android_kernel_xiaomi_sm8350/drivers/net/wan/sdladrv.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

2319 lines
64 KiB
C

/*****************************************************************************
* sdladrv.c SDLA Support Module. Main module.
*
* This module is a library of common hardware-specific functions
* used by all Sangoma drivers.
*
* Author: Gideon Hack
*
* Copyright: (c) 1995-2000 Sangoma Technologies Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
* ============================================================================
* Mar 20, 2001 Nenad Corbic Added the auto_pci_cfg filed, to support
* the PCISLOT #0.
* Apr 04, 2000 Nenad Corbic Fixed the auto memory detection code.
* The memory test at address 0xC8000.
* Mar 09, 2000 Nenad Corbic Added Gideon's Bug Fix: clear pci
* interrupt flags on initial load.
* Jun 02, 1999 Gideon Hack Added support for the S514 adapter.
* Updates for Linux 2.2.X kernels.
* Sep 17, 1998 Jaspreet Singh Updates for linux 2.2.X kernels
* Dec 20, 1996 Gene Kozin Version 3.0.0. Complete overhaul.
* Jul 12, 1996 Gene Kozin Changes for Linux 2.0 compatibility.
* Jun 12, 1996 Gene Kozin Added support for S503 card.
* Apr 30, 1996 Gene Kozin SDLA hardware interrupt is acknowledged before
* calling protocolspecific ISR.
* Register I/O ports with Linux kernel.
* Miscellaneous bug fixes.
* Dec 20, 1995 Gene Kozin Fixed a bug in interrupt routine.
* Oct 14, 1995 Gene Kozin Initial version.
*****************************************************************************/
/*****************************************************************************
* Notes:
* ------
* 1. This code is ment to be system-independent (as much as possible). To
* achive this, various macros are used to hide system-specific interfaces.
* To compile this code, one of the following constants must be defined:
*
* Platform Define
* -------- ------
* Linux _LINUX_
* SCO Unix _SCO_UNIX_
*
* 2. Supported adapter types:
*
* S502A
* ES502A (S502E)
* S503
* S507
* S508 (S509)
*
* 3. S502A Notes:
*
* There is no separate DPM window enable/disable control in S502A. It
* opens immediately after a window number it written to the HMCR
* register. To close the window, HMCR has to be written a value
* ????1111b (e.g. 0x0F or 0xFF).
*
* S502A DPM window cannot be located at offset E000 (e.g. 0xAE000).
*
* There should be a delay of ??? before reading back S502A status
* register.
*
* 4. S502E Notes:
*
* S502E has a h/w bug: although default IRQ line state is HIGH, enabling
* interrupts by setting bit 1 of the control register (BASE) to '1'
* causes it to go LOW! Therefore, disabling interrupts by setting that
* bit to '0' causes low-to-high transition on IRQ line (ghosty
* interrupt). The same occurs when disabling CPU by resetting bit 0 of
* CPU control register (BASE+3) - see the next note.
*
* S502E CPU and DPM control is limited:
*
* o CPU cannot be stopped independently. Resetting bit 0 of the CPUi
* control register (BASE+3) shuts the board down entirely, including
* DPM;
*
* o DPM access cannot be controlled dynamically. Ones CPU is started,
* bit 1 of the control register (BASE) is used to enable/disable IRQ,
* so that access to shared memory cannot be disabled while CPU is
* running.
****************************************************************************/
#define _LINUX_
#if defined(_LINUX_) /****** Linux *******************************/
#include <linux/config.h>
#include <linux/kernel.h> /* printk(), and other useful stuff */
#include <linux/stddef.h> /* offsetof(), etc. */
#include <linux/errno.h> /* return codes */
#include <linux/string.h> /* inline memset(), etc. */
#include <linux/module.h> /* support for loadable modules */
#include <linux/jiffies.h> /* for jiffies, HZ, etc. */
#include <linux/sdladrv.h> /* API definitions */
#include <linux/sdlasfm.h> /* SDLA firmware module definitions */
#include <linux/sdlapci.h> /* SDLA PCI hardware definitions */
#include <linux/pci.h> /* PCI defines and function prototypes */
#include <asm/io.h> /* for inb(), outb(), etc. */
#define _INB(port) (inb(port))
#define _OUTB(port, byte) (outb((byte),(port)))
#define SYSTEM_TICK jiffies
#include <linux/init.h>
#elif defined(_SCO_UNIX_) /****** SCO Unix ****************************/
#if !defined(INKERNEL)
#error This code MUST be compiled in kernel mode!
#endif
#include <sys/sdladrv.h> /* API definitions */
#include <sys/sdlasfm.h> /* SDLA firmware module definitions */
#include <sys/inline.h> /* for inb(), outb(), etc. */
#define _INB(port) (inb(port))
#define _OUTB(port, byte) (outb((port),(byte)))
#define SYSTEM_TICK lbolt
#else
#error Unknown system type!
#endif
#define MOD_VERSION 3
#define MOD_RELEASE 0
#define SDLA_IODELAY 100 /* I/O Rd/Wr delay, 10 works for 486DX2-66 */
#define EXEC_DELAY 20 /* shared memory access delay, mks */
#define EXEC_TIMEOUT (HZ*2) /* command timeout, in ticks */
/* I/O port address range */
#define S502A_IORANGE 3
#define S502E_IORANGE 4
#define S503_IORANGE 3
#define S507_IORANGE 4
#define S508_IORANGE 4
/* Maximum amount of memory */
#define S502_MAXMEM 0x10000L
#define S503_MAXMEM 0x10000L
#define S507_MAXMEM 0x40000L
#define S508_MAXMEM 0x40000L
/* Minimum amount of memory */
#define S502_MINMEM 0x8000L
#define S503_MINMEM 0x8000L
#define S507_MINMEM 0x20000L
#define S508_MINMEM 0x20000L
#define NO_PORT -1
/****** Function Prototypes *************************************************/
/* Hardware-specific functions */
static int sdla_detect (sdlahw_t* hw);
static int sdla_autodpm (sdlahw_t* hw);
static int sdla_setdpm (sdlahw_t* hw);
static int sdla_load (sdlahw_t* hw, sfm_t* sfm, unsigned len);
static int sdla_init (sdlahw_t* hw);
static unsigned long sdla_memtest (sdlahw_t* hw);
static int sdla_bootcfg (sdlahw_t* hw, sfm_info_t* sfminfo);
static unsigned char make_config_byte (sdlahw_t* hw);
static int sdla_start (sdlahw_t* hw, unsigned addr);
static int init_s502a (sdlahw_t* hw);
static int init_s502e (sdlahw_t* hw);
static int init_s503 (sdlahw_t* hw);
static int init_s507 (sdlahw_t* hw);
static int init_s508 (sdlahw_t* hw);
static int detect_s502a (int port);
static int detect_s502e (int port);
static int detect_s503 (int port);
static int detect_s507 (int port);
static int detect_s508 (int port);
static int detect_s514 (sdlahw_t* hw);
static int find_s514_adapter(sdlahw_t* hw, char find_first_S514_card);
/* Miscellaneous functions */
static void peek_by_4 (unsigned long src, void* buf, unsigned len);
static void poke_by_4 (unsigned long dest, void* buf, unsigned len);
static int calibrate_delay (int mks);
static int get_option_index (unsigned* optlist, unsigned optval);
static unsigned check_memregion (void* ptr, unsigned len);
static unsigned test_memregion (void* ptr, unsigned len);
static unsigned short checksum (unsigned char* buf, unsigned len);
static int init_pci_slot(sdlahw_t *);
static int pci_probe(sdlahw_t *hw);
/****** Global Data **********************************************************
* Note: All data must be explicitly initialized!!!
*/
static struct pci_device_id sdladrv_pci_tbl[] = {
{ V3_VENDOR_ID, V3_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, sdladrv_pci_tbl);
MODULE_LICENSE("GPL");
/* private data */
static char modname[] = "sdladrv";
static char fullname[] = "SDLA Support Module";
static char copyright[] = "(c) 1995-1999 Sangoma Technologies Inc.";
static unsigned exec_idle;
/* Hardware configuration options.
* These are arrays of configuration options used by verification routines.
* The first element of each array is its size (i.e. number of options).
