bcc68b8616
"[PATCH] m68knommu: fix find_next_zero_bit in bitops.h" fixed a typo in m68knommu implementation of find_next_zero_bit(). grep(1) shows that cris, frv, h8300, v850 are also affected. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
412 lines
11 KiB
C
412 lines
11 KiB
C
#ifndef _H8300_BITOPS_H
|
|
#define _H8300_BITOPS_H
|
|
|
|
/*
|
|
* Copyright 1992, Linus Torvalds.
|
|
* Copyright 2002, Yoshinori Sato
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/byteorder.h> /* swab32 */
|
|
#include <asm/system.h>
|
|
|
|
#ifdef __KERNEL__
|
|
/*
|
|
* Function prototypes to keep gcc -Wall happy
|
|
*/
|
|
|
|
/*
|
|
* ffz = Find First Zero in word. Undefined if no zero exists,
|
|
* so code should check against ~0UL first..
|
|
*/
|
|
static __inline__ unsigned long ffz(unsigned long word)
|
|
{
|
|
unsigned long result;
|
|
|
|
result = -1;
|
|
__asm__("1:\n\t"
|
|
"shlr.l %2\n\t"
|
|
"adds #1,%0\n\t"
|
|
"bcs 1b"
|
|
: "=r" (result)
|
|
: "0" (result),"r" (word));
|
|
return result;
|
|
}
|
|
|
|
#define H8300_GEN_BITOP_CONST(OP,BIT) \
|
|
case BIT: \
|
|
__asm__(OP " #" #BIT ",@%0"::"r"(b_addr):"memory"); \
|
|
break;
|
|
|
|
#define H8300_GEN_BITOP(FNAME,OP) \
|
|
static __inline__ void FNAME(int nr, volatile unsigned long* addr) \
|
|
{ \
|
|
volatile unsigned char *b_addr; \
|
|
b_addr = (volatile unsigned char *)addr + ((nr >> 3) ^ 3); \
|
|
if (__builtin_constant_p(nr)) { \
|
|
switch(nr & 7) { \
|
|
H8300_GEN_BITOP_CONST(OP,0) \
|
|
H8300_GEN_BITOP_CONST(OP,1) \
|
|
H8300_GEN_BITOP_CONST(OP,2) \
|
|
H8300_GEN_BITOP_CONST(OP,3) \
|
|
H8300_GEN_BITOP_CONST(OP,4) \
|
|
H8300_GEN_BITOP_CONST(OP,5) \
|
|
H8300_GEN_BITOP_CONST(OP,6) \
|
|
H8300_GEN_BITOP_CONST(OP,7) \
|
|
} \
|
|
} else { \
|
|
__asm__(OP " %w0,@%1"::"r"(nr),"r"(b_addr):"memory"); \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* clear_bit() doesn't provide any barrier for the compiler.
|
|
*/
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
|
|
H8300_GEN_BITOP(set_bit ,"bset")
|
|
H8300_GEN_BITOP(clear_bit ,"bclr")
|
|
H8300_GEN_BITOP(change_bit,"bnot")
|
|
#define __set_bit(nr,addr) set_bit((nr),(addr))
|
|
#define __clear_bit(nr,addr) clear_bit((nr),(addr))
|
|
#define __change_bit(nr,addr) change_bit((nr),(addr))
|
|
|
|
#undef H8300_GEN_BITOP
|
|
#undef H8300_GEN_BITOP_CONST
|
|
|
|
static __inline__ int test_bit(int nr, const unsigned long* addr)
|
|
{
|
|
return (*((volatile unsigned char *)addr +
|
|
((nr >> 3) ^ 3)) & (1UL << (nr & 7))) != 0;
|
|
}
|
|
|
|
#define __test_bit(nr, addr) test_bit(nr, addr)
|
|
|
|
#define H8300_GEN_TEST_BITOP_CONST_INT(OP,BIT) \
|
|
case BIT: \
|
|
__asm__("stc ccr,%w1\n\t" \
|
|
"orc #0x80,ccr\n\t" \
|
|
"bld #" #BIT ",@%4\n\t" \
|
|
OP " #" #BIT ",@%4\n\t" \
|
|
"rotxl.l %0\n\t" \
|
|
"ldc %w1,ccr" \
|
|
: "=r"(retval),"=&r"(ccrsave),"=m"(*b_addr) \
|
|
: "0" (retval),"r" (b_addr) \
|
|
: "memory"); \
|
|
break;
|
|
|
|
#define H8300_GEN_TEST_BITOP_CONST(OP,BIT) \
|
|
case BIT: \
|
|
__asm__("bld #" #BIT ",@%3\n\t" \
|
|
OP " #" #BIT ",@%3\n\t" \
|
|
"rotxl.l %0\n\t" \
|
|
: "=r"(retval),"=m"(*b_addr) \
|
|
: "0" (retval),"r" (b_addr) \
|
|
: "memory"); \
|
|
break;
|
|
|
|
#define H8300_GEN_TEST_BITOP(FNNAME,OP) \
|
|
static __inline__ int FNNAME(int nr, volatile void * addr) \
|
|
{ \
|
|
int retval = 0; \
|
|
char ccrsave; \
|
|
volatile unsigned char *b_addr; \
|
|
b_addr = (volatile unsigned char *)addr + ((nr >> 3) ^ 3); \
|
|
if (__builtin_constant_p(nr)) { \
|
|
switch(nr & 7) { \
|
|
H8300_GEN_TEST_BITOP_CONST_INT(OP,0) \
|
|
H8300_GEN_TEST_BITOP_CONST_INT(OP,1) \
|
|
H8300_GEN_TEST_BITOP_CONST_INT(OP,2) \
|
|
H8300_GEN_TEST_BITOP_CONST_INT(OP,3) \
|
|
H8300_GEN_TEST_BITOP_CONST_INT(OP,4) \
|
|
H8300_GEN_TEST_BITOP_CONST_INT(OP,5) \
