android_kernel_xiaomi_sm8350/drivers/mtd/nand/alauda.c
Jörn Engel e208520ed6 [MTD] [NAND] Driver for Olympus MAUSB-10 and Fujifilm DPC-R1 card readers
Unlike most stuff on the market the chip inside these two allows raw
flash access and doesn't implement and FTL, leaving that functionality
to the device driver.

Raw flash access in a cheap USB cardreader!  An MTD test device one can
attach to a PC!  What a deal!

The command set of the chip is not documented, so information was
obtained from the existing mass-storage driver
(drivers/usb/storage/alauda.c), its documentation
(http://alauda.sourceforge.net/wikka.php?wakka=BulkCommandReference),
additional reverse engineering and comparison with a vendor driver for a
related chip
(http://www.ratocsystems.com/english/download/driver/linux/sma03u.html).

Signed-off-by: Joern Engel <joern@logfs.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2007-08-29 17:37:23 +01:00

743 lines
16 KiB
C

/*
* MTD driver for Alauda chips
*
* Copyright (C) 2007 Joern Engel <joern@logfs.org>
*
* Based on drivers/usb/usb-skeleton.c which is:
* Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
* and on drivers/usb/storage/alauda.c, which is:
* (c) 2005 Daniel Drake <dsd@gentoo.org>
*
* Idea and initial work by Arnd Bergmann <arnd@arndb.de>
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kref.h>
#include <linux/usb.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand_ecc.h>
/* Control commands */
#define ALAUDA_GET_XD_MEDIA_STATUS 0x08
#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
#define ALAUDA_GET_XD_MEDIA_SIG 0x86
/* Common prefix */
#define ALAUDA_BULK_CMD 0x40
/* The two ports */
#define ALAUDA_PORT_XD 0x00
#define ALAUDA_PORT_SM 0x01
/* Bulk commands */
#define ALAUDA_BULK_READ_PAGE 0x84
#define ALAUDA_BULK_READ_OOB 0x85 /* don't use, there's a chip bug */
#define ALAUDA_BULK_READ_BLOCK 0x94
#define ALAUDA_BULK_ERASE_BLOCK 0xa3
#define ALAUDA_BULK_WRITE_PAGE 0xa4
#define ALAUDA_BULK_WRITE_BLOCK 0xb4
#define ALAUDA_BULK_RESET_MEDIA 0xe0
/* Address shifting */
#define PBA_LO(pba) ((pba & 0xF) << 5)
#define PBA_HI(pba) (pba >> 3)
#define PBA_ZONE(pba) (pba >> 11)
#define TIMEOUT HZ
static struct usb_device_id alauda_table [] = {
{ USB_DEVICE(0x0584, 0x0008) }, /* Fujifilm DPC-R1 */
{ USB_DEVICE(0x07b4, 0x010a) }, /* Olympus MAUSB-10 */
{ }
};
MODULE_DEVICE_TABLE(usb, alauda_table);
struct alauda_card {
u8 id; /* id byte */
u8 chipshift; /* 1<<chipshift total size */
u8 pageshift; /* 1<<pageshift page size */
u8 blockshift; /* 1<<blockshift block size */
};
struct alauda {
struct usb_device *dev;
struct usb_interface *interface;
struct mtd_info *mtd;
struct alauda_card *card;
struct mutex card_mutex;
u32 pagemask;
u32 bytemask;
u32 blockmask;
unsigned int write_out;
unsigned int bulk_in;
unsigned int bulk_out;
u8 port;
struct kref kref;
};
static struct alauda_card alauda_card_ids[] = {
/* NAND flash */
{ 0x6e, 20, 8, 12}, /* 1 MB */
{ 0xe8, 20, 8, 12}, /* 1 MB */
{ 0xec, 20, 8, 12}, /* 1 MB */
{ 0x64, 21, 8, 12}, /* 2 MB */
{ 0xea, 21, 8, 12}, /* 2 MB */
{ 0x6b, 22, 9, 13}, /* 4 MB */
{ 0xe3, 22, 9, 13}, /* 4 MB */
{ 0xe5, 22, 9, 13}, /* 4 MB */
{ 0xe6, 23, 9, 13}, /* 8 MB */
