android_kernel_xiaomi_sm8350/arch/powerpc/platforms/ps3/spu.c
Geoff Levand 53f7c5453d [POWERPC] PS3: Map SPU regions as non-guarded
Use ioremap_flags() to map SPU regions as non-guarded.
Change the use of _ioremap() to ioremap_flags().

CC: Arnd Bergmann <arnd.bergmann@de.ibm.com>
CC: Masato Noguchi <Masato.Noguchi@jp.sony.com>
CC: Takao Shinohara <shin@sm.sony.co.jp>
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-06-28 19:16:34 +10:00

581 lines
14 KiB
C

/*
* PS3 Platform spu routines.
*
* Copyright (C) 2006 Sony Computer Entertainment Inc.
* Copyright 2006 Sony Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mmzone.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <asm/lv1call.h>
#include "platform.h"
/* spu_management_ops */
/**
* enum spe_type - Type of spe to create.
* @spe_type_logical: Standard logical spe.
*
* For use with lv1_construct_logical_spe(). The current HV does not support
* any types other than those listed.
*/
enum spe_type {
SPE_TYPE_LOGICAL = 0,
};
/**
* struct spe_shadow - logical spe shadow register area.
*
* Read-only shadow of spe registers.
*/
struct spe_shadow {
u8 padding_0140[0x0140];
u64 int_status_class0_RW; /* 0x0140 */
u64 int_status_class1_RW; /* 0x0148 */
u64 int_status_class2_RW; /* 0x0150 */
u8 padding_0158[0x0610-0x0158];
u64 mfc_dsisr_RW; /* 0x0610 */
u8 padding_0618[0x0620-0x0618];
u64 mfc_dar_RW; /* 0x0620 */
u8 padding_0628[0x0800-0x0628];
u64 mfc_dsipr_R; /* 0x0800 */
u8 padding_0808[0x0810-0x0808];
u64 mfc_lscrr_R; /* 0x0810 */
u8 padding_0818[0x0c00-0x0818];
u64 mfc_cer_R; /* 0x0c00 */
u8 padding_0c08[0x0f00-0x0c08];
u64 spe_execution_status; /* 0x0f00 */
u8 padding_0f08[0x1000-0x0f08];
};
/**
* enum spe_ex_state - Logical spe execution state.
* @spe_ex_state_unexecutable: Uninitialized.
* @spe_ex_state_executable: Enabled, not ready.
* @spe_ex_state_executed: Ready for use.
*
* The execution state (status) of the logical spe as reported in
* struct spe_shadow:spe_execution_status.
*/
enum spe_ex_state {
SPE_EX_STATE_UNEXECUTABLE = 0,
SPE_EX_STATE_EXECUTABLE = 2,
SPE_EX_STATE_EXECUTED = 3,
};
/**
* struct priv1_cache - Cached values of priv1 registers.
* @masks[]: Array of cached spe interrupt masks, indexed by class.
* @sr1: Cached mfc_sr1 register.
* @tclass_id: Cached mfc_tclass_id register.
*/
struct priv1_cache {
u64 masks[3];
u64 sr1;
u64 tclass_id;
};
/**
* struct spu_pdata - Platform state variables.
* @spe_id: HV spe id returned by lv1_construct_logical_spe().
* @resource_id: HV spe resource id returned by
* ps3_repository_read_spe_resource_id().
* @priv2_addr: lpar address of spe priv2 area returned by
* lv1_construct_logical_spe().
* @shadow_addr: lpar address of spe register shadow area returned by
* lv1_construct_logical_spe().
* @shadow: Virtual (ioremap) address of spe register shadow area.
* @cache: Cached values of priv1 registers.
