android_kernel_xiaomi_sm8350/arch/arm26/mm/init.c
Dave Hansen 22a9835c35 [PATCH] unify PFN_* macros
Just about every architecture defines some macros to do operations on pfns.
 They're all virtually identical.  This patch consolidates all of them.

One minor glitch is that at least i386 uses them in a very skeletal header
file.  To keep away from #include dependency hell, I stuck the new
definitions in a new, isolated header.

Of all of the implementations, sh64 is the only one that varied by a bit.
It used some masks to ensure that any sign-extension got ripped away before
the arithmetic is done.  This has been posted to that sh64 maintainers and
the development list.

Compiles on x86, x86_64, ia64 and ppc64.

Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:48 -08:00

408 lines
9.7 KiB
C

/*
* linux/arch/arm26/mm/init.c
*
* Copyright (C) 1995-2002 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/blkdev.h>
#include <linux/pfn.h>
#include <asm/segment.h>
#include <asm/mach-types.h>
#include <asm/dma.h>
#include <asm/hardware.h>
#include <asm/setup.h>
#include <asm/tlb.h>
#include <asm/map.h>
#define TABLE_SIZE PTRS_PER_PTE * sizeof(pte_t))
struct mmu_gather mmu_gathers[NR_CPUS];
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern char _stext, _text, _etext, _end, __init_begin, __init_end;
#ifdef CONFIG_XIP_KERNEL
extern char _endtext, _sdata;
#endif
extern unsigned long phys_initrd_start;
extern unsigned long phys_initrd_size;
/*
* The sole use of this is to pass memory configuration
* data from paging_init to mem_init.
*/
static struct meminfo meminfo __initdata = { 0, };
/*
* empty_zero_page is a special page that is used for
* zero-initialized data and COW.
*/
struct page *empty_zero_page;
void show_mem(void)
{
int free = 0, total = 0, reserved = 0;
int shared = 0, cached = 0, slab = 0;
struct page *page, *end;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
page = NODE_MEM_MAP(0);
end = page + NODE_DATA(0)->node_spanned_pages;
do {
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (PageSlab(page))
slab++;
else if (!page_count(page))
free++;
else
shared += page_count(page) - 1;
page++;
} while (page < end);
printk("%d pages of RAM\n", total);
printk("%d free pages\n", free);
printk("%d reserved pages\n", reserved);
printk("%d slab pages\n", slab);
printk("%d pages shared\n", shared);
printk("%d pages swap cached\n", cached);
}
struct node_info {
unsigned int start;
unsigned int end;
int bootmap_pages;
};
/*
* FIXME: We really want to avoid allocating the bootmap bitmap
* over the top of the initrd. Hopefully, this is located towards
* the start of a bank, so if we allocate the bootmap bitmap at
* the end, we won't clash.
*/
static unsigned int __init
find_bootmap_pfn(struct meminfo *mi, unsigned int bootmap_pages)
{
unsigned int start_pfn, bootmap_pfn;
unsigned int start, end;
start_pfn = PFN_UP((unsigned long)&_end);
bootmap_pfn = 0;
/* ARM26 machines only have one node */
if (mi->bank->node != 0)
BUG();
start = PFN_UP(mi->bank->start);
end = PFN_DOWN(mi->bank->size + mi->bank->start);
if (start < start_pfn)
start = start_pfn;
if (end <= start)
BUG();
if (end - start >= bootmap_pages)
bootmap_pfn = start;
else
BUG();
return bootmap_pfn;
}
/*
* Scan the memory info structure and pull out:
* - the end of memory
* - the number of nodes
* - the pfn range of each node
* - the number of bootmem bitmap pages
*/
static void __init
find_memend_and_nodes(struct meminfo *mi, struct node_info *np)
{
unsigned int memend_pfn = 0;
nodes_clear(node_online_map);
node_set_online(0);
np->bootmap_pages = 0;
if (mi->bank->size == 0) {
BUG();
}
/*
* Get the start and end pfns for this bank
*/
np->start = PFN_UP(mi->bank->start);
np->end = PFN_DOWN(mi->bank->start + mi->bank->size);
if (memend_pfn < np->end)
memend_pfn = np->end;
/*
* Calculate the number of pages we require to
* store the bootmem bitmaps.
*/
np->bootmap_pages = bootmem_bootmap_pages(np->end - np->start);
/*
* This doesn't seem to be used by the Linux memory
* manager any more. If we can get rid of it, we
* also get rid of some of the stuff above as well.
*/
max_low_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET);
max_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET);
mi->end = memend_pfn << PAGE_SHIFT;
}
/*
* Initialise the bootmem allocator for all nodes. This is called
* early during the architecture specific initialisation.
*/
void __init bootmem_init(struct meminfo *mi)
{
struct node_info node_info;
unsigned int bootmap_pfn;
pg_data_t *pgdat = NODE_DATA(0);
find_memend_and_nodes(mi, &node_info);
bootmap_pfn = find_bootmap_pfn(mi, node_info.bootmap_pages);
/*
* Note that node 0 must always have some pages.