{ 0x73, 24, 9, 14}, /* 16 MB */
{ 0x75, 25, 9, 14}, /* 32 MB */
{ 0x76, 26, 9, 14}, /* 64 MB */
{ 0x79, 27, 9, 14}, /* 128 MB */
{ 0x71, 28, 9, 14}, /* 256 MB */
/* MASK ROM */
{ 0x5d, 21, 9, 13}, /* 2 MB */
{ 0xd5, 22, 9, 13}, /* 4 MB */
{ 0xd6, 23, 9, 13}, /* 8 MB */
{ 0x57, 24, 9, 13}, /* 16 MB */
{ 0x58, 25, 9, 13}, /* 32 MB */
{ }
};
static struct alauda_card *get_card(u8 id)
{
struct alauda_card *card;
for (card = alauda_card_ids; card->id; card++)
if (card->id == id)
return card;
return NULL;
}
static void alauda_delete(struct kref *kref)
{
struct alauda *al = container_of(kref, struct alauda, kref);
if (al->mtd) {
del_mtd_device(al->mtd);
kfree(al->mtd);
}
usb_put_dev(al->dev);
kfree(al);
}
static int alauda_get_media_status(struct alauda *al, void *buf)
{
int ret;
mutex_lock(&al->card_mutex);
ret = usb_control_msg(al->dev, usb_rcvctrlpipe(al->dev, 0),
ALAUDA_GET_XD_MEDIA_STATUS, 0xc0, 0, 1, buf, 2, HZ);
mutex_unlock(&al->card_mutex);
return ret;
}
static int alauda_ack_media(struct alauda *al)
{
int ret;
mutex_lock(&al->card_mutex);
ret = usb_control_msg(al->dev, usb_sndctrlpipe(al->dev, 0),
ALAUDA_ACK_XD_MEDIA_CHANGE, 0x40, 0, 1, NULL, 0, HZ);
mutex_unlock(&al->card_mutex);
return ret;
}
static int alauda_get_media_signatures(struct alauda *al, void *buf)
{
int ret;
mutex_lock(&al->card_mutex);
ret = usb_control_msg(al->dev, usb_rcvctrlpipe(al->dev, 0),
ALAUDA_GET_XD_MEDIA_SIG, 0xc0, 0, 0, buf, 4, HZ);
mutex_unlock(&al->card_mutex);
return ret;
}
static void alauda_reset(struct alauda *al)
{
u8 command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_RESET_MEDIA, 0, 0,
0, 0, 0, 0, al->port
};
mutex_lock(&al->card_mutex);
usb_bulk_msg(al->dev, al->bulk_out, command, 9, NULL, HZ);
mutex_unlock(&al->card_mutex);
}
static void correct_data(void *buf, void *read_ecc,
int *corrected, int *uncorrected)
{
u8 calc_ecc[3];
int err;
nand_calculate_ecc(NULL, buf, calc_ecc);
err = nand_correct_data(NULL, buf, read_ecc, calc_ecc);
if (err) {
if (err > 0)
(*corrected)++;
else
(*uncorrected)++;
}
}
struct alauda_sg_request {
struct urb *urb[3];
struct completion comp;
};
static void alauda_complete(struct urb *urb)
{
struct completion *comp = urb->context;
if (comp)
complete(comp);
}
static int __alauda_read_page(struct mtd_info *mtd, loff_t from, void *buf,
void *oob)
{
struct alauda_sg_request sg;
struct alauda *al = mtd->priv;
u32 pba = from >> al->card->blockshift;
u32 page = (from >> al->card->pageshift) & al->pagemask;
u8 command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_READ_PAGE, PBA_HI(pba),
PBA_ZONE(pba), 0, PBA_LO(pba) + page, 1, 0, al->port
};
int i, err;
for (i=0; i<3; i++)
sg.urb[i] = NULL;
err = -ENOMEM;
for (i=0; i<3; i++) {
sg.urb[i] = usb_alloc_urb(0, GFP_NOIO);
if (!sg.urb[i])
goto out;
}
init_completion(&sg.comp);
usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[1], al->dev, al->bulk_in, buf, mtd->writesize,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[2], al->dev, al->bulk_in, oob, 16,
alauda_complete, &sg.comp);
mutex_lock(&al->card_mutex);
for (i=0; i<3; i++) {
err = usb_submit_urb(sg.urb[i], GFP_NOIO);
if (err)
goto cancel;
}
if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) {
err = -ETIMEDOUT;
