_tag(qc->tag, hcr_base);
VPRINTK("xx_qc_issue called,CQ=0x%x,CA=0x%x,CE=0x%x,CC=0x%x\n",
ioread32(CQ + hcr_base),
ioread32(CA + hcr_base),
ioread32(CE + hcr_base), ioread32(CC + hcr_base));
/* Simply queue command to the controller/device */
iowrite32(1 << tag, CQ + hcr_base);
VPRINTK("xx_qc_issue called, tag=%d, CQ=0x%x, CA=0x%x\n",
tag, ioread32(CQ + hcr_base), ioread32(CA + hcr_base));
VPRINTK("CE=0x%x, DE=0x%x, CC=0x%x, CmdStat = 0x%x\n",
ioread32(CE + hcr_base),
ioread32(DE + hcr_base),
ioread32(CC + hcr_base), ioread32(COMMANDSTAT + csr_base));
return 0;
}
static int sata_fsl_scr_write(struct ata_port *ap, unsigned int sc_reg_in,
u32 val)
{
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *ssr_base = host_priv->ssr_base;
unsigned int sc_reg;
switch (sc_reg_in) {
case SCR_STATUS:
case SCR_ERROR:
case SCR_CONTROL:
case SCR_ACTIVE:
sc_reg = sc_reg_in;
break;
default:
return -EINVAL;
}
VPRINTK("xx_scr_write, reg_in = %d\n", sc_reg);
iowrite32(val, ssr_base + (sc_reg * 4));
return 0;
}
static int sata_fsl_scr_read(struct ata_port *ap, unsigned int sc_reg_in,
u32 *val)
{
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *ssr_base = host_priv->ssr_base;
unsigned int sc_reg;
switch (sc_reg_in) {
case SCR_STATUS:
case SCR_ERROR:
case SCR_CONTROL:
case SCR_ACTIVE:
sc_reg = sc_reg_in;
break;
default:
return -EINVAL;
}
VPRINTK("xx_scr_read, reg_in = %d\n", sc_reg);
*val = ioread32(ssr_base + (sc_reg * 4));
return 0;
}
static void sata_fsl_freeze(struct ata_port *ap)
{
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
u32 temp;
VPRINTK("xx_freeze, CQ=0x%x, CA=0x%x, CE=0x%x, DE=0x%x\n",
ioread32(CQ + hcr_base),
ioread32(CA + hcr_base),
ioread32(CE + hcr_base), ioread32(DE + hcr_base));
VPRINTK("CmdStat = 0x%x\n", ioread32(csr_base + COMMANDSTAT));
/* disable interrupts on the controller/port */
temp = ioread32(hcr_base + HCONTROL);
iowrite32((temp & ~0x3F), hcr_base + HCONTROL);
VPRINTK("in xx_freeze : HControl = 0x%x, HStatus = 0x%x\n",
ioread32(hcr_base + HCONTROL), ioread32(hcr_base + HSTATUS));
}
static void sata_fsl_thaw(struct ata_port *ap)
{
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
u32 temp;
/* ack. any pending IRQs for this controller/port */
temp = ioread32(hcr_base + HSTATUS);
VPRINTK("xx_thaw, pending IRQs = 0x%x\n", (temp & 0x3F));
if (temp & 0x3F)
iowrite32((temp & 0x3F), hcr_base + HSTATUS);
/* enable interrupts on the controller/port */
temp = ioread32(hcr_base + HCONTROL);
iowrite32((temp | DEFAULT_PORT_IRQ_ENABLE_MASK), hcr_base + HCONTROL);
VPRINTK("xx_thaw : HControl = 0x%x, HStatus = 0x%x\n",
ioread32(hcr_base + HCONTROL), ioread32(hcr_base + HSTATUS));
}
/*
* NOTE : 1st D2H FIS from device does not update sfis in command descriptor.