*/
struct spu_pdata {
u64 spe_id;
u64 resource_id;
u64 priv2_addr;
u64 shadow_addr;
struct spe_shadow __iomem *shadow;
struct priv1_cache cache;
};
static struct spu_pdata *spu_pdata(struct spu *spu)
{
return spu->pdata;
}
#define dump_areas(_a, _b, _c, _d, _e) \
_dump_areas(_a, _b, _c, _d, _e, __func__, __LINE__)
static void _dump_areas(unsigned int spe_id, unsigned long priv2,
unsigned long problem, unsigned long ls, unsigned long shadow,
const char* func, int line)
{
pr_debug("%s:%d: spe_id: %xh (%u)\n", func, line, spe_id, spe_id);
pr_debug("%s:%d: priv2: %lxh\n", func, line, priv2);
pr_debug("%s:%d: problem: %lxh\n", func, line, problem);
pr_debug("%s:%d: ls: %lxh\n", func, line, ls);
pr_debug("%s:%d: shadow: %lxh\n", func, line, shadow);
}
static unsigned long get_vas_id(void)
{
unsigned long id;
lv1_get_logical_ppe_id(&id);
lv1_get_virtual_address_space_id_of_ppe(id, &id);
return id;
}
static int __init construct_spu(struct spu *spu)
{
int result;
unsigned long unused;
result = lv1_construct_logical_spe(PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT,
PAGE_SHIFT, PAGE_SHIFT, get_vas_id(), SPE_TYPE_LOGICAL,
&spu_pdata(spu)->priv2_addr, &spu->problem_phys,
&spu->local_store_phys, &unused,
&spu_pdata(spu)->shadow_addr,
&spu_pdata(spu)->spe_id);
if (result) {
pr_debug("%s:%d: lv1_construct_logical_spe failed: %s\n",
__func__, __LINE__, ps3_result(result));
return result;
}
return result;
}
static void spu_unmap(struct spu *spu)
{
iounmap(spu->priv2);
iounmap(spu->problem);
iounmap((__force u8 __iomem *)spu->local_store);
iounmap(spu_pdata(spu)->shadow);
}
static int __init setup_areas(struct spu *spu)
{
struct table {char* name; unsigned long addr; unsigned long size;};
spu_pdata(spu)->shadow = ioremap_flags(spu_pdata(spu)->shadow_addr,
sizeof(struct spe_shadow),
pgprot_val(PAGE_READONLY) |
_PAGE_NO_CACHE);
if (!spu_pdata(spu)->shadow) {
pr_debug("%s:%d: ioremap shadow failed\n", __func__, __LINE__);
goto fail_ioremap;
}
spu->local_store = (__force void *)ioremap_flags(spu->local_store_phys,
LS_SIZE, _PAGE_NO_CACHE);
if (!spu->local_store) {
pr_debug("%s:%d: ioremap local_store failed\n",
__func__, __LINE__);
goto fail_ioremap;
}
spu->problem = ioremap(spu->problem_phys,
sizeof(struct spu_problem));
if (!spu->problem) {
pr_debug("%s:%d: ioremap problem failed\n", __func__, __LINE__);
goto fail_ioremap;
}
spu->priv2 = ioremap(spu_pdata(spu)->priv2_addr,
sizeof(struct spu_priv2));
if (!spu->priv2) {
pr_debug("%s:%d: ioremap priv2 failed\n", __func__, __LINE__);
goto fail_ioremap;
}
dump_areas(spu_pdata(spu)->spe_id, spu_pdata(spu)->priv2_addr,
spu->problem_phys, spu->local_store_phys,
spu_pdata(spu)->shadow_addr);
dump_areas(spu_pdata(spu)->spe_id, (unsigned long)spu->priv2,
(unsigned long)spu->problem, (unsigned long)spu->local_store,
(unsigned long)spu_pdata(spu)->shadow);
return 0;
fail_ioremap:
spu_unmap(spu);
return -ENOMEM;
}
static int __init setup_interrupts(struct spu *spu)
{
int result;
result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
0, &spu->irqs[0]);
if (result)
goto fail_alloc_0;
result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
1, &spu->irqs[1]);
if (result)
goto fail_alloc_1;
result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
2, &spu->irqs[2]);
if (result)
goto fail_alloc_2;
return result;
fail_alloc_2:
ps3_spe_irq_destroy(spu->irqs[1]);