*/
static unsigned s502_port_options[] =
{ 4, 0x250, 0x300, 0x350, 0x360 }
;
static unsigned s503_port_options[] =
{ 8, 0x250, 0x254, 0x300, 0x304, 0x350, 0x354, 0x360, 0x364 }
;
static unsigned s508_port_options[] =
{ 8, 0x250, 0x270, 0x280, 0x300, 0x350, 0x360, 0x380, 0x390 }
;
static unsigned s502a_irq_options[] = { 0 };
static unsigned s502e_irq_options[] = { 4, 2, 3, 5, 7 };
static unsigned s503_irq_options[] = { 5, 2, 3, 4, 5, 7 };
static unsigned s508_irq_options[] = { 8, 3, 4, 5, 7, 10, 11, 12, 15 };
static unsigned s502a_dpmbase_options[] =
{
28,
0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000,
0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000,
0xD0000, 0xD2000, 0xD4000, 0xD6000, 0xD8000, 0xDA000, 0xDC000,
0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000,
};
static unsigned s507_dpmbase_options[] =
{
32,
0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xAE000,
0xB0000, 0xB2000, 0xB4000, 0xB6000, 0xB8000, 0xBA000, 0xBC000, 0xBE000,
0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xCE000,
0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, 0xEE000,
};
static unsigned s508_dpmbase_options[] = /* incl. S502E and S503 */
{
32,
0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xAE000,
0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xCE000,
0xD0000, 0xD2000, 0xD4000, 0xD6000, 0xD8000, 0xDA000, 0xDC000, 0xDE000,
0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, 0xEE000,
};
/*
static unsigned s502_dpmsize_options[] = { 2, 0x2000, 0x10000 };
static unsigned s507_dpmsize_options[] = { 2, 0x2000, 0x4000 };
static unsigned s508_dpmsize_options[] = { 1, 0x2000 };
*/
static unsigned s502a_pclk_options[] = { 2, 3600, 7200 };
static unsigned s502e_pclk_options[] = { 5, 3600, 5000, 7200, 8000, 10000 };
static unsigned s503_pclk_options[] = { 3, 7200, 8000, 10000 };
static unsigned s507_pclk_options[] = { 1, 12288 };
static unsigned s508_pclk_options[] = { 1, 16000 };
/* Host memory control register masks */
static unsigned char s502a_hmcr[] =
{
0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, /* A0000 - AC000 */
0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, /* C0000 - CC000 */
0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, /* D0000 - DC000 */
0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, /* E0000 - EC000 */
};
static unsigned char s502e_hmcr[] =
{
0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E, /* A0000 - AE000 */
0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E, /* C0000 - CE000 */
0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, /* D0000 - DE000 */
0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E, /* E0000 - EE000 */
};
static unsigned char s507_hmcr[] =
{
0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, /* A0000 - AE000 */
0x40, 0x42, 0x44, 0x46, 0x48, 0x4A, 0x4C, 0x4E, /* B0000 - BE000 */
0x80, 0x82, 0x84, 0x86, 0x88, 0x8A, 0x8C, 0x8E, /* C0000 - CE000 */
0xC0, 0xC2, 0xC4, 0xC6, 0xC8, 0xCA, 0xCC, 0xCE, /* E0000 - EE000 */
};
static unsigned char s508_hmcr[] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* A0000 - AE000 */
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, /* C0000 - CE000 */
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, /* D0000 - DE000 */
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, /* E0000 - EE000 */
};
static unsigned char s507_irqmask[] =
{
0x00, 0x20, 0x40, 0x60, 0x80, 0xA0, 0xC0, 0xE0
};
static int pci_slot_ar[MAX_S514_CARDS];
/******* Kernel Loadable Module Entry Points ********************************/
/*============================================================================
* Module 'insert' entry point.
* o print announcement
* o initialize static data
* o calibrate SDLA shared memory access delay.
*
* Return: 0 Ok
* < 0 error.
* Context: process
*/
static int __init sdladrv_init(void)
{
int i=0;
printk(KERN_INFO "%s v%u.%u %s\n",
fullname, MOD_VERSION, MOD_RELEASE, copyright);
exec_idle = calibrate_delay(EXEC_DELAY);
#ifdef WANDEBUG
printk(KERN_DEBUG "%s: exec_idle = %d\n", modname, exec_idle);
#endif
/* Initialize the PCI Card array, which
* will store flags, used to mark
* card initialization state */
for (i=0; i<MAX_S514_CARDS; i++)
pci_slot_ar[i] = 0xFF;
return 0;
}
/*============================================================================
* Module 'remove' entry point.
* o release all remaining system resources
*/
static void __exit sdladrv_cleanup(void)
{
}
module_init(sdladrv_init);
module_exit(sdladrv_cleanup);
/******* Kernel APIs ********************************************************/
/*============================================================================
* Set up adapter.
* o detect adapter type
* o verify hardware configuration options
* o check for hardware conflicts
* o set up adapter shared memory
* o test adapter memory
* o load firmware
* Return: 0 ok.
* < 0 error
*/
EXPORT_SYMBOL(sdla_setup);
int sdla_setup (sdlahw_t* hw, void* sfm, unsigned len)
{
unsigned* irq_opt = NULL; /* IRQ options */
unsigned* dpmbase_opt = NULL; /* DPM window base options */
unsigned* pclk_opt = NULL; /* CPU clock rate options */
int err=0;
if (sdla_detect(hw)) {
if(hw->type != SDLA_S514)
printk(KERN_INFO "%s: no SDLA card found at port 0x%X\n",
modname, hw->port);
return -EINVAL;
}
if(hw->type != SDLA_S514) {
printk(KERN_INFO "%s: found S%04u card at port 0x%X.\n",
modname, hw->type, hw->port);
hw->dpmsize = SDLA_WINDOWSIZE;
switch (hw->type) {
case SDLA_S502A:
hw->io_range = S502A_IORANGE;
irq_opt = s502a_irq_options;
dpmbase_opt = s502a_dpmbase_options;
pclk_opt = s502a_pclk_options;
break;
case SDLA_S502E:
hw->io_range = S502E_IORANGE;
irq_opt = s502e_irq_options;
dpmbase_opt = s508_dpmbase_options;
pclk_opt = s502e_pclk_options;
break;
case SDLA_S503:
hw->io_range = S503_IORANGE;
irq_opt = s503_irq_options;
dpmbase_opt = s508_dpmbase_options;
pclk_opt = s503_pclk_options;
break;
case SDLA_S507:
hw->io_range = S507_IORANGE;
irq_opt = s508_irq_options;
dpmbase_opt = s507_dpmbase_options;
pclk_opt = s507_pclk_options;
break;
case SDLA_S508:
hw->io_range = S508_IORANGE;
irq_opt = s508_irq_options;
dpmbase_opt = s508_dpmbase_options;
pclk_opt = s508_pclk_options;
break;
}
/* Verify IRQ configuration options */
if (!get_option_index(irq_opt, hw->irq)) {
printk(KERN_INFO "%s: IRQ %d is invalid!\n",
modname, hw->irq);
return -EINVAL;
}
/* Verify CPU clock rate configuration options */
if (hw->pclk == 0)
hw->pclk = pclk_opt[1]; /* use default */
else if (!get_option_index(pclk_opt, hw->pclk)) {
printk(KERN_INFO "%s: CPU clock %u is invalid!\n",
modname, hw->pclk);
return -EINVAL;
}
printk(KERN_INFO "%s: assuming CPU clock rate of %u kHz.\n",
modname, hw->pclk);
/* Setup adapter dual-port memory window and test memory */
if (hw->dpmbase == 0) {
err = sdla_autodpm(hw);
if (err) {
printk(KERN_INFO
"%s: can't find available memory region!\n",
modname);
return err;
}
}
else if (!get_option_index(dpmbase_opt,
virt_to_phys(hw->dpmbase))) {
printk(KERN_INFO
"%s: memory address 0x%lX is invalid!\n",
modname, virt_to_phys(hw->dpmbase));
return -EINVAL;
}
else if (sdla_setdpm(hw)) {
printk(KERN_INFO
"%s: 8K memory region at 0x%lX is not available!\n",
modname, virt_to_phys(hw->dpmbase));
return -EINVAL;
}
printk(KERN_INFO
"%s: dual-port memory window is set at 0x%lX.\n",
modname, virt_to_phys(hw->dpmbase));
/* If we find memory in 0xE**** Memory region,
* warn the user to disable the SHADOW RAM.