|
|
H8300_GEN_TEST_BITOP_CONST_INT(OP,6) \
|
|
H8300_GEN_TEST_BITOP_CONST_INT(OP,7) \
|
|
} \
|
|
} else { \
|
|
__asm__("stc ccr,%w1\n\t" \
|
|
"orc #0x80,ccr\n\t" \
|
|
"btst %w5,@%4\n\t" \
|
|
OP " %w5,@%4\n\t" \
|
|
"beq 1f\n\t" \
|
|
"inc.l #1,%0\n" \
|
|
"1:\n\t" \
|
|
"ldc %w1,ccr" \
|
|
: "=r"(retval),"=&r"(ccrsave),"=m"(*b_addr) \
|
|
: "0" (retval),"r" (b_addr),"r"(nr) \
|
|
: "memory"); \
|
|
} \
|
|
return retval; \
|
|
} \
|
|
\
|
|
static __inline__ int __ ## FNNAME(int nr, volatile void * addr) \
|
|
{ \
|
|
int retval = 0; \
|
|
volatile unsigned char *b_addr; \
|
|
b_addr = (volatile unsigned char *)addr + ((nr >> 3) ^ 3); \
|
|
if (__builtin_constant_p(nr)) { \
|
|
switch(nr & 7) { \
|
|
H8300_GEN_TEST_BITOP_CONST(OP,0) \
|
|
H8300_GEN_TEST_BITOP_CONST(OP,1) \
|
|
H8300_GEN_TEST_BITOP_CONST(OP,2) \
|
|
H8300_GEN_TEST_BITOP_CONST(OP,3) \
|
|
H8300_GEN_TEST_BITOP_CONST(OP,4) \
|
|
H8300_GEN_TEST_BITOP_CONST(OP,5) \
|
|
H8300_GEN_TEST_BITOP_CONST(OP,6) \
|
|
H8300_GEN_TEST_BITOP_CONST(OP,7) \
|
|
} \
|
|
} else { \
|
|
__asm__("btst %w4,@%3\n\t" \
|
|
OP " %w4,@%3\n\t" \
|
|
"beq 1f\n\t" \
|
|
"inc.l #1,%0\n" \
|
|
"1:" \
|
|
: "=r"(retval),"=m"(*b_addr) \
|
|
: "0" (retval),"r" (b_addr),"r"(nr) \
|
|
: "memory"); \
|
|
} \
|
|
return retval; \
|
|
}
|
|
|
|
H8300_GEN_TEST_BITOP(test_and_set_bit, "bset")
|
|
H8300_GEN_TEST_BITOP(test_and_clear_bit, "bclr")
|
|
H8300_GEN_TEST_BITOP(test_and_change_bit,"bnot")
|
|
#undef H8300_GEN_TEST_BITOP_CONST
|
|
#undef H8300_GEN_TEST_BITOP_CONST_INT
|
|
#undef H8300_GEN_TEST_BITOP
|
|
|
|
#define find_first_zero_bit(addr, size) \
|
|
find_next_zero_bit((addr), (size), 0)
|
|
|
|
#define ffs(x) generic_ffs(x)
|
|
|
|
static __inline__ unsigned long __ffs(unsigned long word)
|
|
{
|
|
unsigned long result;
|
|
|
|
result = -1;
|
|
__asm__("1:\n\t"
|
|
"shlr.l %2\n\t"
|
|
"adds #1,%0\n\t"
|
|
"bcc 1b"
|
|
: "=r" (result)
|
|
: "0"(result),"r"(word));
|
|
return result;
|
|
}
|
|
|
|
static __inline__ int find_next_zero_bit (const unsigned long * addr, int size, int offset)
|
|
{
|
|
unsigned long *p = (unsigned long *)(((unsigned long)addr + (offset >> 3)) & ~3);
|
|
unsigned long result = offset & ~31UL;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if (offset) {
|
|
tmp = *(p++);
|
|
tmp |= ~0UL >> (32-offset);
|
|
if (size < 32)
|
|
goto found_first;
|
|
if (~tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while (size & ~31UL) {
|
|
if (~(tmp = *(p++)))
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if (!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
tmp |= ~0UL << size;
|
|
found_middle:
|
|
return result + ffz(tmp);
|
|
}
|
|
|
|
static __inline__ unsigned long find_next_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset)
|
|
{
|
|
unsigned long *p = (unsigned long *)(((unsigned long)addr + (offset >> 3)) & ~3);
|
|
unsigned int result = offset & ~31UL;
|
|
unsigned int tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if (offset) {
|
|
tmp = *(p++);
|
|
tmp &= ~0UL << offset;
|
|
if (size < 32)
|
|
goto found_first;
|
|
if (tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while (size >= 32) {
|
|
if ((tmp = *p++) != 0)
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if (!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
tmp &= ~0UL >> (32 - size);
|
|
if (tmp == 0UL)
|
|
return result + size;
|
|
found_middle:
|
|
return result + __ffs(tmp);
|
|
}
|
|
|
|
#define find_first_bit(addr, size) find_next_bit(addr, size, 0)
|
|
|
|
/*
|
|
* Every architecture must define this function. It's the fastest
|
|
* way of searching a 140-bit bitmap where the first 100 bits are
|
|
* unlikely to be set. It's guaranteed that at least one of the 140
|
|
* bits is cleared.