*/
static inline void sata_fsl_cache_taskfile_from_d2h_fis(struct ata_queued_cmd
*qc,
struct ata_port *ap)
{
struct sata_fsl_port_priv *pp = ap->private_data;
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
unsigned int tag = sata_fsl_tag(qc->tag, hcr_base);
struct command_desc *cd;
cd = pp->cmdentry + tag;
ata_tf_from_fis(cd->sfis, &pp->tf);
}
static u8 sata_fsl_check_status(struct ata_port *ap)
{
struct sata_fsl_port_priv *pp = ap->private_data;
return pp->tf.command;
}
static void sata_fsl_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct sata_fsl_port_priv *pp = ap->private_data;
*tf = pp->tf;
}
static int sata_fsl_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct sata_fsl_port_priv *pp;
int retval;
void *mem;
dma_addr_t mem_dma;
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
u32 temp;
pp = kzalloc(sizeof(*pp), GFP_KERNEL);
if (!pp)
return -ENOMEM;
/*
* allocate per command dma alignment pad buffer, which is used
* internally by libATA to ensure that all transfers ending on
* unaligned boundaries are padded, to align on Dword boundaries
*/
retval = ata_pad_alloc(ap, dev);
if (retval) {
kfree(pp);
return retval;
}
mem = dma_alloc_coherent(dev, SATA_FSL_PORT_PRIV_DMA_SZ, &mem_dma,
GFP_KERNEL);
if (!mem) {
ata_pad_free(ap, dev);
kfree(pp);
return -ENOMEM;
}
memset(mem, 0, SATA_FSL_PORT_PRIV_DMA_SZ);
pp->cmdslot = mem;
pp->cmdslot_paddr = mem_dma;
mem += SATA_FSL_CMD_SLOT_SIZE;
mem_dma += SATA_FSL_CMD_SLOT_SIZE;
pp->cmdentry = mem;
pp->cmdentry_paddr = mem_dma;
ap->private_data = pp;
VPRINTK("CHBA = 0x%x, cmdentry_phys = 0x%x\n",
pp->cmdslot_paddr, pp->cmdentry_paddr);
/* Now, update the CHBA register in host controller cmd register set */
iowrite32(pp->cmdslot_paddr & 0xffffffff, hcr_base + CHBA);
/*
* Now, we can bring the controller on-line & also initiate
* the COMINIT sequence, we simply return here and the boot-probing
* & device discovery process is re-initiated by libATA using a
* Softreset EH (dummy) session. Hence, boot probing and device
* discovey will be part of sata_fsl_softreset() callback.
*/
temp = ioread32(hcr_base + HCONTROL);
iowrite32((temp | HCONTROL_ONLINE_PHY_RST), hcr_base + HCONTROL);
VPRINTK("HStatus = 0x%x\n", ioread32(hcr_base + HSTATUS));
VPRINTK("HControl = 0x%x\n", ioread32(hcr_base + HCONTROL));
VPRINTK("CHBA = 0x%x\n", ioread32(hcr_base + CHBA));
#ifdef CONFIG_MPC8315_DS
/*
* Workaround for 8315DS board 3gbps link-up issue,
* currently limit SATA port to GEN1 speed
*/
sata_fsl_scr_read(ap, SCR_CONTROL, &temp);
temp &= ~(0xF << 4);
temp |= (0x1 << 4);
sata_fsl_scr_write(ap, SCR_CONTROL, temp);
sata_fsl_scr_read(ap, SCR_CONTROL, &temp);
dev_printk(KERN_WARNING, dev, "scr_control, speed limited to %x\n",
temp);
#endif
return 0;
}
static void sata_fsl_port_stop(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct sata_fsl_port_priv *pp = ap->private_data;
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
u32 temp;
/*
* Force host controller to go off-line, aborting current operations
*/
temp = ioread32(hcr_base + HCONTROL);
temp &= ~HCONTROL_ONLINE_PHY_RST;
temp |= HCONTROL_FORCE_OFFLINE;
iowrite32(temp, hcr_base + HCONTROL);
/* Poll for controller to go offline - should happen immediately */
ata_wait_register(hcr_base + HSTATUS, ONLINE, ONLINE, 1, 1);
ap->private_data = NULL;
dma_free_coherent(dev, SATA_FSL_PORT_PRIV_DMA_SZ,