* Since memory corruption can occur if SHADOW is
* enabled. This can causes random crashes ! */
if (virt_to_phys(hw->dpmbase) >= 0xE0000){
printk(KERN_WARNING "\n%s: !!!!!!!! WARNING !!!!!!!!\n",modname);
printk(KERN_WARNING "%s: WANPIPE is using 0x%lX memory region !!!\n",
modname, virt_to_phys(hw->dpmbase));
printk(KERN_WARNING " Please disable the SHADOW RAM, otherwise\n");
printk(KERN_WARNING " your system might crash randomly from time to time !\n");
printk(KERN_WARNING "%s: !!!!!!!! WARNING !!!!!!!!\n\n",modname);
}
}
else {
hw->memory = test_memregion((void*)hw->dpmbase,
MAX_SIZEOF_S514_MEMORY);
if(hw->memory < (256 * 1024)) {
printk(KERN_INFO
"%s: error in testing S514 memory (0x%lX)\n",
modname, hw->memory);
sdla_down(hw);
return -EINVAL;
}
}
printk(KERN_INFO "%s: found %luK bytes of on-board memory\n",
modname, hw->memory / 1024);
/* Load firmware. If loader fails then shut down adapter */
err = sdla_load(hw, sfm, len);
if (err) sdla_down(hw); /* shutdown adapter */
return err;
}
/*============================================================================
* Shut down SDLA: disable shared memory access and interrupts, stop CPU, etc.
*/
EXPORT_SYMBOL(sdla_down);
int sdla_down (sdlahw_t* hw)
{
unsigned port = hw->port;
int i;
unsigned char CPU_no;
u32 int_config, int_status;
if(!port && (hw->type != SDLA_S514))
return -EFAULT;
switch (hw->type) {
case SDLA_S502A:
_OUTB(port, 0x08); /* halt CPU */
_OUTB(port, 0x08);
_OUTB(port, 0x08);
hw->regs[0] = 0x08;
_OUTB(port + 1, 0xFF); /* close memory window */
hw->regs[1] = 0xFF;
break;
case SDLA_S502E:
_OUTB(port + 3, 0); /* stop CPU */
_OUTB(port, 0); /* reset board */
for (i = 0; i < S502E_IORANGE; ++i)
hw->regs[i] = 0
;
break;
case SDLA_S503:
case SDLA_S507:
case SDLA_S508:
_OUTB(port, 0); /* reset board logic */
hw->regs[0] = 0;
break;
case SDLA_S514:
/* halt the adapter */
*(char *)hw->vector = S514_CPU_HALT;
CPU_no = hw->S514_cpu_no[0];
/* disable the PCI IRQ and disable memory access */
pci_read_config_dword(hw->pci_dev, PCI_INT_CONFIG, &int_config);
int_config &= (CPU_no == S514_CPU_A) ? ~PCI_DISABLE_IRQ_CPU_A : ~PCI_DISABLE_IRQ_CPU_B;
pci_write_config_dword(hw->pci_dev, PCI_INT_CONFIG, int_config);
read_S514_int_stat(hw, &int_status);
S514_intack(hw, int_status);
if(CPU_no == S514_CPU_A)
pci_write_config_dword(hw->pci_dev, PCI_MAP0_DWORD,
PCI_CPU_A_MEM_DISABLE);
else
pci_write_config_dword(hw->pci_dev, PCI_MAP1_DWORD,
PCI_CPU_B_MEM_DISABLE);
/* free up the allocated virtual memory */
iounmap((void *)hw->dpmbase);
iounmap((void *)hw->vector);
break;
default:
return -EINVAL;
}
return 0;
}
/*============================================================================
* Map shared memory window into SDLA address space.
*/
EXPORT_SYMBOL(sdla_mapmem);
int sdla_mapmem (sdlahw_t* hw, unsigned long addr)
{
unsigned port = hw->port;
register int tmp;
switch (hw->type) {
case SDLA_S502A:
case SDLA_S502E:
if (addr < S502_MAXMEM) { /* verify parameter */
tmp = addr >> 13; /* convert to register mask */
_OUTB(port + 2, tmp);
hw->regs[2] = tmp;
}
else return -EINVAL;
break;
case SDLA_S503:
if (addr < S503_MAXMEM) { /* verify parameter */
tmp = (hw->regs[0] & 0x8F) | ((addr >> 9) & 0x70);
_OUTB(port, tmp);
hw->regs[0] = tmp;
}
else return -EINVAL;
break;
case SDLA_S507:
if (addr < S507_MAXMEM) {
if (!(_INB(port) & 0x02))
return -EIO;
tmp = addr >> 13; /* convert to register mask */
_OUTB(port + 2, tmp);
hw->regs[2] = tmp;
}
else return -EINVAL;
break;
case SDLA_S508:
if (addr < S508_MAXMEM) {
tmp = addr >> 13; /* convert to register mask */
_OUTB(port + 2, tmp);
hw->regs[2] = tmp;
}
else return -EINVAL;
break;
case SDLA_S514:
return 0;
default:
return -EINVAL;
}
hw->vector = addr & 0xFFFFE000L;
return 0;
}
/*============================================================================
* Enable interrupt generation.
*/
EXPORT_SYMBOL(sdla_inten);
int sdla_inten (sdlahw_t* hw)
{
unsigned port = hw->port;
int tmp, i;
switch (hw->type) {
case SDLA_S502E:
/* Note thar interrupt control operations on S502E are allowed
* only if CPU is enabled (bit 0 of status register is set).
*/
if (_INB(port) & 0x01) {
_OUTB(port, 0x02); /* bit1 = 1, bit2 = 0 */
_OUTB(port, 0x06); /* bit1 = 1, bit2 = 1 */
hw->regs[0] = 0x06;
}
else return -EIO;
break;
case SDLA_S503:
tmp = hw->regs[0] | 0x04;
_OUTB(port, tmp);
hw->regs[0] = tmp; /* update mirror */
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (!(_INB(port) & 0x02)) /* verify */
return -EIO;
break;
case SDLA_S508:
tmp = hw->regs[0] | 0x10;
_OUTB(port, tmp);
hw->regs[0] = tmp; /* update mirror */
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (!(_INB(port + 1) & 0x10)) /* verify */
return -EIO;
break;
case SDLA_S502A:
case SDLA_S507:
break;
case SDLA_S514:
break;
default:
return -EINVAL;
}
return 0;
}
/*============================================================================
* Disable interrupt generation.
*/
EXPORT_SYMBOL(sdla_intde);
int sdla_intde (sdlahw_t* hw)
{
unsigned port = hw->port;
int tmp, i;
switch (hw->type) {
case SDLA_S502E:
/* Notes:
* 1) interrupt control operations are allowed only if CPU is
* enabled (bit 0 of status register is set).
* 2) disabling interrupts using bit 1 of control register
* causes IRQ line go high, therefore we are going to use
* 0x04 instead: lower it to inhibit interrupts to PC.
*/
if (_INB(port) & 0x01) {
_OUTB(port, hw->regs[0] & ~0x04);
hw->regs[0] &= ~0x04;
}
else return -EIO;
break;
case SDLA_S503:
tmp = hw->regs[0] & ~0x04;
_OUTB(port, tmp);
hw->regs[0] = tmp; /* update mirror */
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (_INB(port) & 0x02) /* verify */
return -EIO;
break;
case SDLA_S508:
tmp = hw->regs[0] & ~0x10;
_OUTB(port, tmp);
hw->regs[0] = tmp; /* update mirror */
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (_INB(port) & 0x10) /* verify */
return -EIO;
break;
case SDLA_S502A:
case SDLA_S507:
break;
default:
return -EINVAL;
}
return 0;
}
/*============================================================================
* Acknowledge SDLA hardware interrupt.
*/
EXPORT_SYMBOL(sdla_intack);
int sdla_intack (sdlahw_t* hw)
{
unsigned port = hw->port;
int tmp;
switch (hw->type) {
case SDLA_S502E:
/* To acknoledge hardware interrupt we have to toggle bit 3 of
* control register: \_/
* Note that interrupt control operations on S502E are allowed
* only if CPU is enabled (bit 1 of status register is set).
