android_kernel_xiaomi_sm8350/sound/pci/cs4281.c
Henrik Kretzschmar 396c9b928d [ALSA] add __devinitdata to all pci_device_id
Signed-off-by: Henrik Kretzschmar <henne@nachtwindheim.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2006-04-27 21:10:34 +02:00

2108 lines
65 KiB
C

/*
* Driver for Cirrus Logic CS4281 based PCI soundcard
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>,
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/ac97_codec.h>
#include <sound/opl3.h>
#include <sound/initval.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("Cirrus Logic CS4281");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Cirrus Logic,CS4281}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
static int dual_codec[SNDRV_CARDS]; /* dual codec */
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for CS4281 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for CS4281 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable CS4281 soundcard.");
module_param_array(dual_codec, bool, NULL, 0444);
MODULE_PARM_DESC(dual_codec, "Secondary Codec ID (0 = disabled).");
/*
* Direct registers
*/
#define CS4281_BA0_SIZE 0x1000
#define CS4281_BA1_SIZE 0x10000
/*
* BA0 registers
*/
#define BA0_HISR 0x0000 /* Host Interrupt Status Register */
#define BA0_HISR_INTENA (1<<31) /* Internal Interrupt Enable Bit */
#define BA0_HISR_MIDI (1<<22) /* MIDI port interrupt */
#define BA0_HISR_FIFOI (1<<20) /* FIFO polled interrupt */
#define BA0_HISR_DMAI (1<<18) /* DMA interrupt (half or end) */
#define BA0_HISR_FIFO(c) (1<<(12+(c))) /* FIFO channel interrupt */
#define BA0_HISR_DMA(c) (1<<(8+(c))) /* DMA channel interrupt */
#define BA0_HISR_GPPI (1<<5) /* General Purpose Input (Primary chip) */
#define BA0_HISR_GPSI (1<<4) /* General Purpose Input (Secondary chip) */
#define BA0_HISR_GP3I (1<<3) /* GPIO3 pin Interrupt */
#define BA0_HISR_GP1I (1<<2) /* GPIO1 pin Interrupt */
#define BA0_HISR_VUPI (1<<1) /* VOLUP pin Interrupt */
#define BA0_HISR_VDNI (1<<0) /* VOLDN pin Interrupt */
#define BA0_HICR 0x0008 /* Host Interrupt Control Register */
#define BA0_HICR_CHGM (1<<1) /* INTENA Change Mask */
#define BA0_HICR_IEV (1<<0) /* INTENA Value */
#define BA0_HICR_EOI (3<<0) /* End of Interrupt command */
#define BA0_HIMR 0x000c /* Host Interrupt Mask Register */
/* Use same contants as for BA0_HISR */
#define BA0_IIER 0x0010 /* ISA Interrupt Enable Register */
#define BA0_HDSR0 0x00f0 /* Host DMA Engine 0 Status Register */
#define BA0_HDSR1 0x00f4 /* Host DMA Engine 1 Status Register */
#define BA0_HDSR2 0x00f8 /* Host DMA Engine 2 Status Register */
#define BA0_HDSR3 0x00fc /* Host DMA Engine 3 Status Register */
#define BA0_HDSR_CH1P (1<<25) /* Channel 1 Pending */
#define BA0_HDSR_CH2P (1<<24) /* Channel 2 Pending */
#define BA0_HDSR_DHTC (1<<17) /* DMA Half Terminal Count */
#define BA0_HDSR_DTC (1<<16) /* DMA Terminal Count */
#define BA0_HDSR_DRUN (1<<15) /* DMA Running */
#define BA0_HDSR_RQ (1<<7) /* Pending Request */
#define BA0_DCA0 0x0110 /* Host DMA Engine 0 Current Address */
#define BA0_DCC0 0x0114 /* Host DMA Engine 0 Current Count */
#define BA0_DBA0 0x0118 /* Host DMA Engine 0 Base Address */
#define BA0_DBC0 0x011c /* Host DMA Engine 0 Base Count */
#define BA0_DCA1 0x0120 /* Host DMA Engine 1 Current Address */
#define BA0_DCC1 0x0124 /* Host DMA Engine 1 Current Count */
#define BA0_DBA1 0x0128 /* Host DMA Engine 1 Base Address */
#define BA0_DBC1 0x012c /* Host DMA Engine 1 Base Count */
#define BA0_DCA2 0x0130 /* Host DMA Engine 2 Current Address */
#define BA0_DCC2 0x0134 /* Host DMA Engine 2 Current Count */
#define BA0_DBA2 0x0138 /* Host DMA Engine 2 Base Address */
#define BA0_DBC2 0x013c /* Host DMA Engine 2 Base Count */
#define BA0_DCA3 0x0140 /* Host DMA Engine 3 Current Address */
#define BA0_DCC3 0x0144 /* Host DMA Engine 3 Current Count */
#define BA0_DBA3 0x0148 /* Host DMA Engine 3 Base Address */
#define BA0_DBC3 0x014c /* Host DMA Engine 3 Base Count */
#define BA0_DMR0 0x0150 /* Host DMA Engine 0 Mode */
#define BA0_DCR0 0x0154 /* Host DMA Engine 0 Command */
#define BA0_DMR1 0x0158 /* Host DMA Engine 1 Mode */
#define BA0_DCR1 0x015c /* Host DMA Engine 1 Command */
#define BA0_DMR2 0x0160 /* Host DMA Engine 2 Mode */
#define BA0_DCR2 0x0164 /* Host DMA Engine 2 Command */
#define BA0_DMR3 0x0168 /* Host DMA Engine 3 Mode */
#define BA0_DCR3 0x016c /* Host DMA Engine 3 Command */
#define BA0_DMR_DMA (1<<29) /* Enable DMA mode */
#define BA0_DMR_POLL (1<<28) /* Enable poll mode */
#define BA0_DMR_TBC (1<<25) /* Transfer By Channel */
#define BA0_DMR_CBC (1<<24) /* Count By Channel (0 = frame resolution) */
#define BA0_DMR_SWAPC (1<<22) /* Swap Left/Right Channels */
#define BA0_DMR_SIZE20 (1<<20) /* Sample is 20-bit */
#define BA0_DMR_USIGN (1<<19) /* Unsigned */
#define BA0_DMR_BEND (1<<18) /* Big Endian */
#define BA0_DMR_MONO (1<<17) /* Mono */
#define BA0_DMR_SIZE8 (1<<16) /* Sample is 8-bit */
#define BA0_DMR_TYPE_DEMAND (0<<6)
#define BA0_DMR_TYPE_SINGLE (1<<6)
#define BA0_DMR_TYPE_BLOCK (2<<6)
#define BA0_DMR_TYPE_CASCADE (3<<6) /* Not supported */
#define BA0_DMR_DEC (1<<5) /* Access Increment (0) or Decrement (1) */
#define BA0_DMR_AUTO (1<<4) /* Auto-Initialize */
#define BA0_DMR_TR_VERIFY (0<<2) /* Verify Transfer */
#define BA0_DMR_TR_WRITE (1<<2) /* Write Transfer */
#define BA0_DMR_TR_READ (2<<2) /* Read Transfer */
#define BA0_DCR_HTCIE (1<<17) /* Half Terminal Count Interrupt */
#define BA0_DCR_TCIE (1<<16) /* Terminal Count Interrupt */
#define BA0_DCR_MSK (1<<0) /* DMA Mask bit */
#define BA0_FCR0 0x0180 /* FIFO Control 0 */
#define BA0_FCR1 0x0184 /* FIFO Control 1 */
#define BA0_FCR2 0x0188 /* FIFO Control 2 */
#define BA0_FCR3 0x018c /* FIFO Control 3 */
#define BA0_FCR_FEN (1<<31) /* FIFO Enable bit */
#define BA0_FCR_DACZ (1<<30) /* DAC Zero */
#define BA0_FCR_PSH (1<<29) /* Previous Sample Hold */
#define BA0_FCR_RS(x) (((x)&0x1f)<<24) /* Right Slot Mapping */
#define BA0_FCR_LS(x) (((x)&0x1f)<<16) /* Left Slot Mapping */
#define BA0_FCR_SZ(x) (((x)&0x7f)<<8) /* FIFO buffer size (in samples) */
#define BA0_FCR_OF(x) (((x)&0x7f)<<0) /* FIFO starting offset (in samples) */
#define BA0_FPDR0 0x0190 /* FIFO Polled Data 0 */
#define BA0_FPDR1 0x0194 /* FIFO Polled Data 1 */
#define BA0_FPDR2 0x0198 /* FIFO Polled Data 2 */
#define BA0_FPDR3 0x019c /* FIFO Polled Data 3 */
#define BA0_FCHS 0x020c /* FIFO Channel Status */
#define BA0_FCHS_RCO(x) (1<<(7+(((x)&3)<<3))) /* Right Channel Out */
#define BA0_FCHS_LCO(x) (1<<(6+(((x)&3)<<3))) /* Left Channel Out */
#define BA0_FCHS_MRP(x) (1<<(5+(((x)&3)<<3))) /* Move Read Pointer */
#define BA0_FCHS_FE(x) (1<<(4+(((x)&3)<<3))) /* FIFO Empty */
#define BA0_FCHS_FF(x) (1<<(3+(((x)&3)<<3))) /* FIFO Full */
#define BA0_FCHS_IOR(x) (1<<(2+(((x)&3)<<3))) /* Internal Overrun Flag */
#define BA0_FCHS_RCI(x) (1<<(1+(((x)&3)<<3))) /* Right Channel In */
