android_kernel_xiaomi_sm8350/arch/ppc/platforms/pmac_smp.c
Al Viro 8e293ada7d [PATCH] ppc trivial iomem annotations: pmac_smp.c
Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-24 14:58:08 -07:00

671 lines
17 KiB
C

/*
* SMP support for power macintosh.
*
* We support both the old "powersurge" SMP architecture
* and the current Core99 (G4 PowerMac) machines.
*
* Note that we don't support the very first rev. of
* Apple/DayStar 2 CPUs board, the one with the funky
* watchdog. Hopefully, none of these should be there except
* maybe internally to Apple. I should probably still add some
* code to detect this card though and disable SMP. --BenH.
*
* Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net)
* and Ben Herrenschmidt <benh@kernel.crashing.org>.
*
* Support for DayStar quad CPU cards
* Copyright (C) XLR8, Inc. 1994-2000
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/hardirq.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/smp.h>
#include <asm/residual.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include <asm/time.h>
#include <asm/open_pic.h>
#include <asm/cacheflush.h>
#include <asm/keylargo.h>
/*
* Powersurge (old powermac SMP) support.
*/
extern void __secondary_start_psurge(void);
extern void __secondary_start_psurge2(void); /* Temporary horrible hack */
extern void __secondary_start_psurge3(void); /* Temporary horrible hack */
/* Addresses for powersurge registers */
#define HAMMERHEAD_BASE 0xf8000000
#define HHEAD_CONFIG 0x90
#define HHEAD_SEC_INTR 0xc0
/* register for interrupting the primary processor on the powersurge */
/* N.B. this is actually the ethernet ROM! */
#define PSURGE_PRI_INTR 0xf3019000
/* register for storing the start address for the secondary processor */
/* N.B. this is the PCI config space address register for the 1st bridge */
#define PSURGE_START 0xf2800000
/* Daystar/XLR8 4-CPU card */
#define PSURGE_QUAD_REG_ADDR 0xf8800000
#define PSURGE_QUAD_IRQ_SET 0
#define PSURGE_QUAD_IRQ_CLR 1
#define PSURGE_QUAD_IRQ_PRIMARY 2
#define PSURGE_QUAD_CKSTOP_CTL 3
#define PSURGE_QUAD_PRIMARY_ARB 4
#define PSURGE_QUAD_BOARD_ID 6
#define PSURGE_QUAD_WHICH_CPU 7
#define PSURGE_QUAD_CKSTOP_RDBK 8
#define PSURGE_QUAD_RESET_CTL 11
#define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v)))
#define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f)
#define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v)))
#define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v)))
/* virtual addresses for the above */
static volatile u8 __iomem *hhead_base;
static volatile u8 __iomem *quad_base;
static volatile u32 __iomem *psurge_pri_intr;
static volatile u8 __iomem *psurge_sec_intr;
static volatile u32 __iomem *psurge_start;
/* values for psurge_type */
#define PSURGE_NONE -1
#define PSURGE_DUAL 0
#define PSURGE_QUAD_OKEE 1
#define PSURGE_QUAD_COTTON 2
#define PSURGE_QUAD_ICEGRASS 3
/* what sort of powersurge board we have */
static int psurge_type = PSURGE_NONE;
/* L2 and L3 cache settings to pass from CPU0 to CPU1 */
volatile static long int core99_l2_cache;
volatile static long int core99_l3_cache;
/* Timebase freeze GPIO */
static unsigned int core99_tb_gpio;
/* Sync flag for HW tb sync */
static volatile int sec_tb_reset = 0;
static unsigned int pri_tb_hi, pri_tb_lo;
static unsigned int pri_tb_stamp;
static void __init core99_init_caches(int cpu)
{
if (!cpu_has_feature(CPU_FTR_L2CR))
return;
if (cpu == 0) {
core99_l2_cache = _get_L2CR();
printk("CPU0: L2CR is %lx\n", core99_l2_cache);
} else {
printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR());
_set_L2CR(0);
_set_L2CR(core99_l2_cache);
printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache);
}
if (!cpu_has_feature(CPU_FTR_L3CR))
return;
if (cpu == 0){
core99_l3_cache = _get_L3CR();
printk("CPU0: L3CR is %lx\n", core99_l3_cache);
} else {
printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR());
_set_L3CR(0);
_set_L3CR(core99_l3_cache);
printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache);
}
}
/*
* Set and clear IPIs for powersurge.