pp->cmdslot, pp->cmdslot_paddr);
ata_pad_free(ap, dev);
kfree(pp);
}
static unsigned int sata_fsl_dev_classify(struct ata_port *ap)
{
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
struct ata_taskfile tf;
u32 temp;
temp = ioread32(hcr_base + SIGNATURE);
VPRINTK("raw sig = 0x%x\n", temp);
VPRINTK("HStatus = 0x%x\n", ioread32(hcr_base + HSTATUS));
VPRINTK("HControl = 0x%x\n", ioread32(hcr_base + HCONTROL));
tf.lbah = (temp >> 24) & 0xff;
tf.lbam = (temp >> 16) & 0xff;
tf.lbal = (temp >> 8) & 0xff;
tf.nsect = temp & 0xff;
return ata_dev_classify(&tf);
}
static int sata_fsl_softreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
struct sata_fsl_port_priv *pp = ap->private_data;
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
u32 temp;
struct ata_taskfile tf;
u8 *cfis;
u32 Serror;
int i = 0;
unsigned long start_jiffies;
DPRINTK("in xx_softreset\n");
try_offline_again:
/*
* Force host controller to go off-line, aborting current operations
*/
temp = ioread32(hcr_base + HCONTROL);
temp &= ~HCONTROL_ONLINE_PHY_RST;
iowrite32(temp, hcr_base + HCONTROL);
/* Poll for controller to go offline */
temp = ata_wait_register(hcr_base + HSTATUS, ONLINE, ONLINE, 1, 500);
if (temp & ONLINE) {
ata_port_printk(ap, KERN_ERR,
"Softreset failed, not off-lined %d\n", i);
/*
* Try to offline controller atleast twice
*/
i++;
if (i == 2)
goto err;
else
goto try_offline_again;
}
DPRINTK("softreset, controller off-lined\n");
VPRINTK("HStatus = 0x%x\n", ioread32(hcr_base + HSTATUS));
VPRINTK("HControl = 0x%x\n", ioread32(hcr_base + HCONTROL));
/*
* PHY reset should remain asserted for atleast 1ms
*/
msleep(1);
/*
* Now, bring the host controller online again, this can take time
* as PHY reset and communication establishment, 1st D2H FIS and
* device signature update is done, on safe side assume 500ms
* NOTE : Host online status may be indicated immediately!!
*/
temp = ioread32(hcr_base + HCONTROL);
temp |= (HCONTROL_ONLINE_PHY_RST | HCONTROL_SNOOP_ENABLE);
iowrite32(temp, hcr_base + HCONTROL);
temp = ata_wait_register(hcr_base + HSTATUS, ONLINE, 0, 1, 500);
if (!(temp & ONLINE)) {
ata_port_printk(ap, KERN_ERR,
"Softreset failed, not on-lined\n");
goto err;
}
DPRINTK("softreset, controller off-lined & on-lined\n");
VPRINTK("HStatus = 0x%x\n", ioread32(hcr_base + HSTATUS));
VPRINTK("HControl = 0x%x\n", ioread32(hcr_base + HCONTROL));
/*
* First, wait for the PHYRDY change to occur before waiting for
* the signature, and also verify if SStatus indicates device
* presence
*/
temp = ata_wait_register(hcr_base + HSTATUS, 0xFF, 0, 1, 500);
if ((!(temp & 0x10)) || ata_link_offline(link)) {
ata_port_printk(ap, KERN_WARNING,
"No Device OR PHYRDY change,Hstatus = 0x%x\n",
ioread32(hcr_base + HSTATUS));
goto err;
}
/*
* Wait for the first D2H from device,i.e,signature update notification
*/
start_jiffies = jiffies;
temp = ata_wait_register(hcr_base + HSTATUS, 0xFF, 0x10,
500, jiffies_to_msecs(deadline - start_jiffies));
if ((temp & 0xFF) != 0x18) {
ata_port_printk(ap, KERN_WARNING, "No Signature Update\n");
goto err;
} else {
ata_port_printk(ap, KERN_INFO,
"Signature Update detected @ %d msecs\n",
jiffies_to_msecs(jiffies - start_jiffies));
}
/*
* Send a device reset (SRST) explicitly on command slot #0
* Check : will the command queue (reg) be cleared during offlining ??