#define BA0_FCHS_LCI(x) (1<<(0+(((x)&3)<<3))) /* Left Channel In */
#define BA0_FSIC0 0x0210 /* FIFO Status and Interrupt Control 0 */
#define BA0_FSIC1 0x0214 /* FIFO Status and Interrupt Control 1 */
#define BA0_FSIC2 0x0218 /* FIFO Status and Interrupt Control 2 */
#define BA0_FSIC3 0x021c /* FIFO Status and Interrupt Control 3 */
#define BA0_FSIC_FIC(x) (((x)&0x7f)<<24) /* FIFO Interrupt Count */
#define BA0_FSIC_FORIE (1<<23) /* FIFO OverRun Interrupt Enable */
#define BA0_FSIC_FURIE (1<<22) /* FIFO UnderRun Interrupt Enable */
#define BA0_FSIC_FSCIE (1<<16) /* FIFO Sample Count Interrupt Enable */
#define BA0_FSIC_FSC(x) (((x)&0x7f)<<8) /* FIFO Sample Count */
#define BA0_FSIC_FOR (1<<7) /* FIFO OverRun */
#define BA0_FSIC_FUR (1<<6) /* FIFO UnderRun */
#define BA0_FSIC_FSCR (1<<0) /* FIFO Sample Count Reached */
#define BA0_PMCS 0x0344 /* Power Management Control/Status */
#define BA0_CWPR 0x03e0 /* Configuration Write Protect */
#define BA0_EPPMC 0x03e4 /* Extended PCI Power Management Control */
#define BA0_EPPMC_FPDN (1<<14) /* Full Power DowN */
#define BA0_GPIOR 0x03e8 /* GPIO Pin Interface Register */
#define BA0_SPMC 0x03ec /* Serial Port Power Management Control (& ASDIN2 enable) */
#define BA0_SPMC_GIPPEN (1<<15) /* GP INT Primary PME# Enable */
#define BA0_SPMC_GISPEN (1<<14) /* GP INT Secondary PME# Enable */
#define BA0_SPMC_EESPD (1<<9) /* EEPROM Serial Port Disable */
#define BA0_SPMC_ASDI2E (1<<8) /* ASDIN2 Enable */
#define BA0_SPMC_ASDO (1<<7) /* Asynchronous ASDOUT Assertion */
#define BA0_SPMC_WUP2 (1<<3) /* Wakeup for Secondary Input */
#define BA0_SPMC_WUP1 (1<<2) /* Wakeup for Primary Input */
#define BA0_SPMC_ASYNC (1<<1) /* Asynchronous ASYNC Assertion */
#define BA0_SPMC_RSTN (1<<0) /* Reset Not! */
#define BA0_CFLR 0x03f0 /* Configuration Load Register (EEPROM or BIOS) */
#define BA0_CFLR_DEFAULT 0x00000001 /* CFLR must be in AC97 link mode */
#define BA0_IISR 0x03f4 /* ISA Interrupt Select */
#define BA0_TMS 0x03f8 /* Test Register */
#define BA0_SSVID 0x03fc /* Subsystem ID register */
#define BA0_CLKCR1 0x0400 /* Clock Control Register 1 */
#define BA0_CLKCR1_CLKON (1<<25) /* Read Only */
#define BA0_CLKCR1_DLLRDY (1<<24) /* DLL Ready */
#define BA0_CLKCR1_DLLOS (1<<6) /* DLL Output Select */
#define BA0_CLKCR1_SWCE (1<<5) /* Clock Enable */
#define BA0_CLKCR1_DLLP (1<<4) /* DLL PowerUp */
#define BA0_CLKCR1_DLLSS (((x)&3)<<3) /* DLL Source Select */
#define BA0_FRR 0x0410 /* Feature Reporting Register */
#define BA0_SLT12O 0x041c /* Slot 12 GPIO Output Register for AC-Link */
#define BA0_SERMC 0x0420 /* Serial Port Master Control */
#define BA0_SERMC_FCRN (1<<27) /* Force Codec Ready Not */
#define BA0_SERMC_ODSEN2 (1<<25) /* On-Demand Support Enable ASDIN2 */
#define BA0_SERMC_ODSEN1 (1<<24) /* On-Demand Support Enable ASDIN1 */
#define BA0_SERMC_SXLB (1<<21) /* ASDIN2 to ASDOUT Loopback */
#define BA0_SERMC_SLB (1<<20) /* ASDOUT to ASDIN2 Loopback */
#define BA0_SERMC_LOVF (1<<19) /* Loopback Output Valid Frame bit */
#define BA0_SERMC_TCID(x) (((x)&3)<<16) /* Target Secondary Codec ID */
#define BA0_SERMC_PXLB (5<<1) /* Primary Port External Loopback */
#define BA0_SERMC_PLB (4<<1) /* Primary Port Internal Loopback */
#define BA0_SERMC_PTC (7<<1) /* Port Timing Configuration */
#define BA0_SERMC_PTC_AC97 (1<<1) /* AC97 mode */
#define BA0_SERMC_MSPE (1<<0) /* Master Serial Port Enable */
#define BA0_SERC1 0x0428 /* Serial Port Configuration 1 */
#define BA0_SERC1_SO1F(x) (((x)&7)>>1) /* Primary Output Port Format */
#define BA0_SERC1_AC97 (1<<1)
#define BA0_SERC1_SO1EN (1<<0) /* Primary Output Port Enable */
#define BA0_SERC2 0x042c /* Serial Port Configuration 2 */
#define BA0_SERC2_SI1F(x) (((x)&7)>>1) /* Primary Input Port Format */
#define BA0_SERC2_AC97 (1<<1)
#define BA0_SERC2_SI1EN (1<<0) /* Primary Input Port Enable */
#define BA0_SLT12M 0x045c /* Slot 12 Monitor Register for Primary AC-Link */
#define BA0_ACCTL 0x0460 /* AC'97 Control */
#define BA0_ACCTL_TC (1<<6) /* Target Codec */
#define BA0_ACCTL_CRW (1<<4) /* 0=Write, 1=Read Command */
#define BA0_ACCTL_DCV (1<<3) /* Dynamic Command Valid */
#define BA0_ACCTL_VFRM (1<<2) /* Valid Frame */
#define BA0_ACCTL_ESYN (1<<1) /* Enable Sync */
#define BA0_ACSTS 0x0464 /* AC'97 Status */
#define BA0_ACSTS_VSTS (1<<1) /* Valid Status */
#define BA0_ACSTS_CRDY (1<<0) /* Codec Ready */
#define BA0_ACOSV 0x0468 /* AC'97 Output Slot Valid */
#define BA0_ACOSV_SLV(x) (1<<((x)-3))
#define BA0_ACCAD 0x046c /* AC'97 Command Address */
#define BA0_ACCDA 0x0470 /* AC'97 Command Data */
#define BA0_ACISV 0x0474 /* AC'97 Input Slot Valid */
#define BA0_ACISV_SLV(x) (1<<((x)-3))
#define BA0_ACSAD 0x0478 /* AC'97 Status Address */
#define BA0_ACSDA 0x047c /* AC'97 Status Data */
#define BA0_JSPT 0x0480 /* Joystick poll/trigger */
#define BA0_JSCTL 0x0484 /* Joystick control */
#define BA0_JSC1 0x0488 /* Joystick control */
#define BA0_JSC2 0x048c /* Joystick control */
#define BA0_JSIO 0x04a0
#define BA0_MIDCR 0x0490 /* MIDI Control */
#define BA0_MIDCR_MRST (1<<5) /* Reset MIDI Interface */
#define BA0_MIDCR_MLB (1<<4) /* MIDI Loop Back Enable */
#define BA0_MIDCR_TIE (1<<3) /* MIDI Transmuit Interrupt Enable */
#define BA0_MIDCR_RIE (1<<2) /* MIDI Receive Interrupt Enable */
#define BA0_MIDCR_RXE (1<<1) /* MIDI Receive Enable */
#define BA0_MIDCR_TXE (1<<0) /* MIDI Transmit Enable */
#define BA0_MIDCMD 0x0494 /* MIDI Command (wo) */
#define BA0_MIDSR 0x0494 /* MIDI Status (ro) */
#define BA0_MIDSR_RDA (1<<15) /* Sticky bit (RBE 1->0) */
#define BA0_MIDSR_TBE (1<<14) /* Sticky bit (TBF 0->1) */
#define BA0_MIDSR_RBE (1<<7) /* Receive Buffer Empty */
#define BA0_MIDSR_TBF (1<<6) /* Transmit Buffer Full */
#define BA0_MIDWP 0x0498 /* MIDI Write */
#define BA0_MIDRP 0x049c /* MIDI Read (ro) */
#define BA0_AODSD1 0x04a8 /* AC'97 On-Demand Slot Disable for primary link (ro) */
#define BA0_AODSD1_NDS(x) (1<<((x)-3))
#define BA0_AODSD2 0x04ac /* AC'97 On-Demand Slot Disable for secondary link (ro) */
#define BA0_AODSD2_NDS(x) (1<<((x)-3))
#define BA0_CFGI 0x04b0 /* Configure Interface (EEPROM interface) */
#define BA0_SLT12M2 0x04dc /* Slot 12 Monitor Register 2 for secondary AC-link */
#define BA0_ACSTS2 0x04e4 /* AC'97 Status Register 2 */
#define BA0_ACISV2 0x04f4 /* AC'97 Input Slot Valid Register 2 */
#define BA0_ACSAD2 0x04f8 /* AC'97 Status Address Register 2 */
#define BA0_ACSDA2 0x04fc /* AC'97 Status Data Register 2 */
#define BA0_FMSR 0x0730 /* FM Synthesis Status (ro) */
#define BA0_B0AP 0x0730 /* FM Bank 0 Address Port (wo) */
#define BA0_FMDP 0x0734 /* FM Data Port */
#define BA0_B1AP 0x0738 /* FM Bank 1 Address Port */
#define BA0_B1DP 0x073c /* FM Bank 1 Data Port */
#define BA0_SSPM 0x0740 /* Sound System Power Management */
#define BA0_SSPM_MIXEN (1<<6) /* Playback SRC + FM/Wavetable MIX */
#define BA0_SSPM_CSRCEN (1<<5) /* Capture Sample Rate Converter Enable */