*/
if (_INB(port) & 0x01) {
tmp = hw->regs[0] & ~0x04;
_OUTB(port, tmp);
tmp |= 0x04;
_OUTB(port, tmp);
hw->regs[0] = tmp;
}
else return -EIO;
break;
case SDLA_S503:
if (_INB(port) & 0x04) {
tmp = hw->regs[0] & ~0x08;
_OUTB(port, tmp);
tmp |= 0x08;
_OUTB(port, tmp);
hw->regs[0] = tmp;
}
break;
case SDLA_S502A:
case SDLA_S507:
case SDLA_S508:
break;
default:
return -EINVAL;
}
return 0;
}
/*============================================================================
* Acknowledge S514 hardware interrupt.
*/
EXPORT_SYMBOL(S514_intack);
void S514_intack (sdlahw_t* hw, u32 int_status)
{
pci_write_config_dword(hw->pci_dev, PCI_INT_STATUS, int_status);
}
/*============================================================================
* Read the S514 hardware interrupt status.
*/
EXPORT_SYMBOL(read_S514_int_stat);
void read_S514_int_stat (sdlahw_t* hw, u32* int_status)
{
pci_read_config_dword(hw->pci_dev, PCI_INT_STATUS, int_status);
}
/*============================================================================
* Generate an interrupt to adapter's CPU.
*/
EXPORT_SYMBOL(sdla_intr);
int sdla_intr (sdlahw_t* hw)
{
unsigned port = hw->port;
switch (hw->type) {
case SDLA_S502A:
if (!(_INB(port) & 0x40)) {
_OUTB(port, 0x10); /* issue NMI to CPU */
hw->regs[0] = 0x10;
}
else return -EIO;
break;
case SDLA_S507:
if ((_INB(port) & 0x06) == 0x06) {
_OUTB(port + 3, 0);
}
else return -EIO;
break;
case SDLA_S508:
if (_INB(port + 1) & 0x02) {
_OUTB(port, 0x08);
}
else return -EIO;
break;
case SDLA_S502E:
case SDLA_S503:
default:
return -EINVAL;
}
return 0;
}
/*============================================================================
* Execute Adapter Command.
* o Set exec flag.
* o Busy-wait until flag is reset.
* o Return number of loops made, or 0 if command timed out.
*/
EXPORT_SYMBOL(sdla_exec);
int sdla_exec (void* opflag)
{
volatile unsigned char* flag = opflag;
unsigned long tstop;
int nloops;
if(readb(flag) != 0x00) {
printk(KERN_INFO
"WANPIPE: opp flag set on entry to sdla_exec\n");
return 0;
}
writeb(0x01, flag);
tstop = SYSTEM_TICK + EXEC_TIMEOUT;
for (nloops = 1; (readb(flag) == 0x01); ++ nloops) {
unsigned delay = exec_idle;
while (-- delay); /* delay */
if (SYSTEM_TICK > tstop) return 0; /* time is up! */
}
return nloops;
}
/*============================================================================
* Read absolute adapter memory.
* Transfer data from adapter's memory to data buffer.
*
* Note:
* Care should be taken when crossing dual-port memory window boundary.
* This function is not atomic, so caller must disable interrupt if
* interrupt routines are accessing adapter shared memory.
*/
EXPORT_SYMBOL(sdla_peek);
int sdla_peek (sdlahw_t* hw, unsigned long addr, void* buf, unsigned len)
{
if (addr + len > hw->memory) /* verify arguments */
return -EINVAL;
if(hw->type == SDLA_S514) { /* copy data for the S514 adapter */
peek_by_4 ((unsigned long)hw->dpmbase + addr, buf, len);
return 0;
}
else { /* copy data for the S508 adapter */
unsigned long oldvec = hw->vector;
unsigned winsize = hw->dpmsize;
unsigned curpos, curlen; /* current offset and block size */
unsigned long curvec; /* current DPM window vector */
int err = 0;
while (len && !err) {
curpos = addr % winsize; /* current window offset */
curvec = addr - curpos; /* current window vector */
curlen = (len > (winsize - curpos)) ?
(winsize - curpos) : len;
/* Relocate window and copy block of data */
err = sdla_mapmem(hw, curvec);
peek_by_4 ((unsigned long)hw->dpmbase + curpos, buf,
curlen);
addr += curlen;
buf = (char*)buf + curlen;
len -= curlen;
}
/* Restore DPM window position */
sdla_mapmem(hw, oldvec);
return err;
}
}
/*============================================================================
* Read data from adapter's memory to a data buffer in 4-byte chunks.
* Note that we ensure that the SDLA memory address is on a 4-byte boundary
* before we begin moving the data in 4-byte chunks.
*/
static void peek_by_4 (unsigned long src, void* buf, unsigned len)
{
/* byte copy data until we get to a 4-byte boundary */
while (len && (src & 0x03)) {
*(char *)buf ++ = readb(src ++);
len --;
}
/* copy data in 4-byte chunks */
while (len >= 4) {
*(unsigned long *)buf = readl(src);
buf += 4;
src += 4;
len -= 4;
}
/* byte copy any remaining data */
while (len) {
*(char *)buf ++ = readb(src ++);
len --;
}
}
/*============================================================================
* Write Absolute Adapter Memory.
* Transfer data from data buffer to adapter's memory.
*
* Note:
* Care should be taken when crossing dual-port memory window boundary.
* This function is not atomic, so caller must disable interrupt if
* interrupt routines are accessing adapter shared memory.
*/
EXPORT_SYMBOL(sdla_poke);
int sdla_poke (sdlahw_t* hw, unsigned long addr, void* buf, unsigned len)
{
if (addr + len > hw->memory) /* verify arguments */
return -EINVAL;
if(hw->type == SDLA_S514) { /* copy data for the S514 adapter */
poke_by_4 ((unsigned long)hw->dpmbase + addr, buf, len);
return 0;
}
else { /* copy data for the S508 adapter */
unsigned long oldvec = hw->vector;
unsigned winsize = hw->dpmsize;
unsigned curpos, curlen; /* current offset and block size */
unsigned long curvec; /* current DPM window vector */
int err = 0;
while (len && !err) {
curpos = addr % winsize; /* current window offset */
curvec = addr - curpos; /* current window vector */
curlen = (len > (winsize - curpos)) ?
(winsize - curpos) : len;
/* Relocate window and copy block of data */
sdla_mapmem(hw, curvec);
poke_by_4 ((unsigned long)hw->dpmbase + curpos, buf,
curlen);
addr += curlen;
buf = (char*)buf + curlen;
len -= curlen;
}
/* Restore DPM window position */
sdla_mapmem(hw, oldvec);
return err;
}
}
/*============================================================================
* Write from a data buffer to adapter's memory in 4-byte chunks.
* Note that we ensure that the SDLA memory address is on a 4-byte boundary
* before we begin moving the data in 4-byte chunks.
*/
static void poke_by_4 (unsigned long dest, void* buf, unsigned len)
{
/* byte copy data until we get to a 4-byte boundary */
while (len && (dest & 0x03)) {
writeb (*(char *)buf ++, dest ++);
len --;
}
/* copy data in 4-byte chunks */
while (len >= 4) {
writel (*(unsigned long *)buf, dest);
dest += 4;
buf += 4;
len -= 4;
}
/* byte copy any remaining data */
while (len) {
writeb (*(char *)buf ++ , dest ++);
len --;
}
}
#ifdef DONT_COMPIPLE_THIS
#endif /* DONT_COMPIPLE_THIS */
/****** Hardware-Specific Functions *****************************************/
/*============================================================================
* Detect adapter type.
* o if adapter type is specified then call detection routine for that adapter
* type. Otherwise call detection routines for every adapter types until
* adapter is detected.
*
* Notes:
* 1) Detection tests are destructive! Adapter will be left in shutdown state
* after the test.
*/
static int sdla_detect (sdlahw_t* hw)
{
unsigned port = hw->port;
int err = 0;
if (!port && (hw->type != SDLA_S514))
return -EFAULT;
switch (hw->type) {
case SDLA_S502A:
if (!detect_s502a(port)) err = -ENODEV;
break;
case SDLA_S502E:
if (!detect_s502e(port)) err = -ENODEV;
break;
case SDLA_S503:
if (!detect_s503(port)) err = -ENODEV;
break;
case SDLA_S507:
if (!detect_s507(port)) err = -ENODEV;
break;
case SDLA_S508:
if (!detect_s508(port)) err = -ENODEV;
break;
case SDLA_S514:
if (!detect_s514(hw)) err = -ENODEV;
break;
default:
if (detect_s502a(port))
hw->type = SDLA_S502A;
else if (detect_s502e(port))
hw->type = SDLA_S502E;
else if (detect_s503(port))
hw->type = SDLA_S503;
else if (detect_s507(port))
hw->type = SDLA_S507;
else if (detect_s508(port))
hw->type = SDLA_S508;
else err = -ENODEV;
}
return err;
}
/*============================================================================
* Autoselect memory region.