* Also we will be online only if Phy commn. has been established
* and device presence has been detected, therefore if we have
* reached here, we can send a command to the target device
*/
DPRINTK("Sending SRST/device reset\n");
ata_tf_init(link->device, &tf);
cfis = (u8 *) &pp->cmdentry->cfis;
/* device reset/SRST is a control register update FIS, uses tag0 */
sata_fsl_setup_cmd_hdr_entry(pp, 0,
SRST_CMD | CMD_DESC_SNOOP_ENABLE, 0, 0, 5);
tf.ctl |= ATA_SRST; /* setup SRST bit in taskfile control reg */
ata_tf_to_fis(&tf, 0, 0, cfis);
DPRINTK("Dumping cfis : 0x%x, 0x%x, 0x%x, 0x%x\n",
cfis[0], cfis[1], cfis[2], cfis[3]);
/*
* Queue SRST command to the controller/device, ensure that no
* other commands are active on the controller/device
*/
DPRINTK("@Softreset, CQ = 0x%x, CA = 0x%x, CC = 0x%x\n",
ioread32(CQ + hcr_base),
ioread32(CA + hcr_base), ioread32(CC + hcr_base));
iowrite32(0xFFFF, CC + hcr_base);
iowrite32(1, CQ + hcr_base);
temp = ata_wait_register(CQ + hcr_base, 0x1, 0x1, 1, 5000);
if (temp & 0x1) {
ata_port_printk(ap, KERN_WARNING, "ATA_SRST issue failed\n");
DPRINTK("Softreset@5000,CQ=0x%x,CA=0x%x,CC=0x%x\n",
ioread32(CQ + hcr_base),
ioread32(CA + hcr_base), ioread32(CC + hcr_base));
sata_fsl_scr_read(ap, SCR_ERROR, &Serror);
DPRINTK("HStatus = 0x%x\n", ioread32(hcr_base + HSTATUS));
DPRINTK("HControl = 0x%x\n", ioread32(hcr_base + HCONTROL));
DPRINTK("Serror = 0x%x\n", Serror);
goto err;
}
msleep(1);
/*
* SATA device enters reset state after receving a Control register
* FIS with SRST bit asserted and it awaits another H2D Control reg.
* FIS with SRST bit cleared, then the device does internal diags &
* initialization, followed by indicating it's initialization status
* using ATA signature D2H register FIS to the host controller.
*/
sata_fsl_setup_cmd_hdr_entry(pp, 0, CMD_DESC_SNOOP_ENABLE, 0, 0, 5);
tf.ctl &= ~ATA_SRST; /* 2nd H2D Ctl. register FIS */
ata_tf_to_fis(&tf, 0, 0, cfis);
iowrite32(1, CQ + hcr_base);
msleep(150); /* ?? */
/*
* The above command would have signalled an interrupt on command
* complete, which needs special handling, by clearing the Nth
* command bit of the CCreg
*/
iowrite32(0x01, CC + hcr_base); /* We know it will be cmd#0 always */
DPRINTK("SATA FSL : Now checking device signature\n");
*class = ATA_DEV_NONE;
/* Verify if SStatus indicates device presence */
if (ata_link_online(link)) {
/*
* if we are here, device presence has been detected,
* 1st D2H FIS would have been received, but sfis in
* command desc. is not updated, but signature register
* would have been updated
*/
*class = sata_fsl_dev_classify(ap);
DPRINTK("class = %d\n", *class);
VPRINTK("ccreg = 0x%x\n", ioread32(hcr_base + CC));
VPRINTK("cereg = 0x%x\n", ioread32(hcr_base + CE));
}
return 0;
err:
return -EIO;
}
static void sata_fsl_error_handler(struct ata_port *ap)
{
DPRINTK("in xx_error_handler\n");
/* perform recovery */
ata_do_eh(ap, ata_std_prereset, sata_fsl_softreset, sata_std_hardreset,
ata_std_postreset);
}
static void sata_fsl_post_internal_cmd(struct ata_queued_cmd *qc)
{
if (qc->flags & ATA_QCFLAG_FAILED)
qc->err_mask |= AC_ERR_OTHER;
if (qc->err_mask) {
/* make DMA engine forget about the failed command */
}
}
static void sata_fsl_irq_clear(struct ata_port *ap)
{
/* unused */
}
static void sata_fsl_error_intr(struct ata_port *ap)
{
struct ata_link *link = &ap->link;
struct ata_eh_info *ehi = &link->eh_info;
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
u32 hstatus, dereg, cereg = 0, SError = 0;
unsigned int err_mask = 0, action = 0;
struct ata_queued_cmd *qc;
int freeze = 0;
hstatus = ioread32(hcr_base + HSTATUS);
cereg = ioread32(hcr_base + CE);
ata_ehi_clear_desc(ehi);
/*
* Handle & Clear SError
*/
sata_fsl_scr_read(ap, SCR_ERROR, &SError);
if (unlikely(SError & 0xFFFF0000)) {
sata_fsl_scr_write(ap, SCR_ERROR, SError);
err_mask |= AC_ERR_ATA_BUS;
}
DPRINTK("error_intr,hStat=0x%x,CE=0x%x,DE =0x%x,SErr=0x%x\n",
hstatus, cereg, ioread32(hcr_base + DE), SError);
/* handle single device errors */
if (cereg) {
/*
* clear the command error, also clears queue to the device
* in error, and we can (re)issue commands to this device.