cancel:
for (i=0; i<3; i++) {
usb_kill_urb(sg.urb[i]);
}
}
mutex_unlock(&al->card_mutex);
out:
usb_free_urb(sg.urb[0]);
usb_free_urb(sg.urb[1]);
usb_free_urb(sg.urb[2]);
return err;
}
static int alauda_read_page(struct mtd_info *mtd, loff_t from,
void *buf, u8 *oob, int *corrected, int *uncorrected)
{
int err;
err = __alauda_read_page(mtd, from, buf, oob);
if (err)
return err;
correct_data(buf, oob+13, corrected, uncorrected);
correct_data(buf+256, oob+8, corrected, uncorrected);
return 0;
}
static int alauda_write_page(struct mtd_info *mtd, loff_t to, void *buf,
void *oob)
{
struct alauda_sg_request sg;
struct alauda *al = mtd->priv;
u32 pba = to >> al->card->blockshift;
u32 page = (to >> al->card->pageshift) & al->pagemask;
u8 command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_PAGE, PBA_HI(pba),
PBA_ZONE(pba), 0, PBA_LO(pba) + page, 32, 0, al->port
};
int i, err;
for (i=0; i<3; i++)
sg.urb[i] = NULL;
err = -ENOMEM;
for (i=0; i<3; i++) {
sg.urb[i] = usb_alloc_urb(0, GFP_NOIO);
if (!sg.urb[i])
goto out;
}
init_completion(&sg.comp);
usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[1], al->dev, al->write_out, buf,mtd->writesize,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[2], al->dev, al->write_out, oob, 16,
alauda_complete, &sg.comp);
mutex_lock(&al->card_mutex);
for (i=0; i<3; i++) {
err = usb_submit_urb(sg.urb[i], GFP_NOIO);
if (err)
goto cancel;
}
if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) {
err = -ETIMEDOUT;
cancel:
for (i=0; i<3; i++) {
usb_kill_urb(sg.urb[i]);
}
}
mutex_unlock(&al->card_mutex);
out:
usb_free_urb(sg.urb[0]);
usb_free_urb(sg.urb[1]);
usb_free_urb(sg.urb[2]);
return err;
}
static int alauda_erase_block(struct mtd_info *mtd, loff_t ofs)
{
struct alauda_sg_request sg;
struct alauda *al = mtd->priv;
u32 pba = ofs >> al->card->blockshift;
u8 command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, al->port
};
u8 buf[2];
int i, err;
for (i=0; i<2; i++)
sg.urb[i] = NULL;
err = -ENOMEM;
for (i=0; i<2; i++) {
sg.urb[i] = usb_alloc_urb(0, GFP_NOIO);
if (!sg.urb[i])
goto out;
}
init_completion(&sg.comp);
usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[1], al->dev, al->bulk_in, buf, 2,
alauda_complete, &sg.comp);
mutex_lock(&al->card_mutex);
for (i=0; i<2; i++) {
err = usb_submit_urb(sg.urb[i], GFP_NOIO);
if (err)
goto cancel;
}
if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) {
err = -ETIMEDOUT;
cancel:
for (i=0; i<2; i++) {
usb_kill_urb(sg.urb[i]);
}
}
mutex_unlock(&al->card_mutex);
out:
usb_free_urb(sg.urb[0]);
usb_free_urb(sg.urb[1]);
return err;
}
static int alauda_read_oob(struct mtd_info *mtd, loff_t from, void *oob)
{
static u8 ignore_buf[512]; /* write only */
return __alauda_read_page(mtd, from, ignore_buf, oob);
}
static int popcount8(u8 c)
{
int ret = 0;
for ( ; c; c>>=1)
ret += c & 1;
return ret;
}
static int alauda_isbad(struct mtd_info *mtd, loff_t ofs)
{
u8 oob[16];
int err;
err = alauda_read_oob(mtd, ofs, oob);
if (err)
return err;
/* A block is marked bad if two or more bits are zero */
return popcount8(oob[5]) >= 7 ? 0 : 1;
}
static int alauda_bounce_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct alauda *al = mtd->priv;
void *bounce_buf;