fail_alloc_1:
ps3_spe_irq_destroy(spu->irqs[0]);
fail_alloc_0:
spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;
return result;
}
static int __init enable_spu(struct spu *spu)
{
int result;
result = lv1_enable_logical_spe(spu_pdata(spu)->spe_id,
spu_pdata(spu)->resource_id);
if (result) {
pr_debug("%s:%d: lv1_enable_logical_spe failed: %s\n",
__func__, __LINE__, ps3_result(result));
goto fail_enable;
}
result = setup_areas(spu);
if (result)
goto fail_areas;
result = setup_interrupts(spu);
if (result)
goto fail_interrupts;
return 0;
fail_interrupts:
spu_unmap(spu);
fail_areas:
lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
fail_enable:
return result;
}
static int ps3_destroy_spu(struct spu *spu)
{
int result;
pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
result = lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
BUG_ON(result);
ps3_spe_irq_destroy(spu->irqs[2]);
ps3_spe_irq_destroy(spu->irqs[1]);
ps3_spe_irq_destroy(spu->irqs[0]);
spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;
spu_unmap(spu);
result = lv1_destruct_logical_spe(spu_pdata(spu)->spe_id);
BUG_ON(result);
kfree(spu->pdata);
spu->pdata = NULL;
return 0;
}
static int __init ps3_create_spu(struct spu *spu, void *data)
{
int result;
pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
spu->pdata = kzalloc(sizeof(struct spu_pdata),
GFP_KERNEL);
if (!spu->pdata) {
result = -ENOMEM;
goto fail_malloc;
}
spu_pdata(spu)->resource_id = (unsigned long)data;
/* Init cached reg values to HV defaults. */
spu_pdata(spu)->cache.sr1 = 0x33;
result = construct_spu(spu);
if (result)
goto fail_construct;
/* For now, just go ahead and enable it. */
result = enable_spu(spu);
if (result)
goto fail_enable;
/* Make sure the spu is in SPE_EX_STATE_EXECUTED. */
/* need something better here!!! */
while (in_be64(&spu_pdata(spu)->shadow->spe_execution_status)
!= SPE_EX_STATE_EXECUTED)
(void)0;
return result;
fail_enable:
fail_construct:
ps3_destroy_spu(spu);
fail_malloc:
return result;
}
static int __init ps3_enumerate_spus(int (*fn)(void *data))
{
int result;
unsigned int num_resource_id;
unsigned int i;
result = ps3_repository_read_num_spu_resource_id(&num_resource_id);
pr_debug("%s:%d: num_resource_id %u\n", __func__, __LINE__,
num_resource_id);
/*
* For now, just create logical spus equal to the number
* of physical spus reserved for the partition.
*/
for (i = 0; i < num_resource_id; i++) {
enum ps3_spu_resource_type resource_type;
unsigned int resource_id;
result = ps3_repository_read_spu_resource_id(i,
&resource_type, &resource_id);
if (result)
break;
if (resource_type == PS3_SPU_RESOURCE_TYPE_EXCLUSIVE) {
result = fn((void*)(unsigned long)resource_id);
if (result)
break;
}
}
if (result)
printk(KERN_WARNING "%s:%d: Error initializing spus\n",
__func__, __LINE__);
return result;
}
const struct spu_management_ops spu_management_ps3_ops = {
.enumerate_spus = ps3_enumerate_spus,
.create_spu = ps3_create_spu,
.destroy_spu = ps3_destroy_spu,
};
/* spu_priv1_ops */
static void int_mask_and(struct spu *spu, int class, u64 mask)
{
u64 old_mask;
/* are these serialized by caller??? */
old_mask = spu_int_mask_get(spu, class);
spu_int_mask_set(spu, class, old_mask & mask);
}
static void int_mask_or(struct spu *spu, int class, u64 mask)
{
u64 old_mask;
old_mask = spu_int_mask_get(spu, class);
spu_int_mask_set(spu, class, old_mask | mask);