* When a device is in error all commands queued into the
* host controller and at the device are considered aborted
* and the queue for that device is stopped. Now, after
* clearing the device error, we can issue commands to the
* device to interrogate it to find the source of the error.
*/
dereg = ioread32(hcr_base + DE);
iowrite32(dereg, hcr_base + DE);
iowrite32(cereg, hcr_base + CE);
DPRINTK("single device error, CE=0x%x, DE=0x%x\n",
ioread32(hcr_base + CE), ioread32(hcr_base + DE));
/*
* We should consider this as non fatal error, and TF must
* be updated as done below.
*/
err_mask |= AC_ERR_DEV;
}
/* handle fatal errors */
if (hstatus & FATAL_ERROR_DECODE) {
err_mask |= AC_ERR_ATA_BUS;
action |= ATA_EH_SOFTRESET;
/* how will fatal error interrupts be completed ?? */
freeze = 1;
}
/* Handle PHYRDY change notification */
if (hstatus & INT_ON_PHYRDY_CHG) {
DPRINTK("SATA FSL: PHYRDY change indication\n");
/* Setup a soft-reset EH action */
ata_ehi_hotplugged(ehi);
freeze = 1;
}
/* record error info */
qc = ata_qc_from_tag(ap, link->active_tag);
if (qc) {
sata_fsl_cache_taskfile_from_d2h_fis(qc, qc->ap);
qc->err_mask |= err_mask;
} else
ehi->err_mask |= err_mask;
ehi->action |= action;
ehi->serror |= SError;
/* freeze or abort */
if (freeze)
ata_port_freeze(ap);
else
ata_port_abort(ap);
}
static void sata_fsl_qc_complete(struct ata_queued_cmd *qc)
{
if (qc->flags & ATA_QCFLAG_RESULT_TF) {
DPRINTK("xx_qc_complete called\n");
sata_fsl_cache_taskfile_from_d2h_fis(qc, qc->ap);
}
}
static void sata_fsl_host_intr(struct ata_port *ap)
{
struct ata_link *link = &ap->link;
struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
u32 hstatus, qc_active = 0;
struct ata_queued_cmd *qc;
u32 SError;
hstatus = ioread32(hcr_base + HSTATUS);
sata_fsl_scr_read(ap, SCR_ERROR, &SError);
if (unlikely(SError & 0xFFFF0000)) {
DPRINTK("serror @host_intr : 0x%x\n", SError);
sata_fsl_error_intr(ap);
}
if (unlikely(hstatus & INT_ON_ERROR)) {
DPRINTK("error interrupt!!\n");
sata_fsl_error_intr(ap);
return;
}
if (link->sactive) { /* only true for NCQ commands */
int i;
/* Read command completed register */
qc_active = ioread32(hcr_base + CC);
/* clear CC bit, this will also complete the interrupt */
iowrite32(qc_active, hcr_base + CC);
DPRINTK("Status of all queues :\n");
DPRINTK("qc_active/CC = 0x%x, CA = 0x%x, CE=0x%x\n",
qc_active, ioread32(hcr_base + CA),
ioread32(hcr_base + CE));
for (i = 0; i < SATA_FSL_QUEUE_DEPTH; i++) {
if (qc_active & (1 << i)) {
qc = ata_qc_from_tag(ap, i);
if (qc) {
sata_fsl_qc_complete(qc);
ata_qc_complete(qc);
}
DPRINTK
("completing ncq cmd,tag=%d,CC=0x%x,CA=0x%x\n",
i, ioread32(hcr_base + CC),
ioread32(hcr_base + CA));
}
}
return;
} else if (ap->qc_active) {
iowrite32(1, hcr_base + CC);
qc = ata_qc_from_tag(ap, link->active_tag);
DPRINTK("completing non-ncq cmd, tag=%d,CC=0x%x\n",
link->active_tag, ioread32(hcr_base + CC));
if (qc) {
sata_fsl_qc_complete(qc);
ata_qc_complete(qc);
}
} else {
/* Spurious Interrupt!! */
DPRINTK("spurious interrupt!!, CC = 0x%x\n",
ioread32(hcr_base + CC));
return;
}
}
static irqreturn_t sata_fsl_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct sata_fsl_host_priv *host_priv = host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
u32 interrupt_enables;