#define BA0_SSPM_PSRCEN (1<<4) /* Playback Sample Rate Converter Enable */
#define BA0_SSPM_JSEN (1<<3) /* Joystick Enable */
#define BA0_SSPM_ACLEN (1<<2) /* Serial Port Engine and AC-Link Enable */
#define BA0_SSPM_FMEN (1<<1) /* FM Synthesis Block Enable */
#define BA0_DACSR 0x0744 /* DAC Sample Rate - Playback SRC */
#define BA0_ADCSR 0x0748 /* ADC Sample Rate - Capture SRC */
#define BA0_SSCR 0x074c /* Sound System Control Register */
#define BA0_SSCR_HVS1 (1<<23) /* Hardwave Volume Step (0=1,1=2) */
#define BA0_SSCR_MVCS (1<<19) /* Master Volume Codec Select */
#define BA0_SSCR_MVLD (1<<18) /* Master Volume Line Out Disable */
#define BA0_SSCR_MVAD (1<<17) /* Master Volume Alternate Out Disable */
#define BA0_SSCR_MVMD (1<<16) /* Master Volume Mono Out Disable */
#define BA0_SSCR_XLPSRC (1<<8) /* External SRC Loopback Mode */
#define BA0_SSCR_LPSRC (1<<7) /* SRC Loopback Mode */
#define BA0_SSCR_CDTX (1<<5) /* CD Transfer Data */
#define BA0_SSCR_HVC (1<<3) /* Harware Volume Control Enable */
#define BA0_FMLVC 0x0754 /* FM Synthesis Left Volume Control */
#define BA0_FMRVC 0x0758 /* FM Synthesis Right Volume Control */
#define BA0_SRCSA 0x075c /* SRC Slot Assignments */
#define BA0_PPLVC 0x0760 /* PCM Playback Left Volume Control */
#define BA0_PPRVC 0x0764 /* PCM Playback Right Volume Control */
#define BA0_PASR 0x0768 /* playback sample rate */
#define BA0_CASR 0x076C /* capture sample rate */
/* Source Slot Numbers - Playback */
#define SRCSLOT_LEFT_PCM_PLAYBACK 0
#define SRCSLOT_RIGHT_PCM_PLAYBACK 1
#define SRCSLOT_PHONE_LINE_1_DAC 2
#define SRCSLOT_CENTER_PCM_PLAYBACK 3
#define SRCSLOT_LEFT_SURROUND_PCM_PLAYBACK 4
#define SRCSLOT_RIGHT_SURROUND_PCM_PLAYBACK 5
#define SRCSLOT_LFE_PCM_PLAYBACK 6
#define SRCSLOT_PHONE_LINE_2_DAC 7
#define SRCSLOT_HEADSET_DAC 8
#define SRCSLOT_LEFT_WT 29 /* invalid for BA0_SRCSA */
#define SRCSLOT_RIGHT_WT 30 /* invalid for BA0_SRCSA */
/* Source Slot Numbers - Capture */
#define SRCSLOT_LEFT_PCM_RECORD 10
#define SRCSLOT_RIGHT_PCM_RECORD 11
#define SRCSLOT_PHONE_LINE_1_ADC 12
#define SRCSLOT_MIC_ADC 13
#define SRCSLOT_PHONE_LINE_2_ADC 17
#define SRCSLOT_HEADSET_ADC 18
#define SRCSLOT_SECONDARY_LEFT_PCM_RECORD 20
#define SRCSLOT_SECONDARY_RIGHT_PCM_RECORD 21
#define SRCSLOT_SECONDARY_PHONE_LINE_1_ADC 22
#define SRCSLOT_SECONDARY_MIC_ADC 23
#define SRCSLOT_SECONDARY_PHONE_LINE_2_ADC 27
#define SRCSLOT_SECONDARY_HEADSET_ADC 28
/* Source Slot Numbers - Others */
#define SRCSLOT_POWER_DOWN 31
/* MIDI modes */
#define CS4281_MODE_OUTPUT (1<<0)
#define CS4281_MODE_INPUT (1<<1)
/* joystick bits */
/* Bits for JSPT */
#define JSPT_CAX 0x00000001
#define JSPT_CAY 0x00000002
#define JSPT_CBX 0x00000004
#define JSPT_CBY 0x00000008
#define JSPT_BA1 0x00000010
#define JSPT_BA2 0x00000020
#define JSPT_BB1 0x00000040
#define JSPT_BB2 0x00000080
/* Bits for JSCTL */
#define JSCTL_SP_MASK 0x00000003
#define JSCTL_SP_SLOW 0x00000000
#define JSCTL_SP_MEDIUM_SLOW 0x00000001
#define JSCTL_SP_MEDIUM_FAST 0x00000002
#define JSCTL_SP_FAST 0x00000003
#define JSCTL_ARE 0x00000004
/* Data register pairs masks */
#define JSC1_Y1V_MASK 0x0000FFFF
#define JSC1_X1V_MASK 0xFFFF0000
#define JSC1_Y1V_SHIFT 0
#define JSC1_X1V_SHIFT 16
#define JSC2_Y2V_MASK 0x0000FFFF
#define JSC2_X2V_MASK 0xFFFF0000
#define JSC2_Y2V_SHIFT 0
#define JSC2_X2V_SHIFT 16
/* JS GPIO */
#define JSIO_DAX 0x00000001
#define JSIO_DAY 0x00000002
#define JSIO_DBX 0x00000004
#define JSIO_DBY 0x00000008
#define JSIO_AXOE 0x00000010
#define JSIO_AYOE 0x00000020
#define JSIO_BXOE 0x00000040
#define JSIO_BYOE 0x00000080
/*
*
*/
struct cs4281_dma {
struct snd_pcm_substream *substream;
unsigned int regDBA; /* offset to DBA register */
unsigned int regDCA; /* offset to DCA register */
unsigned int regDBC; /* offset to DBC register */
unsigned int regDCC; /* offset to DCC register */
unsigned int regDMR; /* offset to DMR register */
unsigned int regDCR; /* offset to DCR register */
unsigned int regHDSR; /* offset to HDSR register */
unsigned int regFCR; /* offset to FCR register */
unsigned int regFSIC; /* offset to FSIC register */
unsigned int valDMR; /* DMA mode */
unsigned int valDCR; /* DMA command */
unsigned int valFCR; /* FIFO control */
unsigned int fifo_offset; /* FIFO offset within BA1 */
unsigned char left_slot; /* FIFO left slot */
unsigned char right_slot; /* FIFO right slot */
int frag; /* period number */
};
#define SUSPEND_REGISTERS 20
struct cs4281 {
int irq;
void __iomem *ba0; /* virtual (accessible) address */
void __iomem *ba1; /* virtual (accessible) address */
unsigned long ba0_addr;
unsigned long ba1_addr;
int dual_codec;
struct snd_ac97_bus *ac97_bus;
struct snd_ac97 *ac97;
struct snd_ac97 *ac97_secondary;
struct pci_dev *pci;
struct snd_card *card;
struct snd_pcm *pcm;
struct snd_rawmidi *rmidi;
struct snd_rawmidi_substream *midi_input;
struct snd_rawmidi_substream *midi_output;
struct cs4281_dma dma[4];
unsigned char src_left_play_slot;
unsigned char src_right_play_slot;
unsigned char src_left_rec_slot;
unsigned char src_right_rec_slot;
unsigned int spurious_dhtc_irq;
unsigned int spurious_dtc_irq;
spinlock_t reg_lock;
unsigned int midcr;
unsigned int uartm;
struct gameport *gameport;
#ifdef CONFIG_PM
u32 suspend_regs[SUSPEND_REGISTERS];
#endif
};
static irqreturn_t snd_cs4281_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static struct pci_device_id snd_cs4281_ids[] __devinitdata = {
{ 0x1013, 0x6005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* CS4281 */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_cs4281_ids);
/*
* constants
*/
#define CS4281_FIFO_SIZE 32
/*
* common I/O routines
*/
static inline void snd_cs4281_pokeBA0(struct cs4281 *chip, unsigned long offset,
unsigned int val)
{
writel(val, chip->ba0 + offset);
}
static inline unsigned int snd_cs4281_peekBA0(struct cs4281 *chip, unsigned long offset)
{
return readl(chip->ba0 + offset);
}
static void snd_cs4281_ac97_write(struct snd_ac97 *ac97,
unsigned short reg, unsigned short val)
{
/*
* 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
* 2. Write ACCDA = Command Data Register = 470h for data to write to AC97
* 3. Write ACCTL = Control Register = 460h for initiating the write
* 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 07h
* 5. if DCV not cleared, break and return error
*/
struct cs4281 *chip = ac97->private_data;
int count;
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the read.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* reset CRW - Write command
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
snd_cs4281_pokeBA0(chip, BA0_ACCAD, reg);
snd_cs4281_pokeBA0(chip, BA0_ACCDA, val);
snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_DCV | BA0_ACCTL_VFRM |
BA0_ACCTL_ESYN | (ac97->num ? BA0_ACCTL_TC : 0));
for (count = 0; count < 2000; count++) {
/*
* First, we want to wait for a short time.
