android_kernel_xiaomi_sm8350/arch/parisc/kernel/pci-dma.c
Christoph Lameter 6f7d998e94 [PARISC] Use page allocator instead of slab allocator in pci-dma.c
Slab pages obtained via kmalloc are not cacheline aligned.  Nor is it
advisable to perform VM operations designed for page allocator pages on
memory obtained via kmalloc.

So replace the page sized allocations in kernel/pci-dma.c with page allocator
pages.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Grant Grundler <grundler@parisc-linux.org>
Cc: Matthew Wilcox <willy@debian.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Kyle McMartin <kyle@mcmartin.ca>
2007-10-18 00:58:45 -07:00

602 lines
16 KiB
C

/*
** PARISC 1.1 Dynamic DMA mapping support.
** This implementation is for PA-RISC platforms that do not support
** I/O TLBs (aka DMA address translation hardware).
** See Documentation/DMA-mapping.txt for interface definitions.
**
** (c) Copyright 1999,2000 Hewlett-Packard Company
** (c) Copyright 2000 Grant Grundler
** (c) Copyright 2000 Philipp Rumpf <prumpf@tux.org>
** (c) Copyright 2000 John Marvin
**
** "leveraged" from 2.3.47: arch/ia64/kernel/pci-dma.c.
** (I assume it's from David Mosberger-Tang but there was no Copyright)
**
** AFAIK, all PA7100LC and PA7300LC platforms can use this code.
**
** - ggg
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/types.h>
#include <asm/cacheflush.h>
#include <asm/dma.h> /* for DMA_CHUNK_SIZE */
#include <asm/io.h>
#include <asm/page.h> /* get_order */
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h> /* for purge_tlb_*() macros */
static struct proc_dir_entry * proc_gsc_root __read_mostly = NULL;
static unsigned long pcxl_used_bytes __read_mostly = 0;
static unsigned long pcxl_used_pages __read_mostly = 0;
extern unsigned long pcxl_dma_start; /* Start of pcxl dma mapping area */
static spinlock_t pcxl_res_lock;
static char *pcxl_res_map;
static int pcxl_res_hint;
static int pcxl_res_size;
#ifdef DEBUG_PCXL_RESOURCE
#define DBG_RES(x...) printk(x)
#else
#define DBG_RES(x...)
#endif
/*
** Dump a hex representation of the resource map.
*/
#ifdef DUMP_RESMAP
static
void dump_resmap(void)
{
u_long *res_ptr = (unsigned long *)pcxl_res_map;
u_long i = 0;
printk("res_map: ");
for(; i < (pcxl_res_size / sizeof(unsigned long)); ++i, ++res_ptr)
printk("%08lx ", *res_ptr);
printk("\n");
}
#else
static inline void dump_resmap(void) {;}
#endif
static int pa11_dma_supported( struct device *dev, u64 mask)
{
return 1;
}
static inline int map_pte_uncached(pte_t * pte,
unsigned long vaddr,
unsigned long size, unsigned long *paddr_ptr)
{
unsigned long end;
unsigned long orig_vaddr = vaddr;
vaddr &= ~PMD_MASK;
end = vaddr + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
do {
if (!pte_none(*pte))
printk(KERN_ERR "map_pte_uncached: page already exists\n");
set_pte(pte, __mk_pte(*paddr_ptr, PAGE_KERNEL_UNC));
purge_tlb_start();
pdtlb_kernel(orig_vaddr);
purge_tlb_end();
vaddr += PAGE_SIZE;
orig_vaddr += PAGE_SIZE;
(*paddr_ptr) += PAGE_SIZE;
pte++;
} while (vaddr < end);
return 0;
}
static inline int map_pmd_uncached(pmd_t * pmd, unsigned long vaddr,
unsigned long size, unsigned long *paddr_ptr)
{
unsigned long end;
unsigned long orig_vaddr = vaddr;
vaddr &= ~PGDIR_MASK;
end = vaddr + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
do {
pte_t * pte = pte_alloc_kernel(pmd, vaddr);
if (!pte)
return -ENOMEM;
if (map_pte_uncached(pte, orig_vaddr, end - vaddr, paddr_ptr))
return -ENOMEM;
vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
orig_vaddr += PMD_SIZE;
pmd++;
} while (vaddr < end);