unsigned handled = 0;
struct ata_port *ap;
/* ack. any pending IRQs for this controller/port */
interrupt_enables = ioread32(hcr_base + HSTATUS);
interrupt_enables &= 0x3F;
DPRINTK("interrupt status 0x%x\n", interrupt_enables);
if (!interrupt_enables)
return IRQ_NONE;
spin_lock(&host->lock);
/* Assuming one port per host controller */
ap = host->ports[0];
if (ap) {
sata_fsl_host_intr(ap);
} else {
dev_printk(KERN_WARNING, host->dev,
"interrupt on disabled port 0\n");
}
iowrite32(interrupt_enables, hcr_base + HSTATUS);
handled = 1;
spin_unlock(&host->lock);
return IRQ_RETVAL(handled);
}
/*
* Multiple ports are represented by multiple SATA controllers with
* one port per controller
*/
static int sata_fsl_init_controller(struct ata_host *host)
{
struct sata_fsl_host_priv *host_priv = host->private_data;
void __iomem *hcr_base = host_priv->hcr_base;
u32 temp;
/*
* NOTE : We cannot bring the controller online before setting
* the CHBA, hence main controller initialization is done as
* part of the port_start() callback
*/
/* ack. any pending IRQs for this controller/port */
temp = ioread32(hcr_base + HSTATUS);
if (temp & 0x3F)
iowrite32((temp & 0x3F), hcr_base + HSTATUS);
/* Keep interrupts disabled on the controller */
temp = ioread32(hcr_base + HCONTROL);
iowrite32((temp & ~0x3F), hcr_base + HCONTROL);
/* Disable interrupt coalescing control(icc), for the moment */
DPRINTK("icc = 0x%x\n", ioread32(hcr_base + ICC));
iowrite32(0x01000000, hcr_base + ICC);
/* clear error registers, SError is cleared by libATA */
iowrite32(0x00000FFFF, hcr_base + CE);
iowrite32(0x00000FFFF, hcr_base + DE);
/* initially assuming no Port multiplier, set CQPMP to 0 */
iowrite32(0x0, hcr_base + CQPMP);
/*
* host controller will be brought on-line, during xx_port_start()
* callback, that should also initiate the OOB, COMINIT sequence
*/
DPRINTK("HStatus = 0x%x\n", ioread32(hcr_base + HSTATUS));
DPRINTK("HControl = 0x%x\n", ioread32(hcr_base + HCONTROL));
return 0;
}
/*
* scsi mid-layer and libata interface structures
*/
static struct scsi_host_template sata_fsl_sht = {
.module = THIS_MODULE,
.name = "sata_fsl",
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.change_queue_depth = ata_scsi_change_queue_depth,
.can_queue = SATA_FSL_QUEUE_DEPTH,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = SATA_FSL_MAX_PRD_USABLE,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ATA_SHT_USE_CLUSTERING,
.proc_name = "sata_fsl",
.dma_boundary = ATA_DMA_BOUNDARY,
.slave_configure = ata_scsi_slave_config,
.slave_destroy = ata_scsi_slave_destroy,
.bios_param = ata_std_bios_param,
};
static const struct ata_port_operations sata_fsl_ops = {
.check_status = sata_fsl_check_status,
.check_altstatus = sata_fsl_check_status,
.dev_select = ata_noop_dev_select,
.tf_read = sata_fsl_tf_read,
.qc_prep = sata_fsl_qc_prep,
.qc_issue = sata_fsl_qc_issue,
.irq_clear = sata_fsl_irq_clear,
.scr_read = sata_fsl_scr_read,
.scr_write = sata_fsl_scr_write,
.freeze = sata_fsl_freeze,
.thaw = sata_fsl_thaw,
.error_handler = sata_fsl_error_handler,
.post_internal_cmd = sata_fsl_post_internal_cmd,
.port_start = sata_fsl_port_start,
.port_stop = sata_fsl_port_stop,
};
static const struct ata_port_info sata_fsl_port_info[] = {
{
.flags = SATA_FSL_HOST_FLAGS,