*/
udelay(10);
/*
* Now, check to see if the write has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 07h
*/
if (!(snd_cs4281_peekBA0(chip, BA0_ACCTL) & BA0_ACCTL_DCV)) {
return;
}
}
snd_printk(KERN_ERR "AC'97 write problem, reg = 0x%x, val = 0x%x\n", reg, val);
}
static unsigned short snd_cs4281_ac97_read(struct snd_ac97 *ac97,
unsigned short reg)
{
struct cs4281 *chip = ac97->private_data;
int count;
unsigned short result;
// FIXME: volatile is necessary in the following due to a bug of
// some gcc versions
volatile int ac97_num = ((volatile struct snd_ac97 *)ac97)->num;
/*
* 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
* 2. Write ACCDA = Command Data Register = 470h for data to write to AC97
* 3. Write ACCTL = Control Register = 460h for initiating the write
* 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 17h
* 5. if DCV not cleared, break and return error
* 6. Read ACSTS = Status Register = 464h, check VSTS bit
*/
snd_cs4281_peekBA0(chip, ac97_num ? BA0_ACSDA2 : BA0_ACSDA);
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the read.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* set CRW - Read command
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
snd_cs4281_pokeBA0(chip, BA0_ACCAD, reg);
snd_cs4281_pokeBA0(chip, BA0_ACCDA, 0);
snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_DCV | BA0_ACCTL_CRW |
BA0_ACCTL_VFRM | BA0_ACCTL_ESYN |
(ac97_num ? BA0_ACCTL_TC : 0));
/*
* Wait for the read to occur.
*/
for (count = 0; count < 500; count++) {
/*
* First, we want to wait for a short time.
*/
udelay(10);
/*
* Now, check to see if the read has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
*/
if (!(snd_cs4281_peekBA0(chip, BA0_ACCTL) & BA0_ACCTL_DCV))
goto __ok1;
}
snd_printk(KERN_ERR "AC'97 read problem (ACCTL_DCV), reg = 0x%x\n", reg);
result = 0xffff;
goto __end;
__ok1:
/*
* Wait for the valid status bit to go active.
*/
for (count = 0; count < 100; count++) {
/*
* Read the AC97 status register.
* ACSTS = Status Register = 464h
* VSTS - Valid Status
*/
if (snd_cs4281_peekBA0(chip, ac97_num ? BA0_ACSTS2 : BA0_ACSTS) & BA0_ACSTS_VSTS)
goto __ok2;
udelay(10);
}
snd_printk(KERN_ERR "AC'97 read problem (ACSTS_VSTS), reg = 0x%x\n", reg);
result = 0xffff;
goto __end;
__ok2:
/*
* Read the data returned from the AC97 register.
* ACSDA = Status Data Register = 474h
*/
result = snd_cs4281_peekBA0(chip, ac97_num ? BA0_ACSDA2 : BA0_ACSDA);
__end:
return result;
}
/*
* PCM part
*/
static int snd_cs4281_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct cs4281_dma *dma = substream->runtime->private_data;
struct cs4281 *chip = snd_pcm_substream_chip(substream);
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
dma->valDCR |= BA0_DCR_MSK;
dma->valFCR |= BA0_FCR_FEN;
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
dma->valDCR &= ~BA0_DCR_MSK;
dma->valFCR &= ~BA0_FCR_FEN;
break;
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
snd_cs4281_pokeBA0(chip, dma->regDMR, dma->valDMR & ~BA0_DMR_DMA);
dma->valDMR |= BA0_DMR_DMA;
dma->valDCR &= ~BA0_DCR_MSK;
dma->valFCR |= BA0_FCR_FEN;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
dma->valDMR &= ~(BA0_DMR_DMA|BA0_DMR_POLL);
dma->valDCR |= BA0_DCR_MSK;
dma->valFCR &= ~BA0_FCR_FEN;
/* Leave wave playback FIFO enabled for FM */
if (dma->regFCR != BA0_FCR0)
dma->valFCR &= ~BA0_FCR_FEN;
break;
default:
spin_unlock(&chip->reg_lock);
return -EINVAL;
}
snd_cs4281_pokeBA0(chip, dma->regDMR, dma->valDMR);
snd_cs4281_pokeBA0(chip, dma->regFCR, dma->valFCR);
snd_cs4281_pokeBA0(chip, dma->regDCR, dma->valDCR);
spin_unlock(&chip->reg_lock);
return 0;
}
static unsigned int snd_cs4281_rate(unsigned int rate, unsigned int *real_rate)
{
unsigned int val = ~0;
if (real_rate)
*real_rate = rate;
/* special "hardcoded" rates */
switch (rate) {
case 8000: return 5;
case 11025: return 4;
case 16000: return 3;
case 22050: return 2;
case 44100: return 1;
case 48000: return 0;
default:
goto __variable;
}
__variable:
val = 1536000 / rate;
if (real_rate)
*real_rate = 1536000 / val;
return val;
}
static void snd_cs4281_mode(struct cs4281 *chip, struct cs4281_dma *dma,
struct snd_pcm_runtime *runtime,
int capture, int src)
{
int rec_mono;
dma->valDMR = BA0_DMR_TYPE_SINGLE | BA0_DMR_AUTO |
(capture ? BA0_DMR_TR_WRITE : BA0_DMR_TR_READ);
if (runtime->channels == 1)
dma->valDMR |= BA0_DMR_MONO;
if (snd_pcm_format_unsigned(runtime->format) > 0)
dma->valDMR |= BA0_DMR_USIGN;
if (snd_pcm_format_big_endian(runtime->format) > 0)
dma->valDMR |= BA0_DMR_BEND;
switch (snd_pcm_format_width(runtime->format)) {
case 8: dma->valDMR |= BA0_DMR_SIZE8;
if (runtime->channels == 1)
dma->valDMR |= BA0_DMR_SWAPC;
break;
case 32: dma->valDMR |= BA0_DMR_SIZE20; break;
}
dma->frag = 0; /* for workaround */
dma->valDCR = BA0_DCR_TCIE | BA0_DCR_MSK;
if (runtime->buffer_size != runtime->period_size)
dma->valDCR |= BA0_DCR_HTCIE;
/* Initialize DMA */
snd_cs4281_pokeBA0(chip, dma->regDBA, runtime->dma_addr);
snd_cs4281_pokeBA0(chip, dma->regDBC, runtime->buffer_size - 1);
rec_mono = (chip->dma[1].valDMR & BA0_DMR_MONO) == BA0_DMR_MONO;
snd_cs4281_pokeBA0(chip, BA0_SRCSA, (chip->src_left_play_slot << 0) |
(chip->src_right_play_slot << 8) |
(chip->src_left_rec_slot << 16) |
((rec_mono ? 31 : chip->src_right_rec_slot) << 24));
if (!src)
goto __skip_src;
if (!capture) {
if (dma->left_slot == chip->src_left_play_slot) {
unsigned int val = snd_cs4281_rate(runtime->rate, NULL);
snd_assert(dma->right_slot == chip->src_right_play_slot, );
snd_cs4281_pokeBA0(chip, BA0_DACSR, val);
}
} else {
if (dma->left_slot == chip->src_left_rec_slot) {
unsigned int val = snd_cs4281_rate(runtime->rate, NULL);
snd_assert(dma->right_slot == chip->src_right_rec_slot, );
snd_cs4281_pokeBA0(chip, BA0_ADCSR, val);
}
}
__skip_src:
/* Deactivate wave playback FIFO before changing slot assignments */
if (dma->regFCR == BA0_FCR0)
snd_cs4281_pokeBA0(chip, dma->regFCR, snd_cs4281_peekBA0(chip, dma->regFCR) & ~BA0_FCR_FEN);
/* Initialize FIFO */
dma->valFCR = BA0_FCR_LS(dma->left_slot) |
BA0_FCR_RS(capture && (dma->valDMR & BA0_DMR_MONO) ? 31 : dma->right_slot) |
BA0_FCR_SZ(CS4281_FIFO_SIZE) |
BA0_FCR_OF(dma->fifo_offset);
snd_cs4281_pokeBA0(chip, dma->regFCR, dma->valFCR | (capture ? BA0_FCR_PSH : 0));
/* Activate FIFO again for FM playback */
if (dma->regFCR == BA0_FCR0)
snd_cs4281_pokeBA0(chip, dma->regFCR, dma->valFCR | BA0_FCR_FEN);
/* Clear FIFO Status and Interrupt Control Register */
snd_cs4281_pokeBA0(chip, dma->regFSIC, 0);
}
static int snd_cs4281_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_cs4281_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static int snd_cs4281_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma = runtime->private_data;
struct cs4281 *chip = snd_pcm_substream_chip(substream);
spin_lock_irq(&chip->reg_lock);
snd_cs4281_mode(chip, dma, runtime, 0, 1);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cs4281_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma = runtime->private_data;
struct cs4281 *chip = snd_pcm_substream_chip(substream);
spin_lock_irq(&chip->reg_lock);
snd_cs4281_mode(chip, dma, runtime, 1, 1);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static snd_pcm_uframes_t snd_cs4281_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma = runtime->private_data;
struct cs4281 *chip = snd_pcm_substream_chip(substream);
// printk("DCC = 0x%x, buffer_size = 0x%x, jiffies = %li\n", snd_cs4281_peekBA0(chip, dma->regDCC), runtime->buffer_size, jiffies);
return runtime->buffer_size -
snd_cs4281_peekBA0(chip, dma->regDCC) - 1;
}
static struct snd_pcm_hardware snd_cs4281_playback =
{
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_SYNC_START),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_U16_BE | SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_S32_LE |