return 0;
}
static inline int map_uncached_pages(unsigned long vaddr, unsigned long size,
unsigned long paddr)
{
pgd_t * dir;
unsigned long end = vaddr + size;
dir = pgd_offset_k(vaddr);
do {
pmd_t *pmd;
pmd = pmd_alloc(NULL, dir, vaddr);
if (!pmd)
return -ENOMEM;
if (map_pmd_uncached(pmd, vaddr, end - vaddr, &paddr))
return -ENOMEM;
vaddr = vaddr + PGDIR_SIZE;
dir++;
} while (vaddr && (vaddr < end));
return 0;
}
static inline void unmap_uncached_pte(pmd_t * pmd, unsigned long vaddr,
unsigned long size)
{
pte_t * pte;
unsigned long end;
unsigned long orig_vaddr = vaddr;
if (pmd_none(*pmd))
return;
if (pmd_bad(*pmd)) {
pmd_ERROR(*pmd);
pmd_clear(pmd);
return;
}
pte = pte_offset_map(pmd, vaddr);
vaddr &= ~PMD_MASK;
end = vaddr + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
do {
pte_t page = *pte;
pte_clear(&init_mm, vaddr, pte);
purge_tlb_start();
pdtlb_kernel(orig_vaddr);
purge_tlb_end();
vaddr += PAGE_SIZE;
orig_vaddr += PAGE_SIZE;
pte++;
if (pte_none(page) || pte_present(page))
continue;
printk(KERN_CRIT "Whee.. Swapped out page in kernel page table\n");
} while (vaddr < end);
}
static inline void unmap_uncached_pmd(pgd_t * dir, unsigned long vaddr,
unsigned long size)
{
pmd_t * pmd;
unsigned long end;
unsigned long orig_vaddr = vaddr;
if (pgd_none(*dir))
return;
if (pgd_bad(*dir)) {
pgd_ERROR(*dir);
pgd_clear(dir);
return;
}
pmd = pmd_offset(dir, vaddr);
vaddr &= ~PGDIR_MASK;
end = vaddr + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
do {
unmap_uncached_pte(pmd, orig_vaddr, end - vaddr);
vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
orig_vaddr += PMD_SIZE;
pmd++;
} while (vaddr < end);
}
static void unmap_uncached_pages(unsigned long vaddr, unsigned long size)
{
pgd_t * dir;
unsigned long end = vaddr + size;
dir = pgd_offset_k(vaddr);
do {
unmap_uncached_pmd(dir, vaddr, end - vaddr);
vaddr = vaddr + PGDIR_SIZE;
dir++;
} while (vaddr && (vaddr < end));
}
#define PCXL_SEARCH_LOOP(idx, mask, size) \
for(; res_ptr < res_end; ++res_ptr) \
{ \
if(0 == ((*res_ptr) & mask)) { \
*res_ptr |= mask; \
idx = (int)((u_long)res_ptr - (u_long)pcxl_res_map); \
pcxl_res_hint = idx + (size >> 3); \
goto resource_found; \
} \
}
#define PCXL_FIND_FREE_MAPPING(idx, mask, size) { \
u##size *res_ptr = (u##size *)&(pcxl_res_map[pcxl_res_hint & ~((size >> 3) - 1)]); \
u##size *res_end = (u##size *)&pcxl_res_map[pcxl_res_size]; \
PCXL_SEARCH_LOOP(idx, mask, size); \
res_ptr = (u##size *)&pcxl_res_map[0]; \
PCXL_SEARCH_LOOP(idx, mask, size); \
}
unsigned long
pcxl_alloc_range(size_t size)
{
int res_idx;
u_long mask, flags;
unsigned int pages_needed = size >> PAGE_SHIFT;
mask = (u_long) -1L;
mask >>= BITS_PER_LONG - pages_needed;
DBG_RES("pcxl_alloc_range() size: %d pages_needed %d pages_mask 0x%08lx\n",
size, pages_needed, mask);
spin_lock_irqsave(&pcxl_res_lock, flags);
if(pages_needed <= 8) {
PCXL_FIND_FREE_MAPPING(res_idx, mask, 8);
} else if(pages_needed <= 16) {
PCXL_FIND_FREE_MAPPING(res_idx, mask, 16);
} else if(pages_needed <= 32) {
PCXL_FIND_FREE_MAPPING(res_idx, mask, 32);
} else {
panic("%s: pcxl_alloc_range() Too many pages to map.\n",
__FILE__);
}
dump_resmap();
panic("%s: pcxl_alloc_range() out of dma mapping resources\n",
__FILE__);
resource_found:
DBG_RES("pcxl_alloc_range() res_idx %d mask 0x%08lx res_hint: %d\n",
res_idx, mask, pcxl_res_hint);
pcxl_used_pages += pages_needed;
pcxl_used_bytes += ((pages_needed >> 3) ? (pages_needed >> 3) : 1);
spin_unlock_irqrestore(&pcxl_res_lock, flags);
dump_resmap();
/*
** return the corresponding vaddr in the pcxl dma map
*/