.link_flags = SATA_FSL_HOST_LFLAGS,
.pio_mask = 0x1f, /* pio 0-4 */
.udma_mask = 0x7f, /* udma 0-6 */
.port_ops = &sata_fsl_ops,
},
};
static int sata_fsl_probe(struct of_device *ofdev,
const struct of_device_id *match)
{
int retval = 0;
void __iomem *hcr_base = NULL;
void __iomem *ssr_base = NULL;
void __iomem *csr_base = NULL;
struct sata_fsl_host_priv *host_priv = NULL;
struct resource *r;
int irq;
struct ata_host *host;
struct ata_port_info pi = sata_fsl_port_info[0];
const struct ata_port_info *ppi[] = { &pi, NULL };
dev_printk(KERN_INFO, &ofdev->dev,
"Sata FSL Platform/CSB Driver init\n");
r = kmalloc(sizeof(struct resource), GFP_KERNEL);
hcr_base = of_iomap(ofdev->node, 0);
if (!hcr_base)
goto error_exit_with_cleanup;
ssr_base = hcr_base + 0x100;
csr_base = hcr_base + 0x140;
DPRINTK("@reset i/o = 0x%x\n", ioread32(csr_base + TRANSCFG));
DPRINTK("sizeof(cmd_desc) = %d\n", sizeof(struct command_desc));
DPRINTK("sizeof(#define cmd_desc) = %d\n", SATA_FSL_CMD_DESC_SIZE);
host_priv = kzalloc(sizeof(struct sata_fsl_host_priv), GFP_KERNEL);
if (!host_priv)
goto error_exit_with_cleanup;
host_priv->hcr_base = hcr_base;
host_priv->ssr_base = ssr_base;
host_priv->csr_base = csr_base;
irq = irq_of_parse_and_map(ofdev->node, 0);
if (irq < 0) {
dev_printk(KERN_ERR, &ofdev->dev, "invalid irq from platform\n");
goto error_exit_with_cleanup;
}
host_priv->irq = irq;
/* allocate host structure */
host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_FSL_MAX_PORTS);
/* host->iomap is not used currently */
host->private_data = host_priv;
/* setup port(s) */
host->ports[0]->ioaddr.cmd_addr = host_priv->hcr_base;
host->ports[0]->ioaddr.scr_addr = host_priv->ssr_base;
/* initialize host controller */
sata_fsl_init_controller(host);
/*
* Now, register with libATA core, this will also initiate the
* device discovery process, invoking our port_start() handler &
* error_handler() to execute a dummy Softreset EH session
*/
ata_host_activate(host, irq, sata_fsl_interrupt, SATA_FSL_IRQ_FLAG,
&sata_fsl_sht);
dev_set_drvdata(&ofdev->dev, host);
return 0;
error_exit_with_cleanup:
if (hcr_base)
iounmap(hcr_base);
if (host_priv)
kfree(host_priv);
return retval;
}
static int sata_fsl_remove(struct of_device *ofdev)
{
struct ata_host *host = dev_get_drvdata(&ofdev->dev);
struct sata_fsl_host_priv *host_priv = host->private_data;
ata_host_detach(host);
dev_set_drvdata(&ofdev->dev, NULL);
irq_dispose_mapping(host_priv->irq);
iounmap(host_priv->hcr_base);
kfree(host_priv);
return 0;
}
static struct of_device_id fsl_sata_match[] = {
{
.compatible = "fsl,mpc8315-sata",
},
{
.compatible = "fsl,mpc8379-sata",
},
{},
};
MODULE_DEVICE_TABLE(of, fsl_sata_match);
static struct of_platform_driver fsl_sata_driver = {
.name = "fsl-sata",
.match_table = fsl_sata_match,
.probe = sata_fsl_probe,
.remove = sata_fsl_remove,
};
static int __init sata_fsl_init(void)
{
of_register_platform_driver(&fsl_sata_driver);
return 0;
}
static void __exit sata_fsl_exit(void)
{
of_unregister_platform_driver(&fsl_sata_driver);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ashish Kalra, Freescale Semiconductor");
MODULE_DESCRIPTION("Freescale 3.0Gbps SATA controller low level driver");
MODULE_VERSION("1.10");
module_init(sata_fsl_init);
module_exit(sata_fsl_exit);