SNDRV_PCM_FMTBIT_U32_BE | SNDRV_PCM_FMTBIT_S32_BE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (512*1024),
.period_bytes_min = 64,
.period_bytes_max = (512*1024),
.periods_min = 1,
.periods_max = 2,
.fifo_size = CS4281_FIFO_SIZE,
};
static struct snd_pcm_hardware snd_cs4281_capture =
{
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_SYNC_START),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_U16_BE | SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_S32_LE |
SNDRV_PCM_FMTBIT_U32_BE | SNDRV_PCM_FMTBIT_S32_BE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (512*1024),
.period_bytes_min = 64,
.period_bytes_max = (512*1024),
.periods_min = 1,
.periods_max = 2,
.fifo_size = CS4281_FIFO_SIZE,
};
static int snd_cs4281_playback_open(struct snd_pcm_substream *substream)
{
struct cs4281 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma;
dma = &chip->dma[0];
dma->substream = substream;
dma->left_slot = 0;
dma->right_slot = 1;
runtime->private_data = dma;
runtime->hw = snd_cs4281_playback;
snd_pcm_set_sync(substream);
/* should be detected from the AC'97 layer, but it seems
that although CS4297A rev B reports 18-bit ADC resolution,
samples are 20-bit */
snd_pcm_hw_constraint_msbits(runtime, 0, 32, 20);
return 0;
}
static int snd_cs4281_capture_open(struct snd_pcm_substream *substream)
{
struct cs4281 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma;
dma = &chip->dma[1];
dma->substream = substream;
dma->left_slot = 10;
dma->right_slot = 11;
runtime->private_data = dma;
runtime->hw = snd_cs4281_capture;
snd_pcm_set_sync(substream);
/* should be detected from the AC'97 layer, but it seems
that although CS4297A rev B reports 18-bit ADC resolution,
samples are 20-bit */
snd_pcm_hw_constraint_msbits(runtime, 0, 32, 20);
return 0;
}
static int snd_cs4281_playback_close(struct snd_pcm_substream *substream)
{
struct cs4281_dma *dma = substream->runtime->private_data;
dma->substream = NULL;
return 0;
}
static int snd_cs4281_capture_close(struct snd_pcm_substream *substream)
{
struct cs4281_dma *dma = substream->runtime->private_data;
dma->substream = NULL;
return 0;
}
static struct snd_pcm_ops snd_cs4281_playback_ops = {
.open = snd_cs4281_playback_open,
.close = snd_cs4281_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cs4281_hw_params,
.hw_free = snd_cs4281_hw_free,
.prepare = snd_cs4281_playback_prepare,
.trigger = snd_cs4281_trigger,
.pointer = snd_cs4281_pointer,
};
static struct snd_pcm_ops snd_cs4281_capture_ops = {
.open = snd_cs4281_capture_open,
.close = snd_cs4281_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cs4281_hw_params,
.hw_free = snd_cs4281_hw_free,
.prepare = snd_cs4281_capture_prepare,
.trigger = snd_cs4281_trigger,
.pointer = snd_cs4281_pointer,
};
static int __devinit snd_cs4281_pcm(struct cs4281 * chip, int device,
struct snd_pcm ** rpcm)
{
struct snd_pcm *pcm;
int err;
if (rpcm)
*rpcm = NULL;
err = snd_pcm_new(chip->card, "CS4281", device, 1, 1, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cs4281_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cs4281_capture_ops);
pcm->private_data = chip;
pcm->info_flags = 0;
strcpy(pcm->name, "CS4281");
chip->pcm = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(chip->pci), 64*1024, 512*1024);
if (rpcm)
*rpcm = pcm;
return 0;
}
/*
* Mixer section
*/
#define CS_VOL_MASK 0x1f
static int snd_cs4281_info_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = CS_VOL_MASK;
return 0;
}
static int snd_cs4281_get_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cs4281 *chip = snd_kcontrol_chip(kcontrol);
int regL = (kcontrol->private_value >> 16) & 0xffff;
int regR = kcontrol->private_value & 0xffff;
int volL, volR;
volL = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regL) & CS_VOL_MASK);
volR = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regR) & CS_VOL_MASK);
ucontrol->value.integer.value[0] = volL;
ucontrol->value.integer.value[1] = volR;
return 0;
}
static int snd_cs4281_put_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cs4281 *chip = snd_kcontrol_chip(kcontrol);
int change = 0;
int regL = (kcontrol->private_value >> 16) & 0xffff;
int regR = kcontrol->private_value & 0xffff;
int volL, volR;
volL = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regL) & CS_VOL_MASK);
volR = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regR) & CS_VOL_MASK);
if (ucontrol->value.integer.value[0] != volL) {
volL = CS_VOL_MASK - (ucontrol->value.integer.value[0] & CS_VOL_MASK);
snd_cs4281_pokeBA0(chip, regL, volL);
change = 1;
}
if (ucontrol->value.integer.value[1] != volR) {
volR = CS_VOL_MASK - (ucontrol->value.integer.value[1] & CS_VOL_MASK);
snd_cs4281_pokeBA0(chip, regR, volR);
change = 1;
}
return change;
}
static struct snd_kcontrol_new snd_cs4281_fm_vol =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Synth Playback Volume",
.info = snd_cs4281_info_volume,
.get = snd_cs4281_get_volume,
.put = snd_cs4281_put_volume,
.private_value = ((BA0_FMLVC << 16) | BA0_FMRVC),
};
static struct snd_kcontrol_new snd_cs4281_pcm_vol =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Stream Playback Volume",
.info = snd_cs4281_info_volume,
.get = snd_cs4281_get_volume,
.put = snd_cs4281_put_volume,
.private_value = ((BA0_PPLVC << 16) | BA0_PPRVC),
};
static void snd_cs4281_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
{
struct cs4281 *chip = bus->private_data;
chip->ac97_bus = NULL;
}
static void snd_cs4281_mixer_free_ac97(struct snd_ac97 *ac97)
{
struct cs4281 *chip = ac97->private_data;
if (ac97->num)
chip->ac97_secondary = NULL;
else
chip->ac97 = NULL;
}
static int __devinit snd_cs4281_mixer(struct cs4281 * chip)
{
struct snd_card *card = chip->card;
struct snd_ac97_template ac97;
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_cs4281_ac97_write,
.read = snd_cs4281_ac97_read,
};
if ((err = snd_ac97_bus(card, 0, &ops, chip, &chip->ac97_bus)) < 0)
return err;
chip->ac97_bus->private_free = snd_cs4281_mixer_free_ac97_bus;
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
ac97.private_free = snd_cs4281_mixer_free_ac97;
if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
return err;
if (chip->dual_codec) {
ac97.num = 1;
if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_secondary)) < 0)
return err;
}
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4281_fm_vol, chip))) < 0)
return err;
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4281_pcm_vol, chip))) < 0)
return err;
return 0;
}
/*
* proc interface
*/
static void snd_cs4281_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct cs4281 *chip = entry->private_data;
snd_iprintf(buffer, "Cirrus Logic CS4281\n\n");
snd_iprintf(buffer, "Spurious half IRQs : %u\n", chip->spurious_dhtc_irq);
snd_iprintf(buffer, "Spurious end IRQs : %u\n", chip->spurious_dtc_irq);
}
static long snd_cs4281_BA0_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file, char __user *buf,
unsigned long count, unsigned long pos)
{
long size;
struct cs4281 *chip = entry->private_data;
size = count;
if (pos + size > CS4281_BA0_SIZE)
size = (long)CS4281_BA0_SIZE - pos;
if (size > 0) {
if (copy_to_user_fromio(buf, chip->ba0 + pos, size))
return -EFAULT;
}
return size;
}
static long snd_cs4281_BA1_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file, char __user *buf,
unsigned long count, unsigned long pos)
{
long size;
struct cs4281 *chip = entry->private_data;
size = count;
if (pos + size > CS4281_BA1_SIZE)
size = (long)CS4281_BA1_SIZE - pos;
if (size > 0) {
if (copy_to_user_fromio(buf, chip->ba1 + pos, size))
return -EFAULT;
}
return size;
}
static struct snd_info_entry_ops snd_cs4281_proc_ops_BA0 = {
.read = snd_cs4281_BA0_read,
};
static struct snd_info_entry_ops snd_cs4281_proc_ops_BA1 = {
.read = snd_cs4281_BA1_read,
};