* o try all available DMP address options from the top down until success.
*/
static int sdla_autodpm (sdlahw_t* hw)
{
int i, err = -EINVAL;
unsigned* opt;
switch (hw->type) {
case SDLA_S502A:
opt = s502a_dpmbase_options;
break;
case SDLA_S502E:
case SDLA_S503:
case SDLA_S508:
opt = s508_dpmbase_options;
break;
case SDLA_S507:
opt = s507_dpmbase_options;
break;
default:
return -EINVAL;
}
/* Start testing from 8th position, address
* 0xC8000 from the 508 address table.
* We don't want to test A**** addresses, since
* they are usually used for Video */
for (i = 8; i <= opt[0] && err; i++) {
hw->dpmbase = phys_to_virt(opt[i]);
err = sdla_setdpm(hw);
}
return err;
}
/*============================================================================
* Set up adapter dual-port memory window.
* o shut down adapter
* o make sure that no physical memory exists in this region, i.e entire
* region reads 0xFF and is not writable when adapter is shut down.
* o initialize adapter hardware
* o make sure that region is usable with SDLA card, i.e. we can write to it
* when adapter is configured.
*/
static int sdla_setdpm (sdlahw_t* hw)
{
int err;
/* Shut down card and verify memory region */
sdla_down(hw);
if (check_memregion(hw->dpmbase, hw->dpmsize))
return -EINVAL;
/* Initialize adapter and test on-board memory segment by segment.
* If memory size appears to be less than shared memory window size,
* assume that memory region is unusable.
*/
err = sdla_init(hw);
if (err) return err;
if (sdla_memtest(hw) < hw->dpmsize) { /* less than window size */
sdla_down(hw);
return -EIO;
}
sdla_mapmem(hw, 0L); /* set window vector at bottom */
return 0;
}
/*============================================================================
* Load adapter from the memory image of the SDLA firmware module.
* o verify firmware integrity and compatibility
* o start adapter up
*/
static int sdla_load (sdlahw_t* hw, sfm_t* sfm, unsigned len)
{
int i;
/* Verify firmware signature */
if (strcmp(sfm->signature, SFM_SIGNATURE)) {
printk(KERN_INFO "%s: not SDLA firmware!\n",
modname);
return -EINVAL;
}
/* Verify firmware module format version */
if (sfm->version != SFM_VERSION) {
printk(KERN_INFO
"%s: firmware format %u rejected! Expecting %u.\n",
modname, sfm->version, SFM_VERSION);
return -EINVAL;
}
/* Verify firmware module length and checksum */
if ((len - offsetof(sfm_t, image) != sfm->info.codesize) ||
(checksum((void*)&sfm->info,
sizeof(sfm_info_t) + sfm->info.codesize) != sfm->checksum)) {
printk(KERN_INFO "%s: firmware corrupted!\n", modname);
return -EINVAL;
}
/* Announce */
printk(KERN_INFO "%s: loading %s (ID=%u)...\n", modname,
(sfm->descr[0] != '\0') ? sfm->descr : "unknown firmware",
sfm->info.codeid);
if(hw->type == SDLA_S514)
printk(KERN_INFO "%s: loading S514 adapter, CPU %c\n",
modname, hw->S514_cpu_no[0]);
/* Scan through the list of compatible adapters and make sure our
* adapter type is listed.
*/
for (i = 0;
(i < SFM_MAX_SDLA) && (sfm->info.adapter[i] != hw->type);
++i);
if (i == SFM_MAX_SDLA) {
printk(KERN_INFO "%s: firmware is not compatible with S%u!\n",
modname, hw->type);
return -EINVAL;
}
/* Make sure there is enough on-board memory */
if (hw->memory < sfm->info.memsize) {
printk(KERN_INFO
"%s: firmware needs %lu bytes of on-board memory!\n",
modname, sfm->info.memsize);
return -EINVAL;
}
/* Move code onto adapter */
if (sdla_poke(hw, sfm->info.codeoffs, sfm->image, sfm->info.codesize)) {
printk(KERN_INFO "%s: failed to load code segment!\n",
modname);
return -EIO;
}
/* Prepare boot-time configuration data and kick-off CPU */
sdla_bootcfg(hw, &sfm->info);
if (sdla_start(hw, sfm->info.startoffs)) {
printk(KERN_INFO "%s: Damn... Adapter won't start!\n",
modname);
return -EIO;
}
/* position DPM window over the mailbox and enable interrupts */
if (sdla_mapmem(hw, sfm->info.winoffs) || sdla_inten(hw)) {
printk(KERN_INFO "%s: adapter hardware failure!\n",
modname);
return -EIO;
}
hw->fwid = sfm->info.codeid; /* set firmware ID */
return 0;
}
/*============================================================================
* Initialize SDLA hardware: setup memory window, IRQ, etc.
*/
static int sdla_init (sdlahw_t* hw)
{
int i;
for (i = 0; i < SDLA_MAXIORANGE; ++i)
hw->regs[i] = 0;
switch (hw->type) {
case SDLA_S502A: return init_s502a(hw);
case SDLA_S502E: return init_s502e(hw);
case SDLA_S503: return init_s503(hw);
case SDLA_S507: return init_s507(hw);
case SDLA_S508: return init_s508(hw);
}
return -EINVAL;
}
/*============================================================================
* Test adapter on-board memory.
* o slide DPM window from the bottom up and test adapter memory segment by
* segment.
* Return adapter memory size.
*/
static unsigned long sdla_memtest (sdlahw_t* hw)
{
unsigned long memsize;
unsigned winsize;
for (memsize = 0, winsize = hw->dpmsize;
!sdla_mapmem(hw, memsize) &&
(test_memregion(hw->dpmbase, winsize) == winsize)
;
memsize += winsize)
;
hw->memory = memsize;
return memsize;
}
/*============================================================================
* Prepare boot-time firmware configuration data.
* o position DPM window
* o initialize configuration data area
*/
static int sdla_bootcfg (sdlahw_t* hw, sfm_info_t* sfminfo)
{
unsigned char* data;
if (!sfminfo->datasize) return 0; /* nothing to do */
if (sdla_mapmem(hw, sfminfo->dataoffs) != 0)
return -EIO;
if(hw->type == SDLA_S514)
data = (void*)(hw->dpmbase + sfminfo->dataoffs);
else
data = (void*)((u8 *)hw->dpmbase +
(sfminfo->dataoffs - hw->vector));
memset_io (data, 0, sfminfo->datasize);
writeb (make_config_byte(hw), &data[0x00]);
switch (sfminfo->codeid) {
case SFID_X25_502:
case SFID_X25_508:
writeb (3, &data[0x01]); /* T1 timer */
writeb (10, &data[0x03]); /* N2 */
writeb (7, &data[0x06]); /* HDLC window size */
writeb (1, &data[0x0B]); /* DTE */
writeb (2, &data[0x0C]); /* X.25 packet window size */
writew (128, &data[0x0D]); /* default X.25 data size */
writew (128, &data[0x0F]); /* maximum X.25 data size */
break;
}
return 0;
}
/*============================================================================
* Prepare configuration byte identifying adapter type and CPU clock rate.
*/
static unsigned char make_config_byte (sdlahw_t* hw)
{
unsigned char byte = 0;
switch (hw->pclk) {
case 5000: byte = 0x01; break;
case 7200: byte = 0x02; break;
case 8000: byte = 0x03; break;
case 10000: byte = 0x04; break;
case 16000: byte = 0x05; break;
}
switch (hw->type) {
case SDLA_S502E: byte |= 0x80; break;
case SDLA_S503: byte |= 0x40; break;
}
return byte;
}
/*============================================================================
* Start adapter's CPU.