return (pcxl_dma_start + (res_idx << (PAGE_SHIFT + 3)));
}
#define PCXL_FREE_MAPPINGS(idx, m, size) \
u##size *res_ptr = (u##size *)&(pcxl_res_map[(idx) + (((size >> 3) - 1) & (~((size >> 3) - 1)))]); \
/* BUG_ON((*res_ptr & m) != m); */ \
*res_ptr &= ~m;
/*
** clear bits in the pcxl resource map
*/
static void
pcxl_free_range(unsigned long vaddr, size_t size)
{
u_long mask, flags;
unsigned int res_idx = (vaddr - pcxl_dma_start) >> (PAGE_SHIFT + 3);
unsigned int pages_mapped = size >> PAGE_SHIFT;
mask = (u_long) -1L;
mask >>= BITS_PER_LONG - pages_mapped;
DBG_RES("pcxl_free_range() res_idx: %d size: %d pages_mapped %d mask 0x%08lx\n",
res_idx, size, pages_mapped, mask);
spin_lock_irqsave(&pcxl_res_lock, flags);
if(pages_mapped <= 8) {
PCXL_FREE_MAPPINGS(res_idx, mask, 8);
} else if(pages_mapped <= 16) {
PCXL_FREE_MAPPINGS(res_idx, mask, 16);
} else if(pages_mapped <= 32) {
PCXL_FREE_MAPPINGS(res_idx, mask, 32);
} else {
panic("%s: pcxl_free_range() Too many pages to unmap.\n",
__FILE__);
}
pcxl_used_pages -= (pages_mapped ? pages_mapped : 1);
pcxl_used_bytes -= ((pages_mapped >> 3) ? (pages_mapped >> 3) : 1);
spin_unlock_irqrestore(&pcxl_res_lock, flags);
dump_resmap();
}
static int proc_pcxl_dma_show(struct seq_file *m, void *v)
{
#if 0
u_long i = 0;
unsigned long *res_ptr = (u_long *)pcxl_res_map;
#endif
unsigned long total_pages = pcxl_res_size << 3; /* 8 bits per byte */
seq_printf(m, "\nDMA Mapping Area size : %d bytes (%ld pages)\n",
PCXL_DMA_MAP_SIZE, total_pages);
seq_printf(m, "Resource bitmap : %d bytes\n", pcxl_res_size);
seq_puts(m, " total: free: used: % used:\n");
seq_printf(m, "blocks %8d %8ld %8ld %8ld%%\n", pcxl_res_size,
pcxl_res_size - pcxl_used_bytes, pcxl_used_bytes,
(pcxl_used_bytes * 100) / pcxl_res_size);
seq_printf(m, "pages %8ld %8ld %8ld %8ld%%\n", total_pages,
total_pages - pcxl_used_pages, pcxl_used_pages,
(pcxl_used_pages * 100 / total_pages));
#if 0
seq_puts(m, "\nResource bitmap:");
for(; i < (pcxl_res_size / sizeof(u_long)); ++i, ++res_ptr) {
if ((i & 7) == 0)
seq_puts(m,"\n ");
seq_printf(m, "%s %08lx", buf, *res_ptr);
}
#endif
seq_putc(m, '\n');
return 0;
}
static int proc_pcxl_dma_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_pcxl_dma_show, NULL);
}
static const struct file_operations proc_pcxl_dma_ops = {
.owner = THIS_MODULE,
.open = proc_pcxl_dma_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init
pcxl_dma_init(void)
{
if (pcxl_dma_start == 0)
return 0;
spin_lock_init(&pcxl_res_lock);
pcxl_res_size = PCXL_DMA_MAP_SIZE >> (PAGE_SHIFT + 3);
pcxl_res_hint = 0;
pcxl_res_map = (char *)__get_free_pages(GFP_KERNEL,
get_order(pcxl_res_size));
memset(pcxl_res_map, 0, pcxl_res_size);
proc_gsc_root = proc_mkdir("gsc", NULL);
if (!proc_gsc_root)
printk(KERN_WARNING
"pcxl_dma_init: Unable to create gsc /proc dir entry\n");
else {
struct proc_dir_entry* ent;
ent = create_proc_entry("pcxl_dma", 0, proc_gsc_root);
if (ent)
ent->proc_fops = &proc_pcxl_dma_ops;
else
printk(KERN_WARNING
"pci-dma.c: Unable to create pcxl_dma /proc entry.\n");
}
return 0;
}
__initcall(pcxl_dma_init);
static void * pa11_dma_alloc_consistent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
{
unsigned long vaddr;
unsigned long paddr;
int order;
order = get_order(size);
size = 1 << (order + PAGE_SHIFT);
vaddr = pcxl_alloc_range(size);
paddr = __get_free_pages(flag, order);
flush_kernel_dcache_range(paddr, size);
paddr = __pa(paddr);
map_uncached_pages(vaddr, size, paddr);
*dma_handle = (dma_addr_t) paddr;
#if 0
/* This probably isn't needed to support EISA cards.