static void __devinit snd_cs4281_proc_init(struct cs4281 * chip)
{
struct snd_info_entry *entry;
if (! snd_card_proc_new(chip->card, "cs4281", &entry))
snd_info_set_text_ops(entry, chip, 1024, snd_cs4281_proc_read);
if (! snd_card_proc_new(chip->card, "cs4281_BA0", &entry)) {
entry->content = SNDRV_INFO_CONTENT_DATA;
entry->private_data = chip;
entry->c.ops = &snd_cs4281_proc_ops_BA0;
entry->size = CS4281_BA0_SIZE;
}
if (! snd_card_proc_new(chip->card, "cs4281_BA1", &entry)) {
entry->content = SNDRV_INFO_CONTENT_DATA;
entry->private_data = chip;
entry->c.ops = &snd_cs4281_proc_ops_BA1;
entry->size = CS4281_BA1_SIZE;
}
}
/*
* joystick support
*/
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
static void snd_cs4281_gameport_trigger(struct gameport *gameport)
{
struct cs4281 *chip = gameport_get_port_data(gameport);
snd_assert(chip, return);
snd_cs4281_pokeBA0(chip, BA0_JSPT, 0xff);
}
static unsigned char snd_cs4281_gameport_read(struct gameport *gameport)
{
struct cs4281 *chip = gameport_get_port_data(gameport);
snd_assert(chip, return 0);
return snd_cs4281_peekBA0(chip, BA0_JSPT);
}
#ifdef COOKED_MODE
static int snd_cs4281_gameport_cooked_read(struct gameport *gameport,
int *axes, int *buttons)
{
struct cs4281 *chip = gameport_get_port_data(gameport);
unsigned js1, js2, jst;
snd_assert(chip, return 0);
js1 = snd_cs4281_peekBA0(chip, BA0_JSC1);
js2 = snd_cs4281_peekBA0(chip, BA0_JSC2);
jst = snd_cs4281_peekBA0(chip, BA0_JSPT);
*buttons = (~jst >> 4) & 0x0F;
axes[0] = ((js1 & JSC1_Y1V_MASK) >> JSC1_Y1V_SHIFT) & 0xFFFF;
axes[1] = ((js1 & JSC1_X1V_MASK) >> JSC1_X1V_SHIFT) & 0xFFFF;
axes[2] = ((js2 & JSC2_Y2V_MASK) >> JSC2_Y2V_SHIFT) & 0xFFFF;
axes[3] = ((js2 & JSC2_X2V_MASK) >> JSC2_X2V_SHIFT) & 0xFFFF;
for (jst = 0; jst < 4; ++jst)
if (axes[jst] == 0xFFFF) axes[jst] = -1;
return 0;
}
#else
#define snd_cs4281_gameport_cooked_read NULL
#endif
static int snd_cs4281_gameport_open(struct gameport *gameport, int mode)
{
switch (mode) {
#ifdef COOKED_MODE
case GAMEPORT_MODE_COOKED:
return 0;
#endif
case GAMEPORT_MODE_RAW:
return 0;
default:
return -1;
}
return 0;
}
static int __devinit snd_cs4281_create_gameport(struct cs4281 *chip)
{
struct gameport *gp;
chip->gameport = gp = gameport_allocate_port();
if (!gp) {
printk(KERN_ERR "cs4281: cannot allocate memory for gameport\n");
return -ENOMEM;
}
gameport_set_name(gp, "CS4281 Gameport");
gameport_set_phys(gp, "pci%s/gameport0", pci_name(chip->pci));
gameport_set_dev_parent(gp, &chip->pci->dev);
gp->open = snd_cs4281_gameport_open;
gp->read = snd_cs4281_gameport_read;
gp->trigger = snd_cs4281_gameport_trigger;
gp->cooked_read = snd_cs4281_gameport_cooked_read;
gameport_set_port_data(gp, chip);
snd_cs4281_pokeBA0(chip, BA0_JSIO, 0xFF); // ?
snd_cs4281_pokeBA0(chip, BA0_JSCTL, JSCTL_SP_MEDIUM_SLOW);
gameport_register_port(gp);
return 0;
}
static void snd_cs4281_free_gameport(struct cs4281 *chip)
{
if (chip->gameport) {
gameport_unregister_port(chip->gameport);
chip->gameport = NULL;
}
}
#else
static inline int snd_cs4281_create_gameport(struct cs4281 *chip) { return -ENOSYS; }
static inline void snd_cs4281_free_gameport(struct cs4281 *chip) { }
#endif /* CONFIG_GAMEPORT || (MODULE && CONFIG_GAMEPORT_MODULE) */
static int snd_cs4281_free(struct cs4281 *chip)
{
snd_cs4281_free_gameport(chip);
if (chip->irq >= 0)
synchronize_irq(chip->irq);
/* Mask interrupts */
snd_cs4281_pokeBA0(chip, BA0_HIMR, 0x7fffffff);
/* Stop the DLL Clock logic. */
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, 0);
/* Sound System Power Management - Turn Everything OFF */
snd_cs4281_pokeBA0(chip, BA0_SSPM, 0);
/* PCI interface - D3 state */
pci_set_power_state(chip->pci, 3);
if (chip->irq >= 0)
free_irq(chip->irq, chip);
if (chip->ba0)
iounmap(chip->ba0);
if (chip->ba1)
iounmap(chip->ba1);
pci_release_regions(chip->pci);
pci_disable_device(chip->pci);
kfree(chip);
return 0;
}
static int snd_cs4281_dev_free(struct snd_device *device)
{
struct cs4281 *chip = device->device_data;
return snd_cs4281_free(chip);
}
static int snd_cs4281_chip_init(struct cs4281 *chip); /* defined below */
static int __devinit snd_cs4281_create(struct snd_card *card,
struct pci_dev *pci,
struct cs4281 ** rchip,
int dual_codec)
{
struct cs4281 *chip;
unsigned int tmp;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_cs4281_dev_free,
};
*rchip = NULL;
if ((err = pci_enable_device(pci)) < 0)
return err;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
spin_lock_init(&chip->reg_lock);
chip->card = card;
chip->pci = pci;
chip->irq = -1;
pci_set_master(pci);
if (dual_codec < 0 || dual_codec > 3) {
snd_printk(KERN_ERR "invalid dual_codec option %d\n", dual_codec);
dual_codec = 0;
}
chip->dual_codec = dual_codec;
if ((err = pci_request_regions(pci, "CS4281")) < 0) {
kfree(chip);
pci_disable_device(pci);
return err;
}
chip->ba0_addr = pci_resource_start(pci, 0);
chip->ba1_addr = pci_resource_start(pci, 1);
if (request_irq(pci->irq, snd_cs4281_interrupt, SA_INTERRUPT|SA_SHIRQ,
"CS4281", chip)) {
snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
snd_cs4281_free(chip);
return -ENOMEM;
}
chip->irq = pci->irq;
chip->ba0 = ioremap_nocache(chip->ba0_addr, pci_resource_len(pci, 0));
chip->ba1 = ioremap_nocache(chip->ba1_addr, pci_resource_len(pci, 1));
if (!chip->ba0 || !chip->ba1) {
snd_cs4281_free(chip);
return -ENOMEM;
}
tmp = snd_cs4281_chip_init(chip);
if (tmp) {
snd_cs4281_free(chip);
return tmp;
}
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
snd_cs4281_free(chip);
return err;
}
snd_cs4281_proc_init(chip);
snd_card_set_dev(card, &pci->dev);
*rchip = chip;
return 0;
}
static int snd_cs4281_chip_init(struct cs4281 *chip)
{
unsigned int tmp;
unsigned long end_time;
int retry_count = 2;
/* Having EPPMC.FPDN=1 prevent proper chip initialisation */
tmp = snd_cs4281_peekBA0(chip, BA0_EPPMC);
if (tmp & BA0_EPPMC_FPDN)
snd_cs4281_pokeBA0(chip, BA0_EPPMC, tmp & ~BA0_EPPMC_FPDN);
__retry:
tmp = snd_cs4281_peekBA0(chip, BA0_CFLR);
if (tmp != BA0_CFLR_DEFAULT) {
snd_cs4281_pokeBA0(chip, BA0_CFLR, BA0_CFLR_DEFAULT);
tmp = snd_cs4281_peekBA0(chip, BA0_CFLR);
if (tmp != BA0_CFLR_DEFAULT) {
snd_printk(KERN_ERR "CFLR setup failed (0x%x)\n", tmp);
return -EIO;
}
}
/* Set the 'Configuration Write Protect' register
* to 4281h. Allows vendor-defined configuration
* space between 0e4h and 0ffh to be written. */
snd_cs4281_pokeBA0(chip, BA0_CWPR, 0x4281);
if ((tmp = snd_cs4281_peekBA0(chip, BA0_SERC1)) != (BA0_SERC1_SO1EN | BA0_SERC1_AC97)) {
snd_printk(KERN_ERR "SERC1 AC'97 check failed (0x%x)\n", tmp);
return -EIO;
}
if ((tmp = snd_cs4281_peekBA0(chip, BA0_SERC2)) != (BA0_SERC2_SI1EN | BA0_SERC2_AC97)) {
snd_printk(KERN_ERR "SERC2 AC'97 check failed (0x%x)\n", tmp);
return -EIO;
}
/* Sound System Power Management */
snd_cs4281_pokeBA0(chip, BA0_SSPM, BA0_SSPM_MIXEN | BA0_SSPM_CSRCEN |
BA0_SSPM_PSRCEN | BA0_SSPM_JSEN |
BA0_SSPM_ACLEN | BA0_SSPM_FMEN);
/* Serial Port Power Management */
/* Blast the clock control register to zero so that the
* PLL starts out in a known state, and blast the master serial
* port control register to zero so that the serial ports also
* start out in a known state. */
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, 0);
snd_cs4281_pokeBA0(chip, BA0_SERMC, 0);
/* Make ESYN go to zero to turn off
* the Sync pulse on the AC97 link. */
snd_cs4281_pokeBA0(chip, BA0_ACCTL, 0);
udelay(50);
/* Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
* spec) and then drive it high. This is done for non AC97 modes since
* there might be logic external to the CS4281 that uses the ARST# line
* for a reset. */
snd_cs4281_pokeBA0(chip, BA0_SPMC, 0);
udelay(50);
snd_cs4281_pokeBA0(chip, BA0_SPMC, BA0_SPMC_RSTN);
msleep(50);
if (chip->dual_codec)
snd_cs4281_pokeBA0(chip, BA0_SPMC, BA0_SPMC_RSTN | BA0_SPMC_ASDI2E);
/*
* Set the serial port timing configuration.