* o calculate a pointer to adapter's cold boot entry point
* o position DPM window
* o place boot instruction (jp addr) at cold boot entry point
* o start CPU
*/
static int sdla_start (sdlahw_t* hw, unsigned addr)
{
unsigned port = hw->port;
unsigned char *bootp;
int err, tmp, i;
if (!port && (hw->type != SDLA_S514)) return -EFAULT;
switch (hw->type) {
case SDLA_S502A:
bootp = hw->dpmbase;
bootp += 0x66;
break;
case SDLA_S502E:
case SDLA_S503:
case SDLA_S507:
case SDLA_S508:
case SDLA_S514:
bootp = hw->dpmbase;
break;
default:
return -EINVAL;
}
err = sdla_mapmem(hw, 0);
if (err) return err;
writeb (0xC3, bootp); /* Z80: 'jp' opcode */
bootp ++;
writew (addr, bootp);
switch (hw->type) {
case SDLA_S502A:
_OUTB(port, 0x10); /* issue NMI to CPU */
hw->regs[0] = 0x10;
break;
case SDLA_S502E:
_OUTB(port + 3, 0x01); /* start CPU */
hw->regs[3] = 0x01;
for (i = 0; i < SDLA_IODELAY; ++i);
if (_INB(port) & 0x01) { /* verify */
/*
* Enabling CPU changes functionality of the
* control register, so we have to reset its
* mirror.
*/
_OUTB(port, 0); /* disable interrupts */
hw->regs[0] = 0;
}
else return -EIO;
break;
case SDLA_S503:
tmp = hw->regs[0] | 0x09; /* set bits 0 and 3 */
_OUTB(port, tmp);
hw->regs[0] = tmp; /* update mirror */
for (i = 0; i < SDLA_IODELAY; ++i);
if (!(_INB(port) & 0x01)) /* verify */
return -EIO;
break;
case SDLA_S507:
tmp = hw->regs[0] | 0x02;
_OUTB(port, tmp);
hw->regs[0] = tmp; /* update mirror */
for (i = 0; i < SDLA_IODELAY; ++i);
if (!(_INB(port) & 0x04)) /* verify */
return -EIO;
break;
case SDLA_S508:
tmp = hw->regs[0] | 0x02;
_OUTB(port, tmp);
hw->regs[0] = tmp; /* update mirror */
for (i = 0; i < SDLA_IODELAY; ++i);
if (!(_INB(port + 1) & 0x02)) /* verify */
return -EIO;
break;
case SDLA_S514:
writeb (S514_CPU_START, hw->vector);
break;
default:
return -EINVAL;
}
return 0;
}
/*============================================================================
* Initialize S502A adapter.
*/
static int init_s502a (sdlahw_t* hw)
{
unsigned port = hw->port;
int tmp, i;
if (!detect_s502a(port))
return -ENODEV;
hw->regs[0] = 0x08;
hw->regs[1] = 0xFF;
/* Verify configuration options */
i = get_option_index(s502a_dpmbase_options, virt_to_phys(hw->dpmbase));
if (i == 0)
return -EINVAL;
tmp = s502a_hmcr[i - 1];
switch (hw->dpmsize) {
case 0x2000:
tmp |= 0x01;
break;
case 0x10000L:
break;
default:
return -EINVAL;
}
/* Setup dual-port memory window (this also enables memory access) */
_OUTB(port + 1, tmp);
hw->regs[1] = tmp;
hw->regs[0] = 0x08;
return 0;
}
/*============================================================================
* Initialize S502E adapter.
*/
static int init_s502e (sdlahw_t* hw)
{
unsigned port = hw->port;
int tmp, i;
if (!detect_s502e(port))
return -ENODEV;
/* Verify configuration options */
i = get_option_index(s508_dpmbase_options, virt_to_phys(hw->dpmbase));
if (i == 0)
return -EINVAL;
tmp = s502e_hmcr[i - 1];
switch (hw->dpmsize) {
case 0x2000:
tmp |= 0x01;
break;
case 0x10000L:
break;
default:
return -EINVAL;
}
/* Setup dual-port memory window */
_OUTB(port + 1, tmp);
hw->regs[1] = tmp;
/* Enable memory access */
_OUTB(port, 0x02);
hw->regs[0] = 0x02;
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
return (_INB(port) & 0x02) ? 0 : -EIO;
}
/*============================================================================
* Initialize S503 adapter.
* ---------------------------------------------------------------------------
*/
static int init_s503 (sdlahw_t* hw)
{
unsigned port = hw->port;
int tmp, i;
if (!detect_s503(port))
return -ENODEV;
/* Verify configuration options */
i = get_option_index(s508_dpmbase_options, virt_to_phys(hw->dpmbase));
if (i == 0)
return -EINVAL;
tmp = s502e_hmcr[i - 1];
switch (hw->dpmsize) {
case 0x2000:
tmp |= 0x01;
break;
case 0x10000L:
break;
default:
return -EINVAL;
}
/* Setup dual-port memory window */
_OUTB(port + 1, tmp);
hw->regs[1] = tmp;
/* Enable memory access */
_OUTB(port, 0x02);
hw->regs[0] = 0x02; /* update mirror */
return 0;
}
/*============================================================================
* Initialize S507 adapter.
*/
static int init_s507 (sdlahw_t* hw)
{
unsigned port = hw->port;
int tmp, i;
if (!detect_s507(port))
return -ENODEV;
/* Verify configuration options */
i = get_option_index(s507_dpmbase_options, virt_to_phys(hw->dpmbase));
if (i == 0)
return -EINVAL;
tmp = s507_hmcr[i - 1];
switch (hw->dpmsize) {
case 0x2000:
tmp |= 0x01;
break;
case 0x10000L:
break;
default:
return -EINVAL;
}
/* Enable adapter's logic */
_OUTB(port, 0x01);
hw->regs[0] = 0x01;
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (!(_INB(port) & 0x20))
return -EIO;
/* Setup dual-port memory window */
_OUTB(port + 1, tmp);
hw->regs[1] = tmp;
/* Enable memory access */
tmp = hw->regs[0] | 0x04;
if (hw->irq) {
i = get_option_index(s508_irq_options, hw->irq);
if (i) tmp |= s507_irqmask[i - 1];
}
_OUTB(port, tmp);
hw->regs[0] = tmp; /* update mirror */
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
return (_INB(port) & 0x08) ? 0 : -EIO;
}
/*============================================================================
* Initialize S508 adapter.
*/
static int init_s508 (sdlahw_t* hw)
{
unsigned port = hw->port;
int tmp, i;
if (!detect_s508(port))
return -ENODEV;
/* Verify configuration options */
i = get_option_index(s508_dpmbase_options, virt_to_phys(hw->dpmbase));
if (i == 0)
return -EINVAL;
/* Setup memory configuration */
tmp = s508_hmcr[i - 1];
_OUTB(port + 1, tmp);
hw->regs[1] = tmp;
/* Enable memory access */
_OUTB(port, 0x04);
hw->regs[0] = 0x04; /* update mirror */
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
return (_INB(port + 1) & 0x04) ? 0 : -EIO;
}
/*============================================================================
* Detect S502A adapter.
* Following tests are used to detect S502A adapter:
* 1. All registers other than status (BASE) should read 0xFF
* 2. After writing 00001000b to control register, status register should
* read 01000000b.
* 3. After writing 0 to control register, status register should still
* read 01000000b.
* 4. After writing 00000100b to control register, status register should
* read 01000100b.
* Return 1 if detected o.k. or 0 if failed.
* Note: This test is destructive! Adapter will be left in shutdown
* state after the test.
*/
static int detect_s502a (int port)
{
int i, j;
if (!get_option_index(s502_port_options, port))
return 0;
for (j = 1; j < SDLA_MAXIORANGE; ++j) {
if (_INB(port + j) != 0xFF)
return 0;
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
}
_OUTB(port, 0x08); /* halt CPU */
_OUTB(port, 0x08);
_OUTB(port, 0x08);
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (_INB(port) != 0x40)
return 0;
_OUTB(port, 0x00);
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (_INB(port) != 0x40)
return 0;
_OUTB(port, 0x04);
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (_INB(port) != 0x44)
return 0;
/* Reset adapter */
_OUTB(port, 0x08);
_OUTB(port, 0x08);
_OUTB(port, 0x08);
_OUTB(port + 1, 0xFF);
return 1;
}
/*============================================================================
* Detect S502E adapter.