*/
static inline void psurge_set_ipi(int cpu)
{
if (psurge_type == PSURGE_NONE)
return;
if (cpu == 0)
in_be32(psurge_pri_intr);
else if (psurge_type == PSURGE_DUAL)
out_8(psurge_sec_intr, 0);
else
PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu);
}
static inline void psurge_clr_ipi(int cpu)
{
if (cpu > 0) {
switch(psurge_type) {
case PSURGE_DUAL:
out_8(psurge_sec_intr, ~0);
case PSURGE_NONE:
break;
default:
PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu);
}
}
}
/*
* On powersurge (old SMP powermac architecture) we don't have
* separate IPIs for separate messages like openpic does. Instead
* we have a bitmap for each processor, where a 1 bit means that
* the corresponding message is pending for that processor.
* Ideally each cpu's entry would be in a different cache line.
* -- paulus.
*/
static unsigned long psurge_smp_message[NR_CPUS];
void __pmac psurge_smp_message_recv(struct pt_regs *regs)
{
int cpu = smp_processor_id();
int msg;
/* clear interrupt */
psurge_clr_ipi(cpu);
if (num_online_cpus() < 2)
return;
/* make sure there is a message there */
for (msg = 0; msg < 4; msg++)
if (test_and_clear_bit(msg, &psurge_smp_message[cpu]))
smp_message_recv(msg, regs);
}
irqreturn_t __pmac psurge_primary_intr(int irq, void *d, struct pt_regs *regs)
{
psurge_smp_message_recv(regs);
return IRQ_HANDLED;
}
static void __pmac smp_psurge_message_pass(int target, int msg, unsigned long data,
int wait)
{
int i;
if (num_online_cpus() < 2)
return;
for (i = 0; i < NR_CPUS; i++) {
if (!cpu_online(i))
continue;
if (target == MSG_ALL
|| (target == MSG_ALL_BUT_SELF && i != smp_processor_id())
|| target == i) {
set_bit(msg, &psurge_smp_message[i]);
psurge_set_ipi(i);
}
}
}
/*
* Determine a quad card presence. We read the board ID register, we
* force the data bus to change to something else, and we read it again.
* It it's stable, then the register probably exist (ugh !)
*/
static int __init psurge_quad_probe(void)
{
int type;
unsigned int i;
type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID);
if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS
|| type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
return PSURGE_DUAL;
/* looks OK, try a slightly more rigorous test */
/* bogus is not necessarily cacheline-aligned,
though I don't suppose that really matters. -- paulus */
for (i = 0; i < 100; i++) {
volatile u32 bogus[8];
bogus[(0+i)%8] = 0x00000000;
bogus[(1+i)%8] = 0x55555555;
bogus[(2+i)%8] = 0xFFFFFFFF;
bogus[(3+i)%8] = 0xAAAAAAAA;
bogus[(4+i)%8] = 0x33333333;
bogus[(5+i)%8] = 0xCCCCCCCC;
bogus[(6+i)%8] = 0xCCCCCCCC;
bogus[(7+i)%8] = 0x33333333;
wmb();
asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory");
mb();
if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
return PSURGE_DUAL;
}
return type;
}
static void __init psurge_quad_init(void)
{
int procbits;
if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351);
procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU);
if (psurge_type == PSURGE_QUAD_ICEGRASS)
PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
else
PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits);
mdelay(33);
out_8(psurge_sec_intr, ~0);
PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits);
PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
if (psurge_type != PSURGE_QUAD_ICEGRASS)
PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits);
PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits);
mdelay(33);
PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits);
mdelay(33);
PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits);
mdelay(33);
}
static int __init smp_psurge_probe(void)
{
int i, ncpus;
/* We don't do SMP on the PPC601 -- paulus */
if (PVR_VER(mfspr(SPRN_PVR)) == 1)
return 1;
/*
* The powersurge cpu board can be used in the generation
* of powermacs that have a socket for an upgradeable cpu card,
* including the 7500, 8500, 9500, 9600.
* The device tree doesn't tell you if you have 2 cpus because
* OF doesn't know anything about the 2nd processor.
* Instead we look for magic bits in magic registers,
* in the hammerhead memory controller in the case of the
* dual-cpu powersurge board. -- paulus.