*/
snd_cs4281_pokeBA0(chip, BA0_SERMC,
(chip->dual_codec ? BA0_SERMC_TCID(chip->dual_codec) : BA0_SERMC_TCID(1)) |
BA0_SERMC_PTC_AC97 | BA0_SERMC_MSPE);
/*
* Start the DLL Clock logic.
*/
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, BA0_CLKCR1_DLLP);
msleep(50);
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, BA0_CLKCR1_SWCE | BA0_CLKCR1_DLLP);
/*
* Wait for the DLL ready signal from the clock logic.
*/
end_time = jiffies + HZ;
do {
/*
* Read the AC97 status register to see if we've seen a CODEC
* signal from the AC97 codec.
*/
if (snd_cs4281_peekBA0(chip, BA0_CLKCR1) & BA0_CLKCR1_DLLRDY)
goto __ok0;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_ERR "DLLRDY not seen\n");
return -EIO;
__ok0:
/*
* The first thing we do here is to enable sync generation. As soon
* as we start receiving bit clock, we'll start producing the SYNC
* signal.
*/
snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_ESYN);
/*
* Wait for the codec ready signal from the AC97 codec.
*/
end_time = jiffies + HZ;
do {
/*
* Read the AC97 status register to see if we've seen a CODEC
* signal from the AC97 codec.
*/
if (snd_cs4281_peekBA0(chip, BA0_ACSTS) & BA0_ACSTS_CRDY)
goto __ok1;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_ERR "never read codec ready from AC'97 (0x%x)\n", snd_cs4281_peekBA0(chip, BA0_ACSTS));
return -EIO;
__ok1:
if (chip->dual_codec) {
end_time = jiffies + HZ;
do {
if (snd_cs4281_peekBA0(chip, BA0_ACSTS2) & BA0_ACSTS_CRDY)
goto __codec2_ok;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_INFO "secondary codec doesn't respond. disable it...\n");
chip->dual_codec = 0;
__codec2_ok: ;
}
/*
* Assert the valid frame signal so that we can start sending commands
* to the AC97 codec.
*/
snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_VFRM | BA0_ACCTL_ESYN);
/*
* Wait until we've sampled input slots 3 and 4 as valid, meaning that
* the codec is pumping ADC data across the AC-link.
*/
end_time = jiffies + HZ;
do {
/*
* Read the input slot valid register and see if input slots 3
* 4 are valid yet.
*/
if ((snd_cs4281_peekBA0(chip, BA0_ACISV) & (BA0_ACISV_SLV(3) | BA0_ACISV_SLV(4))) == (BA0_ACISV_SLV(3) | BA0_ACISV_SLV(4)))
goto __ok2;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
if (--retry_count > 0)
goto __retry;
snd_printk(KERN_ERR "never read ISV3 and ISV4 from AC'97\n");
return -EIO;
__ok2:
/*
* Now, assert valid frame and the slot 3 and 4 valid bits. This will
* commense the transfer of digital audio data to the AC97 codec.
*/
snd_cs4281_pokeBA0(chip, BA0_ACOSV, BA0_ACOSV_SLV(3) | BA0_ACOSV_SLV(4));
/*
* Initialize DMA structures
*/
for (tmp = 0; tmp < 4; tmp++) {
struct cs4281_dma *dma = &chip->dma[tmp];
dma->regDBA = BA0_DBA0 + (tmp * 0x10);
dma->regDCA = BA0_DCA0 + (tmp * 0x10);
dma->regDBC = BA0_DBC0 + (tmp * 0x10);
dma->regDCC = BA0_DCC0 + (tmp * 0x10);
dma->regDMR = BA0_DMR0 + (tmp * 8);
dma->regDCR = BA0_DCR0 + (tmp * 8);
dma->regHDSR = BA0_HDSR0 + (tmp * 4);
dma->regFCR = BA0_FCR0 + (tmp * 4);
dma->regFSIC = BA0_FSIC0 + (tmp * 4);
dma->fifo_offset = tmp * CS4281_FIFO_SIZE;
snd_cs4281_pokeBA0(chip, dma->regFCR,
BA0_FCR_LS(31) |
BA0_FCR_RS(31) |
BA0_FCR_SZ(CS4281_FIFO_SIZE) |
BA0_FCR_OF(dma->fifo_offset));
}
chip->src_left_play_slot = 0; /* AC'97 left PCM playback (3) */
chip->src_right_play_slot = 1; /* AC'97 right PCM playback (4) */
chip->src_left_rec_slot = 10; /* AC'97 left PCM record (3) */
chip->src_right_rec_slot = 11; /* AC'97 right PCM record (4) */
/* Activate wave playback FIFO for FM playback */
chip->dma[0].valFCR = BA0_FCR_FEN | BA0_FCR_LS(0) |
BA0_FCR_RS(1) |
BA0_FCR_SZ(CS4281_FIFO_SIZE) |
BA0_FCR_OF(chip->dma[0].fifo_offset);
snd_cs4281_pokeBA0(chip, chip->dma[0].regFCR, chip->dma[0].valFCR);
snd_cs4281_pokeBA0(chip, BA0_SRCSA, (chip->src_left_play_slot << 0) |
(chip->src_right_play_slot << 8) |
(chip->src_left_rec_slot << 16) |
(chip->src_right_rec_slot << 24));
/* Initialize digital volume */
snd_cs4281_pokeBA0(chip, BA0_PPLVC, 0);
snd_cs4281_pokeBA0(chip, BA0_PPRVC, 0);
/* Enable IRQs */
snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_EOI);
/* Unmask interrupts */
snd_cs4281_pokeBA0(chip, BA0_HIMR, 0x7fffffff & ~(
BA0_HISR_MIDI |
BA0_HISR_DMAI |
BA0_HISR_DMA(0) |
BA0_HISR_DMA(1) |
BA0_HISR_DMA(2) |
BA0_HISR_DMA(3)));
synchronize_irq(chip->irq);
return 0;
}
/*
* MIDI section
*/
static void snd_cs4281_midi_reset(struct cs4281 *chip)
{
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr | BA0_MIDCR_MRST);
udelay(100);
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
static int snd_cs4281_midi_input_open(struct snd_rawmidi_substream *substream)
{
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irq(&chip->reg_lock);
chip->midcr |= BA0_MIDCR_RXE;
chip->midi_input = substream;
if (!(chip->uartm & CS4281_MODE_OUTPUT)) {
snd_cs4281_midi_reset(chip);
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cs4281_midi_input_close(struct snd_rawmidi_substream *substream)
{
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irq(&chip->reg_lock);
chip->midcr &= ~(BA0_MIDCR_RXE | BA0_MIDCR_RIE);
chip->midi_input = NULL;
if (!(chip->uartm & CS4281_MODE_OUTPUT)) {
snd_cs4281_midi_reset(chip);
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
chip->uartm &= ~CS4281_MODE_INPUT;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cs4281_midi_output_open(struct snd_rawmidi_substream *substream)
{
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irq(&chip->reg_lock);
chip->uartm |= CS4281_MODE_OUTPUT;
chip->midcr |= BA0_MIDCR_TXE;
chip->midi_output = substream;
if (!(chip->uartm & CS4281_MODE_INPUT)) {
snd_cs4281_midi_reset(chip);
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cs4281_midi_output_close(struct snd_rawmidi_substream *substream)
{
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irq(&chip->reg_lock);
chip->midcr &= ~(BA0_MIDCR_TXE | BA0_MIDCR_TIE);
chip->midi_output = NULL;
if (!(chip->uartm & CS4281_MODE_INPUT)) {
snd_cs4281_midi_reset(chip);
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
chip->uartm &= ~CS4281_MODE_OUTPUT;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static void snd_cs4281_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
{
unsigned long flags;
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irqsave(&chip->reg_lock, flags);
if (up) {
if ((chip->midcr & BA0_MIDCR_RIE) == 0) {
chip->midcr |= BA0_MIDCR_RIE;
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
} else {
if (chip->midcr & BA0_MIDCR_RIE) {
chip->midcr &= ~BA0_MIDCR_RIE;
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
static void snd_cs4281_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
{
unsigned long flags;
struct cs4281 *chip = substream->rmidi->private_data;
unsigned char byte;
spin_lock_irqsave(&chip->reg_lock, flags);
if (up) {
if ((chip->midcr & BA0_MIDCR_TIE) == 0) {
chip->midcr |= BA0_MIDCR_TIE;
/* fill UART FIFO buffer at first, and turn Tx interrupts only if necessary */
while ((chip->midcr & BA0_MIDCR_TIE) &&
(snd_cs4281_peekBA0(chip, BA0_MIDSR) & BA0_MIDSR_TBF) == 0) {
if (snd_rawmidi_transmit(substream, &byte, 1) != 1) {
chip->midcr &= ~BA0_MIDCR_TIE;