* Following tests are used to verify adapter presence:
* 1. All registers other than status (BASE) should read 0xFF.
* 2. After writing 0 to CPU control register (BASE+3), status register
* (BASE) should read 11111000b.
* 3. After writing 00000100b to port BASE (set bit 2), status register
* (BASE) should read 11111100b.
* Return 1 if detected o.k. or 0 if failed.
* Note: This test is destructive! Adapter will be left in shutdown
* state after the test.
*/
static int detect_s502e (int port)
{
int i, j;
if (!get_option_index(s502_port_options, port))
return 0;
for (j = 1; j < SDLA_MAXIORANGE; ++j) {
if (_INB(port + j) != 0xFF)
return 0;
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
}
_OUTB(port + 3, 0); /* CPU control reg. */
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (_INB(port) != 0xF8) /* read status */
return 0;
_OUTB(port, 0x04); /* set bit 2 */
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (_INB(port) != 0xFC) /* verify */
return 0;
/* Reset adapter */
_OUTB(port, 0);
return 1;
}
/*============================================================================
* Detect s503 adapter.
* Following tests are used to verify adapter presence:
* 1. All registers other than status (BASE) should read 0xFF.
* 2. After writing 0 to control register (BASE), status register (BASE)
* should read 11110000b.
* 3. After writing 00000100b (set bit 2) to control register (BASE),
* status register should read 11110010b.
* Return 1 if detected o.k. or 0 if failed.
* Note: This test is destructive! Adapter will be left in shutdown
* state after the test.
*/
static int detect_s503 (int port)
{
int i, j;
if (!get_option_index(s503_port_options, port))
return 0;
for (j = 1; j < SDLA_MAXIORANGE; ++j) {
if (_INB(port + j) != 0xFF)
return 0;
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
}
_OUTB(port, 0); /* reset control reg.*/
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (_INB(port) != 0xF0) /* read status */
return 0;
_OUTB(port, 0x04); /* set bit 2 */
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if (_INB(port) != 0xF2) /* verify */
return 0;
/* Reset adapter */
_OUTB(port, 0);
return 1;
}
/*============================================================================
* Detect s507 adapter.
* Following tests are used to detect s507 adapter:
* 1. All ports should read the same value.
* 2. After writing 0x00 to control register, status register should read
* ?011000?b.
* 3. After writing 0x01 to control register, status register should read
* ?011001?b.
* Return 1 if detected o.k. or 0 if failed.
* Note: This test is destructive! Adapter will be left in shutdown
* state after the test.
*/
static int detect_s507 (int port)
{
int tmp, i, j;
if (!get_option_index(s508_port_options, port))
return 0;
tmp = _INB(port);
for (j = 1; j < S507_IORANGE; ++j) {
if (_INB(port + j) != tmp)
return 0;
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
}
_OUTB(port, 0x00);
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if ((_INB(port) & 0x7E) != 0x30)
return 0;
_OUTB(port, 0x01);
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if ((_INB(port) & 0x7E) != 0x32)
return 0;
/* Reset adapter */
_OUTB(port, 0x00);
return 1;
}
/*============================================================================
* Detect s508 adapter.
* Following tests are used to detect s508 adapter:
* 1. After writing 0x00 to control register, status register should read
* ??000000b.
* 2. After writing 0x10 to control register, status register should read
* ??010000b
* Return 1 if detected o.k. or 0 if failed.
* Note: This test is destructive! Adapter will be left in shutdown
* state after the test.
*/
static int detect_s508 (int port)
{
int i;
if (!get_option_index(s508_port_options, port))
return 0;
_OUTB(port, 0x00);
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if ((_INB(port + 1) & 0x3F) != 0x00)
return 0;
_OUTB(port, 0x10);
for (i = 0; i < SDLA_IODELAY; ++i); /* delay */
if ((_INB(port + 1) & 0x3F) != 0x10)
return 0;
/* Reset adapter */
_OUTB(port, 0x00);
return 1;
}
/*============================================================================
* Detect s514 PCI adapter.
* Return 1 if detected o.k. or 0 if failed.
* Note: This test is destructive! Adapter will be left in shutdown
* state after the test.
*/
static int detect_s514 (sdlahw_t* hw)
{
unsigned char CPU_no, slot_no, auto_slot_cfg;
int number_S514_cards = 0;
u32 S514_mem_base_addr = 0;
u32 ut_u32;
struct pci_dev *pci_dev;
#ifndef CONFIG_PCI
printk(KERN_INFO "%s: Linux not compiled for PCI usage!\n", modname);
return 0;
#endif
/*
The 'setup()' procedure in 'sdlamain.c' passes the CPU number and the
slot number defined in 'router.conf' via the 'port' definition.
*/
CPU_no = hw->S514_cpu_no[0];
slot_no = hw->S514_slot_no;
auto_slot_cfg = hw->auto_pci_cfg;
if (auto_slot_cfg){
printk(KERN_INFO "%s: srch... S514 card, CPU %c, Slot=Auto\n",
modname, CPU_no);
}else{
printk(KERN_INFO "%s: srch... S514 card, CPU %c, Slot #%d\n",
modname, CPU_no, slot_no);
}
/* check to see that CPU A or B has been selected in 'router.conf' */
switch(CPU_no) {
case S514_CPU_A:
case S514_CPU_B:
break;
default:
printk(KERN_INFO "%s: S514 CPU definition invalid.\n",
modname);
printk(KERN_INFO "Must be 'A' or 'B'\n");
return 0;
}
number_S514_cards = find_s514_adapter(hw, 0);
if(!number_S514_cards)
return 0;
/* we are using a single S514 adapter with a slot of 0 so re-read the */
/* location of this adapter */
if((number_S514_cards == 1) && auto_slot_cfg) {
number_S514_cards = find_s514_adapter(hw, 1);
if(!number_S514_cards) {
printk(KERN_INFO "%s: Error finding PCI card\n",
modname);
return 0;
}
}
pci_dev = hw->pci_dev;
/* read the physical memory base address */
S514_mem_base_addr = (CPU_no == S514_CPU_A) ?
(pci_dev->resource[1].start) :
(pci_dev->resource[2].start);
printk(KERN_INFO "%s: S514 PCI memory at 0x%X\n",
modname, S514_mem_base_addr);
if(!S514_mem_base_addr) {
if(CPU_no == S514_CPU_B)
printk(KERN_INFO "%s: CPU #B not present on the card\n", modname);
else
printk(KERN_INFO "%s: No PCI memory allocated to card\n", modname);
return 0;
}
/* enable the PCI memory */
pci_read_config_dword(pci_dev,
(CPU_no == S514_CPU_A) ? PCI_MAP0_DWORD : PCI_MAP1_DWORD,
&ut_u32);
pci_write_config_dword(pci_dev,
(CPU_no == S514_CPU_A) ? PCI_MAP0_DWORD : PCI_MAP1_DWORD,
(ut_u32 | PCI_MEMORY_ENABLE));
/* check the IRQ allocated and enable IRQ usage */
if(!(hw->irq = pci_dev->irq)) {
printk(KERN_INFO "%s: IRQ not allocated to S514 adapter\n",
modname);
return 0;
}
/* BUG FIX : Mar 6 2000
* On a initial loading of the card, we must check
* and clear PCI interrupt bits, due to a reset
* problem on some other boards. i.e. An interrupt
* might be pending, even after system bootup,
* in which case, when starting wanrouter the machine
* would crash.
*/
if (init_pci_slot(hw))
return 0;
pci_read_config_dword(pci_dev, PCI_INT_CONFIG, &ut_u32);
ut_u32 |= (CPU_no == S514_CPU_A) ?
PCI_ENABLE_IRQ_CPU_A : PCI_ENABLE_IRQ_CPU_B;
pci_write_config_dword(pci_dev, PCI_INT_CONFIG, ut_u32);
printk(KERN_INFO "%s: IRQ %d allocated to the S514 card\n",
modname, hw->irq);
/* map the physical PCI memory to virtual memory */
(void *)hw->dpmbase = ioremap((unsigned long)S514_mem_base_addr,
(unsigned long)MAX_SIZEOF_S514_MEMORY);
/* map the physical control register memory to virtual memory */
hw->vector = (unsigned long)ioremap(
(unsigned long)(S514_mem_base_addr + S514_CTRL_REG_BYTE),
(unsigned long)16);
if(!hw->dpmbase || !hw->vector) {
printk(KERN_INFO "%s: PCI virtual memory allocation failed\n",
modname);
return 0;
}
/* halt the adapter */
writeb (S514_CPU_HALT, hw->vector);
return 1;
}
/*============================================================================
* Find the S514 PCI adapter in the PCI bus.