*/
if (find_devices("hammerhead") == NULL)
return 1;
hhead_base = ioremap(HAMMERHEAD_BASE, 0x800);
quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024);
psurge_sec_intr = hhead_base + HHEAD_SEC_INTR;
psurge_type = psurge_quad_probe();
if (psurge_type != PSURGE_DUAL) {
psurge_quad_init();
/* All released cards using this HW design have 4 CPUs */
ncpus = 4;
} else {
iounmap(quad_base);
if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) {
/* not a dual-cpu card */
iounmap(hhead_base);
psurge_type = PSURGE_NONE;
return 1;
}
ncpus = 2;
}
psurge_start = ioremap(PSURGE_START, 4);
psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4);
/* this is not actually strictly necessary -- paulus. */
for (i = 1; i < ncpus; ++i)
smp_hw_index[i] = i;
if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352);
return ncpus;
}
static void __init smp_psurge_kick_cpu(int nr)
{
void (*start)(void) = __secondary_start_psurge;
unsigned long a;
/* may need to flush here if secondary bats aren't setup */
for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32)
asm volatile("dcbf 0,%0" : : "r" (a) : "memory");
asm volatile("sync");
if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353);
/* setup entry point of secondary processor */
switch (nr) {
case 2:
start = __secondary_start_psurge2;
break;
case 3:
start = __secondary_start_psurge3;
break;
}
out_be32(psurge_start, __pa(start));
mb();
psurge_set_ipi(nr);
udelay(10);
psurge_clr_ipi(nr);
if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354);
}
/*
* With the dual-cpu powersurge board, the decrementers and timebases
* of both cpus are frozen after the secondary cpu is started up,
* until we give the secondary cpu another interrupt. This routine
* uses this to get the timebases synchronized.
* -- paulus.
*/
static void __init psurge_dual_sync_tb(int cpu_nr)
{
int t;
set_dec(tb_ticks_per_jiffy);
set_tb(0, 0);
last_jiffy_stamp(cpu_nr) = 0;
if (cpu_nr > 0) {
mb();
sec_tb_reset = 1;
return;
}
/* wait for the secondary to have reset its TB before proceeding */
for (t = 10000000; t > 0 && !sec_tb_reset; --t)
;
/* now interrupt the secondary, starting both TBs */
psurge_set_ipi(1);
smp_tb_synchronized = 1;
}
static struct irqaction psurge_irqaction = {
.handler = psurge_primary_intr,
.flags = SA_INTERRUPT,
.mask = CPU_MASK_NONE,
.name = "primary IPI",
};
static void __init smp_psurge_setup_cpu(int cpu_nr)
{
if (cpu_nr == 0) {
/* If we failed to start the second CPU, we should still
* send it an IPI to start the timebase & DEC or we might
* have them stuck.
*/
if (num_online_cpus() < 2) {
if (psurge_type == PSURGE_DUAL)
psurge_set_ipi(1);
return;
}
/* reset the entry point so if we get another intr we won't
* try to startup again */
out_be32(psurge_start, 0x100);
if (setup_irq(30, &psurge_irqaction))
printk(KERN_ERR "Couldn't get primary IPI interrupt");
}
if (psurge_type == PSURGE_DUAL)
psurge_dual_sync_tb(cpu_nr);
}
void __init smp_psurge_take_timebase(void)
{
/* Dummy implementation */
}
void __init smp_psurge_give_timebase(void)
{
/* Dummy implementation */
}
static int __init smp_core99_probe(void)
{
#ifdef CONFIG_6xx
extern int powersave_nap;
#endif
struct device_node *cpus, *firstcpu;
int i, ncpus = 0, boot_cpu = -1;
u32 *tbprop = NULL;
if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345);
cpus = firstcpu = find_type_devices("cpu");
while(cpus != NULL) {
u32 *regprop = (u32 *)get_property(cpus, "reg", NULL);
char *stateprop = (char *)get_property(cpus, "state", NULL);
if (regprop != NULL && stateprop != NULL &&
!strncmp(stateprop, "running", 7))
boot_cpu = *regprop;
++ncpus;
cpus = cpus->next;
}
if (boot_cpu == -1)
printk(KERN_WARNING "Couldn't detect boot CPU !\n");
if (boot_cpu != 0)
printk(KERN_WARNING "Boot CPU is %d, unsupported setup !\n", boot_cpu);
if (machine_is_compatible("MacRISC4")) {
extern struct smp_ops_t core99_smp_ops;
core99_smp_ops.take_timebase = smp_generic_take_timebase;
core99_smp_ops.give_timebase = smp_generic_give_timebase;
} else {
if (firstcpu != NULL)
tbprop = (u32 *)get_property(firstcpu, "timebase-enable", NULL);
if (tbprop)
core99_tb_gpio = *tbprop;
else
core99_tb_gpio = KL_GPIO_TB_ENABLE;
}
if (ncpus > 1) {
openpic_request_IPIs();
for (i = 1; i < ncpus; ++i)
smp_hw_index[i] = i;
#ifdef CONFIG_6xx
powersave_nap = 0;
#endif
core99_init_caches(0);
}
return ncpus;
}
static void __init smp_core99_kick_cpu(int nr)
{
unsigned long save_vector, new_vector;
unsigned long flags;
volatile unsigned long *vector
= ((volatile unsigned long *)(KERNELBASE+0x100));
if (nr < 1 || nr > 3)
return;
if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346);
local_irq_save(flags);
local_irq_disable();
/* Save reset vector */
save_vector = *vector;
/* Setup fake reset vector that does
* b __secondary_start_psurge - KERNELBASE
*/
switch(nr) {
case 1:
new_vector = (unsigned long)__secondary_start_psurge;
break;
case 2:
new_vector = (unsigned long)__secondary_start_psurge2;
break;
case 3:
new_vector = (unsigned long)__secondary_start_psurge3;
break;
}
*vector = 0x48000002 + new_vector - KERNELBASE;
/* flush data cache and inval instruction cache */
flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
/* Put some life in our friend */
pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0);
/* FIXME: We wait a bit for the CPU to take the exception, I should
* instead wait for the entry code to set something for me. Well,
* ideally, all that crap will be done in prom.c and the CPU left
* in a RAM-based wait loop like CHRP.