int err, corrected=0, uncorrected=0;
bounce_buf = kmalloc(mtd->writesize, GFP_KERNEL);
if (!bounce_buf)
return -ENOMEM;
*retlen = len;
while (len) {
u8 oob[16];
u32 byte = from & al->bytemask;
size_t cplen = min(len, mtd->writesize - byte);
err = alauda_read_page(mtd, from, bounce_buf, oob,
&corrected, &uncorrected);
if (err)
goto out;
memcpy(buf, bounce_buf + byte, cplen);
buf += cplen;
from += cplen;
len -= cplen;
}
err = 0;
if (corrected)
err = -EUCLEAN;
if (uncorrected)
err = -EBADMSG;
out:
kfree(bounce_buf);
return err;
}
static int alauda_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct alauda *al = mtd->priv;
int err, corrected=0, uncorrected=0;
if ((from & al->bytemask) || (len & al->bytemask))
return alauda_bounce_read(mtd, from, len, retlen, buf);
*retlen = len;
while (len) {
u8 oob[16];
err = alauda_read_page(mtd, from, buf, oob,
&corrected, &uncorrected);
if (err)
return err;
buf += mtd->writesize;
from += mtd->writesize;
len -= mtd->writesize;
}
err = 0;
if (corrected)
err = -EUCLEAN;
if (uncorrected)
err = -EBADMSG;
return err;
}
static int alauda_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct alauda *al = mtd->priv;
int err;
if ((to & al->bytemask) || (len & al->bytemask))
return -EINVAL;
*retlen = len;
while (len) {
u32 page = (to >> al->card->pageshift) & al->pagemask;
u8 oob[16] = { 'h', 'e', 'l', 'l', 'o', 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
/* don't write to bad blocks */
if (page == 0) {
err = alauda_isbad(mtd, to);
if (err) {
return -EIO;
}
}
nand_calculate_ecc(mtd, buf, &oob[13]);
nand_calculate_ecc(mtd, buf+256, &oob[8]);
err = alauda_write_page(mtd, to, (void*)buf, oob);
if (err)
return err;
buf += mtd->writesize;
to += mtd->writesize;
len -= mtd->writesize;
}
return 0;
}
static int __alauda_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct alauda *al = mtd->priv;
u32 ofs = instr->addr;
u32 len = instr->len;
int err;
if ((ofs & al->blockmask) || (len & al->blockmask))
return -EINVAL;
while (len) {
/* don't erase bad blocks */
err = alauda_isbad(mtd, ofs);
if (err > 0)
err = -EIO;
if (err < 0)
return err;
err = alauda_erase_block(mtd, ofs);
if (err < 0)
return err;
ofs += mtd->erasesize;
len -= mtd->erasesize;
}
return 0;
}
static int alauda_erase(struct mtd_info *mtd, struct erase_info *instr)
{
int err;
err = __alauda_erase(mtd, instr);
instr->state = err ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
mtd_erase_callback(instr);
return err;
}
static int alauda_init_media(struct alauda *al)
{
u8 buf[4], *b0=buf, *b1=buf+1;
struct alauda_card *card;
struct mtd_info *mtd;
int err;
mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
if (!mtd)
return -ENOMEM;
for (;;) {
err = alauda_get_media_status(al, buf);
if (err < 0)
goto error;
if (*b0 & 0x10)
break;
msleep(20);
}
err = alauda_ack_media(al);
if (err)
goto error;
msleep(10);
err = alauda_get_media_status(al, buf);
if (err < 0)
goto error;
if (*b0 != 0x14) {
/* media not ready */
err = -EIO;
goto error;
}
err = alauda_get_media_signatures(al, buf);
if (err < 0)
goto error;
card = get_card(*b1);
if (!card) {
printk(KERN_ERR"Alauda: unknown card id %02x\n", *b1);
err = -EIO;
goto error;
}