*/
if (node_info.end == 0)
BUG();
/*
* Initialise the bootmem allocator.
*/
init_bootmem_node(pgdat, bootmap_pfn, node_info.start, node_info.end);
/*
* Register all available RAM in this node with the bootmem allocator.
*/
free_bootmem_node(pgdat, mi->bank->start, mi->bank->size);
/*
* Register the kernel text and data with bootmem.
* Note: with XIP we dont register .text since
* its in ROM.
*/
#ifdef CONFIG_XIP_KERNEL
reserve_bootmem_node(pgdat, __pa(&_sdata), &_end - &_sdata);
#else
reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
#endif
/*
* And don't forget to reserve the allocator bitmap,
* which will be freed later.
*/
reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT,
node_info.bootmap_pages << PAGE_SHIFT);
/*
* These should likewise go elsewhere. They pre-reserve
* the screen memory region at the start of main system
* memory. FIXME - screen RAM is not 512K!
*/
reserve_bootmem_node(pgdat, 0x02000000, 0x00080000);
#ifdef CONFIG_BLK_DEV_INITRD
initrd_start = phys_initrd_start;
initrd_end = initrd_start + phys_initrd_size;
/* Achimedes machines only have one node, so initrd is in node 0 */
#ifdef CONFIG_XIP_KERNEL
/* Only reserve initrd space if it is in RAM */
if(initrd_start && initrd_start < 0x03000000){
#else
if(initrd_start){
#endif
reserve_bootmem_node(pgdat, __pa(initrd_start),
initrd_end - initrd_start);
}
#endif /* CONFIG_BLK_DEV_INITRD */
}
/*
* paging_init() sets up the page tables, initialises the zone memory
* maps, and sets up the zero page, bad page and bad page tables.
*/
void __init paging_init(struct meminfo *mi)
{
void *zero_page;
unsigned long zone_size[MAX_NR_ZONES];
unsigned long zhole_size[MAX_NR_ZONES];
struct bootmem_data *bdata;
pg_data_t *pgdat;
int i;
memcpy(&meminfo, mi, sizeof(meminfo));
/*
* allocate the zero page. Note that we count on this going ok.
*/
zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
/*
* initialise the page tables.
*/
memtable_init(mi);
flush_tlb_all();
/*
* initialise the zones in node 0 (archimedes have only 1 node)
*/
for (i = 0; i < MAX_NR_ZONES; i++) {
zone_size[i] = 0;
zhole_size[i] = 0;
}
pgdat = NODE_DATA(0);
bdata = pgdat->bdata;
zone_size[0] = bdata->node_low_pfn -
(bdata->node_boot_start >> PAGE_SHIFT);
if (!zone_size[0])
BUG();
pgdat->node_mem_map = NULL;
free_area_init_node(0, pgdat, zone_size,
bdata->node_boot_start >> PAGE_SHIFT, zhole_size);
/*
* finish off the bad pages once
* the mem_map is initialised
*/
memzero(zero_page, PAGE_SIZE);
empty_zero_page = virt_to_page(zero_page);
}
static inline void free_area(unsigned long addr, unsigned long end, char *s)
{
unsigned int size = (end - addr) >> 10;
for (; addr < end; addr += PAGE_SIZE) {
struct page *page = virt_to_page(addr);
ClearPageReserved(page);
init_page_count(page);
free_page(addr);
totalram_pages++;
}
if (size && s)
printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
}
/*
* mem_init() marks the free areas in the mem_map and tells us how much
* memory is free. This is done after various parts of the system have
* claimed their memory after the kernel image.
*/
void __init mem_init(void)
{
unsigned int codepages, datapages, initpages;
pg_data_t *pgdat = NODE_DATA(0);
extern int sysctl_overcommit_memory;
/* Note: data pages includes BSS */
#ifdef CONFIG_XIP_KERNEL
codepages = &_endtext - &_text;
datapages = &_end - &_sdata;
#else
codepages = &_etext - &_text;
datapages = &_end - &_etext;
#endif
initpages = &__init_end - &__init_begin;
high_memory = (void *)__va(meminfo.end);
max_mapnr = virt_to_page(high_memory) - mem_map;
/* this will put all unused low memory onto the freelists */
if (pgdat->node_spanned_pages != 0)
totalram_pages += free_all_bootmem_node(pgdat);
num_physpages = meminfo.bank[0].size >> PAGE_SHIFT;
printk(KERN_INFO "Memory: %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
"%dK data, %dK init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
codepages >> 10, datapages >> 10, initpages >> 10);
/*
* Turn on overcommit on tiny machines
*/
if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
printk("Turning on overcommit\n");
}
}
void free_initmem(void){
#ifndef CONFIG_XIP_KERNEL
free_area((unsigned long)(&__init_begin),
(unsigned long)(&__init_end),
"init");
#endif
}
#ifdef CONFIG_BLK_DEV_INITRD
static int keep_initrd;
void free_initrd_mem(unsigned long start, unsigned long end)
{
#ifdef CONFIG_XIP_KERNEL
/* Only bin initrd if it is in RAM... */
if(!keep_initrd && start < 0x03000000)
#else
if (!keep_initrd)
#endif
free_area(start, end, "initrd");
}
static int __init keepinitrd_setup(char *__unused)
{
keep_initrd = 1;
return 1;
}
__setup("keepinitrd", keepinitrd_setup);
#endif