*/
mdelay(1);
/* Restore our exception vector */
*vector = save_vector;
flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
local_irq_restore(flags);
if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347);
}
static void __init smp_core99_setup_cpu(int cpu_nr)
{
/* Setup L2/L3 */
if (cpu_nr != 0)
core99_init_caches(cpu_nr);
/* Setup openpic */
do_openpic_setup_cpu();
if (cpu_nr == 0) {
#ifdef CONFIG_POWER4
extern void g5_phy_disable_cpu1(void);
/* If we didn't start the second CPU, we must take
* it off the bus
*/
if (machine_is_compatible("MacRISC4") &&
num_online_cpus() < 2)
g5_phy_disable_cpu1();
#endif /* CONFIG_POWER4 */
if (ppc_md.progress) ppc_md.progress("core99_setup_cpu 0 done", 0x349);
}
}
/* not __init, called in sleep/wakeup code */
void smp_core99_take_timebase(void)
{
unsigned long flags;
/* tell the primary we're here */
sec_tb_reset = 1;
mb();
/* wait for the primary to set pri_tb_hi/lo */
while (sec_tb_reset < 2)
mb();
/* set our stuff the same as the primary */
local_irq_save(flags);
set_dec(1);
set_tb(pri_tb_hi, pri_tb_lo);
last_jiffy_stamp(smp_processor_id()) = pri_tb_stamp;
mb();
/* tell the primary we're done */
sec_tb_reset = 0;
mb();
local_irq_restore(flags);
}
/* not __init, called in sleep/wakeup code */
void smp_core99_give_timebase(void)
{
unsigned long flags;
unsigned int t;
/* wait for the secondary to be in take_timebase */
for (t = 100000; t > 0 && !sec_tb_reset; --t)
udelay(10);
if (!sec_tb_reset) {
printk(KERN_WARNING "Timeout waiting sync on second CPU\n");
return;
}
/* freeze the timebase and read it */
/* disable interrupts so the timebase is disabled for the
shortest possible time */
local_irq_save(flags);
pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4);
pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
mb();
pri_tb_hi = get_tbu();
pri_tb_lo = get_tbl();
pri_tb_stamp = last_jiffy_stamp(smp_processor_id());
mb();
/* tell the secondary we're ready */
sec_tb_reset = 2;
mb();
/* wait for the secondary to have taken it */
for (t = 100000; t > 0 && sec_tb_reset; --t)
udelay(10);
if (sec_tb_reset)
printk(KERN_WARNING "Timeout waiting sync(2) on second CPU\n");
else
smp_tb_synchronized = 1;
/* Now, restart the timebase by leaving the GPIO to an open collector */
pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0);
pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
local_irq_restore(flags);
}
/* PowerSurge-style Macs */
struct smp_ops_t psurge_smp_ops __pmacdata = {
.message_pass = smp_psurge_message_pass,
.probe = smp_psurge_probe,
.kick_cpu = smp_psurge_kick_cpu,
.setup_cpu = smp_psurge_setup_cpu,
.give_timebase = smp_psurge_give_timebase,
.take_timebase = smp_psurge_take_timebase,
};
/* Core99 Macs (dual G4s) */
struct smp_ops_t core99_smp_ops __pmacdata = {
.message_pass = smp_openpic_message_pass,
.probe = smp_core99_probe,
.kick_cpu = smp_core99_kick_cpu,
.setup_cpu = smp_core99_setup_cpu,
.give_timebase = smp_core99_give_timebase,
.take_timebase = smp_core99_take_timebase,
};