|
|
*/
|
|
static inline int sched_find_first_bit(unsigned long *b)
|
|
{
|
|
if (unlikely(b[0]))
|
|
return __ffs(b[0]);
|
|
if (unlikely(b[1]))
|
|
return __ffs(b[1]) + 32;
|
|
if (unlikely(b[2]))
|
|
return __ffs(b[2]) + 64;
|
|
if (b[3])
|
|
return __ffs(b[3]) + 96;
|
|
return __ffs(b[4]) + 128;
|
|
}
|
|
|
|
/*
|
|
* hweightN: returns the hamming weight (i.e. the number
|
|
* of bits set) of a N-bit word
|
|
*/
|
|
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
static __inline__ int ext2_set_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
unsigned long flags;
|
|
volatile unsigned char *ADDR = (unsigned char *) addr;
|
|
|
|
ADDR += nr >> 3;
|
|
mask = 1 << (nr & 0x07);
|
|
local_irq_save(flags);
|
|
retval = (mask & *ADDR) != 0;
|
|
*ADDR |= mask;
|
|
local_irq_restore(flags);
|
|
return retval;
|
|
}
|
|
#define ext2_set_bit_atomic(lock, nr, addr) ext2_set_bit(nr, addr)
|
|
|
|
static __inline__ int ext2_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int mask, retval;
|
|
unsigned long flags;
|
|
volatile unsigned char *ADDR = (unsigned char *) addr;
|
|
|
|
ADDR += nr >> 3;
|
|
mask = 1 << (nr & 0x07);
|
|
local_irq_save(flags);
|
|
retval = (mask & *ADDR) != 0;
|
|
*ADDR &= ~mask;
|
|
local_irq_restore(flags);
|
|
return retval;
|
|
}
|
|
#define ext2_clear_bit_atomic(lock, nr, addr) ext2_set_bit(nr, addr)
|
|
|
|
static __inline__ int ext2_test_bit(int nr, const volatile void * addr)
|
|
{
|
|
int mask;
|
|
const volatile unsigned char *ADDR = (const unsigned char *) addr;
|
|
|
|
ADDR += nr >> 3;
|
|
mask = 1 << (nr & 0x07);
|
|
return ((mask & *ADDR) != 0);
|
|
}
|
|
|
|
#define ext2_find_first_zero_bit(addr, size) \
|
|
ext2_find_next_zero_bit((addr), (size), 0)
|
|
|
|
static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
|
|
{
|
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
unsigned long result = offset & ~31UL;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if(offset) {
|
|
/* We hold the little endian value in tmp, but then the
|
|
* shift is illegal. So we could keep a big endian value
|
|
* in tmp, like this:
|
|
*
|
|
* tmp = __swab32(*(p++));
|
|
* tmp |= ~0UL >> (32-offset);
|
|
*
|
|
* but this would decrease performance, so we change the
|
|
* shift:
|
|
*/
|
|
tmp = *(p++);
|
|
tmp |= __swab32(~0UL >> (32-offset));
|
|
if(size < 32)
|
|
goto found_first;
|
|
if(~tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while(size & ~31UL) {
|
|
if(~(tmp = *(p++)))
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if(!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
/* tmp is little endian, so we would have to swab the shift,
|
|
* see above. But then we have to swab tmp below for ffz, so
|
|
* we might as well do this here.
|
|
*/
|
|
return result + ffz(__swab32(tmp) | (~0UL << size));
|
|
found_middle:
|
|
return result + ffz(__swab32(tmp));
|
|
}
|
|
|
|
/* Bitmap functions for the minix filesystem. */
|
|
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
|
|
#define minix_set_bit(nr,addr) set_bit(nr,addr)
|
|
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
|
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#define fls(x) generic_fls(x)
|
|
#define fls64(x) generic_fls64(x)
|
|
|
|
#endif /* _H8300_BITOPS_H */
|