* Return the number of S514 adapters found (0 if no adapter found).
*/
static int find_s514_adapter(sdlahw_t* hw, char find_first_S514_card)
{
unsigned char slot_no;
int number_S514_cards = 0;
char S514_found_in_slot = 0;
u16 PCI_subsys_vendor;
struct pci_dev *pci_dev = NULL;
slot_no = hw->S514_slot_no;
while ((pci_dev = pci_find_device(V3_VENDOR_ID, V3_DEVICE_ID, pci_dev))
!= NULL) {
pci_read_config_word(pci_dev, PCI_SUBSYS_VENDOR_WORD,
&PCI_subsys_vendor);
if(PCI_subsys_vendor != SANGOMA_SUBSYS_VENDOR)
continue;
hw->pci_dev = pci_dev;
if(find_first_S514_card)
return(1);
number_S514_cards ++;
printk(KERN_INFO
"%s: S514 card found, slot #%d (devfn 0x%X)\n",
modname, ((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK),
pci_dev->devfn);
if (hw->auto_pci_cfg){
hw->S514_slot_no = ((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK);
slot_no = hw->S514_slot_no;
}else if (((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK) == slot_no){
S514_found_in_slot = 1;
break;
}
}
/* if no S514 adapter has been found, then exit */
if (!number_S514_cards) {
printk(KERN_INFO "%s: Error, no S514 adapters found\n", modname);
return 0;
}
/* if more than one S514 card has been found, then the user must have */ /* defined a slot number so that the correct adapter is used */
else if ((number_S514_cards > 1) && hw->auto_pci_cfg) {
printk(KERN_INFO "%s: Error, PCI Slot autodetect Failed! \n"
"%s: More than one S514 adapter found.\n"
"%s: Disable the Autodetect feature and supply\n"
"%s: the PCISLOT numbers for each card.\n",
modname,modname,modname,modname);
return 0;
}
/* if the user has specified a slot number and the S514 adapter has */
/* not been found in that slot, then exit */
else if (!hw->auto_pci_cfg && !S514_found_in_slot) {
printk(KERN_INFO
"%s: Error, S514 card not found in specified slot #%d\n",
modname, slot_no);
return 0;
}
return (number_S514_cards);
}
/******* Miscellaneous ******************************************************/
/*============================================================================
* Calibrate SDLA memory access delay.
* Count number of idle loops made within 1 second and then calculate the
* number of loops that should be made to achive desired delay.
*/
static int calibrate_delay (int mks)
{
unsigned int delay;
unsigned long stop;
for (delay = 0, stop = SYSTEM_TICK + HZ; SYSTEM_TICK < stop; ++delay);
return (delay/(1000000L/mks) + 1);
}
/*============================================================================
* Get option's index into the options list.
* Return option's index (1 .. N) or zero if option is invalid.
*/
static int get_option_index (unsigned* optlist, unsigned optval)
{
int i;
for (i = 1; i <= optlist[0]; ++i)
if ( optlist[i] == optval)
return i;
return 0;
}
/*============================================================================
* Check memory region to see if it's available.
* Return: 0 ok.
*/
static unsigned check_memregion (void* ptr, unsigned len)
{
volatile unsigned char* p = ptr;
for (; len && (readb (p) == 0xFF); --len, ++p) {
writeb (0, p); /* attempt to write 0 */
if (readb(p) != 0xFF) { /* still has to read 0xFF */
writeb (0xFF, p);/* restore original value */
break; /* not good */
}
}
return len;
}
/*============================================================================
* Test memory region.
* Return: size of the region that passed the test.
* Note: Region size must be multiple of 2 !
*/
static unsigned test_memregion (void* ptr, unsigned len)
{
volatile unsigned short* w_ptr;
unsigned len_w = len >> 1; /* region len in words */
unsigned i;
for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr)
writew (0xAA55, w_ptr);
for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr)
if (readw (w_ptr) != 0xAA55) {
len_w = i;
break;
}
for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr)
writew (0x55AA, w_ptr);
for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr)
if (readw(w_ptr) != 0x55AA) {
len_w = i;
break;
}
for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr)
writew (0, w_ptr);
return len_w << 1;
}
/*============================================================================
* Calculate 16-bit CRC using CCITT polynomial.
*/
static unsigned short checksum (unsigned char* buf, unsigned len)
{
unsigned short crc = 0;
unsigned mask, flag;
for (; len; --len, ++buf) {
for (mask = 0x80; mask; mask >>= 1) {
flag = (crc & 0x8000);
crc <<= 1;
crc |= ((*buf & mask) ? 1 : 0);
if (flag) crc ^= 0x1021;
}
}
return crc;
}
static int init_pci_slot(sdlahw_t *hw)
{
u32 int_status;
int volatile found=0;
int i=0;
/* Check if this is a very first load for a specific
* pci card. If it is, clear the interrput bits, and
* set the flag indicating that this card was initialized.
*/
for (i=0; (i<MAX_S514_CARDS) && !found; i++){
if (pci_slot_ar[i] == hw->S514_slot_no){
found=1;
break;
}
if (pci_slot_ar[i] == 0xFF){
break;
}
}
if (!found){
read_S514_int_stat(hw,&int_status);
S514_intack(hw,int_status);
if (i == MAX_S514_CARDS){
printk(KERN_INFO "%s: Critical Error !!!\n",modname);
printk(KERN_INFO
"%s: Number of Sangoma PCI cards exceeded maximum limit.\n",
modname);
printk(KERN_INFO "Please contact Sangoma Technologies\n");
return 1;
}
pci_slot_ar[i] = hw->S514_slot_no;
}
return 0;
}
static int pci_probe(sdlahw_t *hw)
{
unsigned char slot_no;
int number_S514_cards = 0;
u16 PCI_subsys_vendor;
u16 PCI_card_type;
struct pci_dev *pci_dev = NULL;
struct pci_bus *bus = NULL;
slot_no = 0;
while ((pci_dev = pci_find_device(V3_VENDOR_ID, V3_DEVICE_ID, pci_dev))
!= NULL) {
pci_read_config_word(pci_dev, PCI_SUBSYS_VENDOR_WORD,
&PCI_subsys_vendor);
if(PCI_subsys_vendor != SANGOMA_SUBSYS_VENDOR)
continue;
pci_read_config_word(pci_dev, PCI_CARD_TYPE,
&PCI_card_type);
bus = pci_dev->bus;
/* A dual cpu card can support up to 4 physical connections,
* where a single cpu card can support up to 2 physical
* connections. The FT1 card can only support a single
* connection, however we cannot distinguish between a Single
* CPU card and an FT1 card. */
if (PCI_card_type == S514_DUAL_CPU){
number_S514_cards += 4;
printk(KERN_INFO
"wanpipe: S514-PCI card found, cpu(s) 2, bus #%d, slot #%d, irq #%d\n",
bus->number,((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK),
pci_dev->irq);
}else{
number_S514_cards += 2;
printk(KERN_INFO
"wanpipe: S514-PCI card found, cpu(s) 1, bus #%d, slot #%d, irq #%d\n",
bus->number,((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK),
pci_dev->irq);
}
}
return number_S514_cards;
}
EXPORT_SYMBOL(wanpipe_hw_probe);
unsigned wanpipe_hw_probe(void)
{
sdlahw_t hw;
unsigned* opt = s508_port_options;
unsigned cardno=0;
int i;
memset(&hw, 0, sizeof(hw));
for (i = 1; i <= opt[0]; i++) {
if (detect_s508(opt[i])){
/* S508 card can support up to two physical links */
cardno+=2;
printk(KERN_INFO "wanpipe: S508-ISA card found, port 0x%x\n",opt[i]);
}
}
#ifdef CONFIG_PCI
hw.S514_slot_no = 0;
cardno += pci_probe(&hw);
#else
printk(KERN_INFO "wanpipe: Warning, Kernel not compiled for PCI support!\n");
printk(KERN_INFO "wanpipe: PCI Hardware Probe Failed!\n");
#endif
return cardno;
}
/****** End *****************************************************************/