printk(KERN_INFO"pagesize=%x\nerasesize=%x\nsize=%xMiB\n",
1<<card->pageshift, 1<<card->blockshift,
1<<(card->chipshift-20));
al->card = card;
al->pagemask = (1 << (card->blockshift - card->pageshift)) - 1;
al->bytemask = (1 << card->pageshift) - 1;
al->blockmask = (1 << card->blockshift) - 1;
mtd->name = "alauda";
mtd->size = 1<<card->chipshift;
mtd->erasesize = 1<<card->blockshift;
mtd->writesize = 1<<card->pageshift;
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH;
mtd->read = alauda_read;
mtd->write = alauda_write;
mtd->erase = alauda_erase;
mtd->block_isbad = alauda_isbad;
mtd->priv = al;
mtd->owner = THIS_MODULE;
err = add_mtd_device(mtd);
if (err) {
err = -ENFILE;
goto error;
}
al->mtd = mtd;
alauda_reset(al); /* no clue whether this is necessary */
return 0;
error:
kfree(mtd);
return err;
}
static int alauda_check_media(struct alauda *al)
{
u8 buf[2], *b0 = buf, *b1 = buf+1;
int err;
err = alauda_get_media_status(al, buf);
if (err < 0)
return err;
if ((*b1 & 0x01) == 0) {
/* door open */
return -EIO;
}
if ((*b0 & 0x80) || ((*b0 & 0x1F) == 0x10)) {
/* no media ? */
return -EIO;
}
if (*b0 & 0x08) {
/* media change ? */
return alauda_init_media(al);
}
return 0;
}
static int alauda_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct alauda *al;
struct usb_host_interface *iface;
struct usb_endpoint_descriptor *ep,
*ep_in=NULL, *ep_out=NULL, *ep_wr=NULL;
int i, err = -ENOMEM;
al = kzalloc(2*sizeof(*al), GFP_KERNEL);
if (!al)
goto error;
kref_init(&al->kref);
usb_set_intfdata(interface, al);
al->dev = usb_get_dev(interface_to_usbdev(interface));
al->interface = interface;
iface = interface->cur_altsetting;
for (i = 0; i < iface->desc.bNumEndpoints; ++i) {
ep = &iface->endpoint[i].desc;
if (usb_endpoint_is_bulk_in(ep)) {
ep_in = ep;
} else if (usb_endpoint_is_bulk_out(ep)) {
if (i==0)
ep_wr = ep;
else
ep_out = ep;
}
}
err = -EIO;
if (!ep_wr || !ep_in || !ep_out)
goto error;
al->write_out = usb_sndbulkpipe(al->dev,
ep_wr->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
al->bulk_in = usb_rcvbulkpipe(al->dev,
ep_in->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
al->bulk_out = usb_sndbulkpipe(al->dev,
ep_out->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
/* second device is identical up to now */
memcpy(al+1, al, sizeof(*al));
mutex_init(&al[0].card_mutex);
mutex_init(&al[1].card_mutex);
al[0].port = ALAUDA_PORT_XD;
al[1].port = ALAUDA_PORT_SM;
info("alauda probed");
alauda_check_media(al);
alauda_check_media(al+1);
return 0;
error:
if (al)
kref_put(&al->kref, alauda_delete);
return err;
}
static void alauda_disconnect(struct usb_interface *interface)
{
struct alauda *al;
al = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);
/* FIXME: prevent more I/O from starting */
/* decrement our usage count */
if (al)
kref_put(&al->kref, alauda_delete);
info("alauda gone");
}
static struct usb_driver alauda_driver = {
.name = "alauda",
.probe = alauda_probe,
.disconnect = alauda_disconnect,
.id_table = alauda_table,
};
static int __init alauda_init(void)
{
return usb_register(&alauda_driver);
}
static void __exit alauda_exit(void)
{
usb_deregister(&alauda_driver);
}
module_init(alauda_init);
module_exit(alauda_exit);
MODULE_LICENSE("GPL");