}
static void int_mask_set(struct spu *spu, int class, u64 mask)
{
spu_pdata(spu)->cache.masks[class] = mask;
lv1_set_spe_interrupt_mask(spu_pdata(spu)->spe_id, class,
spu_pdata(spu)->cache.masks[class]);
}
static u64 int_mask_get(struct spu *spu, int class)
{
return spu_pdata(spu)->cache.masks[class];
}
static void int_stat_clear(struct spu *spu, int class, u64 stat)
{
/* Note that MFC_DSISR will be cleared when class1[MF] is set. */
lv1_clear_spe_interrupt_status(spu_pdata(spu)->spe_id, class,
stat, 0);
}
static u64 int_stat_get(struct spu *spu, int class)
{
u64 stat;
lv1_get_spe_interrupt_status(spu_pdata(spu)->spe_id, class, &stat);
return stat;
}
static void cpu_affinity_set(struct spu *spu, int cpu)
{
/* No support. */
}
static u64 mfc_dar_get(struct spu *spu)
{
return in_be64(&spu_pdata(spu)->shadow->mfc_dar_RW);
}
static void mfc_dsisr_set(struct spu *spu, u64 dsisr)
{
/* Nothing to do, cleared in int_stat_clear(). */
}
static u64 mfc_dsisr_get(struct spu *spu)
{
return in_be64(&spu_pdata(spu)->shadow->mfc_dsisr_RW);
}
static void mfc_sdr_setup(struct spu *spu)
{
/* Nothing to do. */
}
static void mfc_sr1_set(struct spu *spu, u64 sr1)
{
/* Check bits allowed by HV. */
static const u64 allowed = ~(MFC_STATE1_LOCAL_STORAGE_DECODE_MASK
| MFC_STATE1_PROBLEM_STATE_MASK);
BUG_ON((sr1 & allowed) != (spu_pdata(spu)->cache.sr1 & allowed));
spu_pdata(spu)->cache.sr1 = sr1;
lv1_set_spe_privilege_state_area_1_register(
spu_pdata(spu)->spe_id,
offsetof(struct spu_priv1, mfc_sr1_RW),
spu_pdata(spu)->cache.sr1);
}
static u64 mfc_sr1_get(struct spu *spu)
{
return spu_pdata(spu)->cache.sr1;
}
static void mfc_tclass_id_set(struct spu *spu, u64 tclass_id)
{
spu_pdata(spu)->cache.tclass_id = tclass_id;
lv1_set_spe_privilege_state_area_1_register(
spu_pdata(spu)->spe_id,
offsetof(struct spu_priv1, mfc_tclass_id_RW),
spu_pdata(spu)->cache.tclass_id);
}
static u64 mfc_tclass_id_get(struct spu *spu)
{
return spu_pdata(spu)->cache.tclass_id;
}
static void tlb_invalidate(struct spu *spu)
{
/* Nothing to do. */
}
static void resource_allocation_groupID_set(struct spu *spu, u64 id)
{
/* No support. */
}
static u64 resource_allocation_groupID_get(struct spu *spu)
{
return 0; /* No support. */
}
static void resource_allocation_enable_set(struct spu *spu, u64 enable)
{
/* No support. */
}
static u64 resource_allocation_enable_get(struct spu *spu)
{
return 0; /* No support. */
}
const struct spu_priv1_ops spu_priv1_ps3_ops = {
.int_mask_and = int_mask_and,
.int_mask_or = int_mask_or,
.int_mask_set = int_mask_set,
.int_mask_get = int_mask_get,
.int_stat_clear = int_stat_clear,
.int_stat_get = int_stat_get,
.cpu_affinity_set = cpu_affinity_set,
.mfc_dar_get = mfc_dar_get,
.mfc_dsisr_set = mfc_dsisr_set,
.mfc_dsisr_get = mfc_dsisr_get,
.mfc_sdr_setup = mfc_sdr_setup,
.mfc_sr1_set = mfc_sr1_set,
.mfc_sr1_get = mfc_sr1_get,
.mfc_tclass_id_set = mfc_tclass_id_set,
.mfc_tclass_id_get = mfc_tclass_id_get,
.tlb_invalidate = tlb_invalidate,
.resource_allocation_groupID_set = resource_allocation_groupID_set,
.resource_allocation_groupID_get = resource_allocation_groupID_get,
.resource_allocation_enable_set = resource_allocation_enable_set,
.resource_allocation_enable_get = resource_allocation_enable_get,
};
void ps3_spu_set_platform(void)
{
spu_priv1_ops = &spu_priv1_ps3_ops;
spu_management_ops = &spu_management_ps3_ops;
}