** ISA cards will certainly only support 24-bit DMA addressing.
** Not clear if we can, want, or need to support ISA.
*/
if (!dev || *dev->coherent_dma_mask < 0xffffffff)
gfp |= GFP_DMA;
#endif
return (void *)vaddr;
}
static void pa11_dma_free_consistent (struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle)
{
int order;
order = get_order(size);
size = 1 << (order + PAGE_SHIFT);
unmap_uncached_pages((unsigned long)vaddr, size);
pcxl_free_range((unsigned long)vaddr, size);
free_pages((unsigned long)__va(dma_handle), order);
}
static dma_addr_t pa11_dma_map_single(struct device *dev, void *addr, size_t size, enum dma_data_direction direction)
{
if (direction == DMA_NONE) {
printk(KERN_ERR "pa11_dma_map_single(PCI_DMA_NONE) called by %p\n", __builtin_return_address(0));
BUG();
}
flush_kernel_dcache_range((unsigned long) addr, size);
return virt_to_phys(addr);
}
static void pa11_dma_unmap_single(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
{
if (direction == DMA_NONE) {
printk(KERN_ERR "pa11_dma_unmap_single(PCI_DMA_NONE) called by %p\n", __builtin_return_address(0));
BUG();
}
if (direction == DMA_TO_DEVICE)
return;
/*
* For PCI_DMA_FROMDEVICE this flush is not necessary for the
* simple map/unmap case. However, it IS necessary if if
* pci_dma_sync_single_* has been called and the buffer reused.
*/
flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle), size);
return;
}
static int pa11_dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
{
int i;
if (direction == DMA_NONE)
BUG();
for (i = 0; i < nents; i++, sglist++ ) {
unsigned long vaddr = sg_virt_addr(sglist);
sg_dma_address(sglist) = (dma_addr_t) virt_to_phys(vaddr);
sg_dma_len(sglist) = sglist->length;
flush_kernel_dcache_range(vaddr, sglist->length);
}
return nents;
}
static void pa11_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
{
int i;
if (direction == DMA_NONE)
BUG();
if (direction == DMA_TO_DEVICE)
return;
/* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
for (i = 0; i < nents; i++, sglist++ )
flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
return;
}
static void pa11_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction)
{
if (direction == DMA_NONE)
BUG();
flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size);
}
static void pa11_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction)
{
if (direction == DMA_NONE)
BUG();
flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size);
}
static void pa11_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
{
int i;
/* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
for (i = 0; i < nents; i++, sglist++ )
flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
}
static void pa11_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
{
int i;
/* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
for (i = 0; i < nents; i++, sglist++ )
flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
}
struct hppa_dma_ops pcxl_dma_ops = {
.dma_supported = pa11_dma_supported,
.alloc_consistent = pa11_dma_alloc_consistent,
.alloc_noncoherent = pa11_dma_alloc_consistent,
.free_consistent = pa11_dma_free_consistent,
.map_single = pa11_dma_map_single,
.unmap_single = pa11_dma_unmap_single,
.map_sg = pa11_dma_map_sg,
.unmap_sg = pa11_dma_unmap_sg,
.dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
.dma_sync_single_for_device = pa11_dma_sync_single_for_device,
.dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
.dma_sync_sg_for_device = pa11_dma_sync_sg_for_device,
};
static void *fail_alloc_consistent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
return NULL;
}
static void *pa11_dma_alloc_noncoherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
void *addr;
addr = (void *)__get_free_pages(flag, get_order(size));
if (addr)
*dma_handle = (dma_addr_t)virt_to_phys(addr);
return addr;
}
static void pa11_dma_free_noncoherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t iova)
{
free_pages((unsigned long)vaddr, get_order(size));
return;
}
struct hppa_dma_ops pcx_dma_ops = {
.dma_supported = pa11_dma_supported,
.alloc_consistent = fail_alloc_consistent,
.alloc_noncoherent = pa11_dma_alloc_noncoherent,
.free_consistent = pa11_dma_free_noncoherent,
.map_single = pa11_dma_map_single,
.unmap_single = pa11_dma_unmap_single,
.map_sg = pa11_dma_map_sg,
.unmap_sg = pa11_dma_unmap_sg,
.dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
.dma_sync_single_for_device = pa11_dma_sync_single_for_device,
.dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
.dma_sync_sg_for_device = pa11_dma_sync_sg_for_device,
};