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDWP, byte);
}
}
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
} else {
if (chip->midcr & BA0_MIDCR_TIE) {
chip->midcr &= ~BA0_MIDCR_TIE;
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
static struct snd_rawmidi_ops snd_cs4281_midi_output =
{
.open = snd_cs4281_midi_output_open,
.close = snd_cs4281_midi_output_close,
.trigger = snd_cs4281_midi_output_trigger,
};
static struct snd_rawmidi_ops snd_cs4281_midi_input =
{
.open = snd_cs4281_midi_input_open,
.close = snd_cs4281_midi_input_close,
.trigger = snd_cs4281_midi_input_trigger,
};
static int __devinit snd_cs4281_midi(struct cs4281 * chip, int device,
struct snd_rawmidi **rrawmidi)
{
struct snd_rawmidi *rmidi;
int err;
if (rrawmidi)
*rrawmidi = NULL;
if ((err = snd_rawmidi_new(chip->card, "CS4281", device, 1, 1, &rmidi)) < 0)
return err;
strcpy(rmidi->name, "CS4281");
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_cs4281_midi_output);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_cs4281_midi_input);
rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->private_data = chip;
chip->rmidi = rmidi;
if (rrawmidi)
*rrawmidi = rmidi;
return 0;
}
/*
* Interrupt handler
*/
static irqreturn_t snd_cs4281_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct cs4281 *chip = dev_id;
unsigned int status, dma, val;
struct cs4281_dma *cdma;
if (chip == NULL)
return IRQ_NONE;
status = snd_cs4281_peekBA0(chip, BA0_HISR);
if ((status & 0x7fffffff) == 0) {
snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_EOI);
return IRQ_NONE;
}
if (status & (BA0_HISR_DMA(0)|BA0_HISR_DMA(1)|BA0_HISR_DMA(2)|BA0_HISR_DMA(3))) {
for (dma = 0; dma < 4; dma++)
if (status & BA0_HISR_DMA(dma)) {
cdma = &chip->dma[dma];
spin_lock(&chip->reg_lock);
/* ack DMA IRQ */
val = snd_cs4281_peekBA0(chip, cdma->regHDSR);
/* workaround, sometimes CS4281 acknowledges */
/* end or middle transfer position twice */
cdma->frag++;
if ((val & BA0_HDSR_DHTC) && !(cdma->frag & 1)) {
cdma->frag--;
chip->spurious_dhtc_irq++;
spin_unlock(&chip->reg_lock);
continue;
}
if ((val & BA0_HDSR_DTC) && (cdma->frag & 1)) {
cdma->frag--;
chip->spurious_dtc_irq++;
spin_unlock(&chip->reg_lock);
continue;
}
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(cdma->substream);
}
}
if ((status & BA0_HISR_MIDI) && chip->rmidi) {
unsigned char c;
spin_lock(&chip->reg_lock);
while ((snd_cs4281_peekBA0(chip, BA0_MIDSR) & BA0_MIDSR_RBE) == 0) {
c = snd_cs4281_peekBA0(chip, BA0_MIDRP);
if ((chip->midcr & BA0_MIDCR_RIE) == 0)
continue;
snd_rawmidi_receive(chip->midi_input, &c, 1);
}
while ((snd_cs4281_peekBA0(chip, BA0_MIDSR) & BA0_MIDSR_TBF) == 0) {
if ((chip->midcr & BA0_MIDCR_TIE) == 0)
break;
if (snd_rawmidi_transmit(chip->midi_output, &c, 1) != 1) {
chip->midcr &= ~BA0_MIDCR_TIE;
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
break;
}
snd_cs4281_pokeBA0(chip, BA0_MIDWP, c);
}
spin_unlock(&chip->reg_lock);
}
/* EOI to the PCI part... reenables interrupts */
snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_EOI);
return IRQ_HANDLED;
}
/*
* OPL3 command
*/
static void snd_cs4281_opl3_command(struct snd_opl3 *opl3, unsigned short cmd,
unsigned char val)
{
unsigned long flags;
struct cs4281 *chip = opl3->private_data;
void __iomem *port;
if (cmd & OPL3_RIGHT)
port = chip->ba0 + BA0_B1AP; /* right port */
else
port = chip->ba0 + BA0_B0AP; /* left port */
spin_lock_irqsave(&opl3->reg_lock, flags);
writel((unsigned int)cmd, port);
udelay(10);
writel((unsigned int)val, port + 4);
udelay(30);
spin_unlock_irqrestore(&opl3->reg_lock, flags);
}
static int __devinit snd_cs4281_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct cs4281 *chip;
struct snd_opl3 *opl3;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
if (card == NULL)
return -ENOMEM;
if ((err = snd_cs4281_create(card, pci, &chip, dual_codec[dev])) < 0) {
snd_card_free(card);
return err;
}
card->private_data = chip;
if ((err = snd_cs4281_mixer(chip)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_cs4281_pcm(chip, 0, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_cs4281_midi(chip, 0, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_opl3_new(card, OPL3_HW_OPL3_CS4281, &opl3)) < 0) {
snd_card_free(card);
return err;
}
opl3->private_data = chip;
opl3->command = snd_cs4281_opl3_command;
snd_opl3_init(opl3);
if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
snd_card_free(card);
return err;
}
snd_cs4281_create_gameport(chip);
strcpy(card->driver, "CS4281");
strcpy(card->shortname, "Cirrus Logic CS4281");
sprintf(card->longname, "%s at 0x%lx, irq %d",
card->shortname,
chip->ba0_addr,
chip->irq);
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void __devexit snd_cs4281_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
pci_set_drvdata(pci, NULL);
}
/*
* Power Management
*/
#ifdef CONFIG_PM
static int saved_regs[SUSPEND_REGISTERS] = {
BA0_JSCTL,
BA0_GPIOR,
BA0_SSCR,
BA0_MIDCR,
BA0_SRCSA,
BA0_PASR,
BA0_CASR,
BA0_DACSR,
BA0_ADCSR,
BA0_FMLVC,
BA0_FMRVC,
BA0_PPLVC,
BA0_PPRVC,
};
#define CLKCR1_CKRA 0x00010000L
static int cs4281_suspend(struct pci_dev *pci, pm_message_t state)
{
struct snd_card *card = pci_get_drvdata(pci);
struct cs4281 *chip = card->private_data;
u32 ulCLK;
unsigned int i;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(chip->pcm);
snd_ac97_suspend(chip->ac97);
snd_ac97_suspend(chip->ac97_secondary);
ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1);
ulCLK |= CLKCR1_CKRA;
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK);
/* Disable interrupts. */
snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_CHGM);
/* remember the status registers */
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
if (saved_regs[i])
chip->suspend_regs[i] = snd_cs4281_peekBA0(chip, saved_regs[i]);
/* Turn off the serial ports. */
snd_cs4281_pokeBA0(chip, BA0_SERMC, 0);
/* Power off FM, Joystick, AC link, */
snd_cs4281_pokeBA0(chip, BA0_SSPM, 0);
/* DLL off. */
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, 0);
/* AC link off. */
snd_cs4281_pokeBA0(chip, BA0_SPMC, 0);
ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1);
ulCLK &= ~CLKCR1_CKRA;
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK);
pci_disable_device(pci);
pci_save_state(pci);
return 0;
}
static int cs4281_resume(struct pci_dev *pci)
{
struct snd_card *card = pci_get_drvdata(pci);
struct cs4281 *chip = card->private_data;
unsigned int i;
u32 ulCLK;
pci_restore_state(pci);
pci_enable_device(pci);
pci_set_master(pci);
ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1);
ulCLK |= CLKCR1_CKRA;
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK);
snd_cs4281_chip_init(chip);
/* restore the status registers */
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
if (saved_regs[i])
snd_cs4281_pokeBA0(chip, saved_regs[i], chip->suspend_regs[i]);
snd_ac97_resume(chip->ac97);
snd_ac97_resume(chip->ac97_secondary);
ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1);
ulCLK &= ~CLKCR1_CKRA;
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver driver = {
.name = "CS4281",
.id_table = snd_cs4281_ids,
.probe = snd_cs4281_probe,
.remove = __devexit_p(snd_cs4281_remove),
#ifdef CONFIG_PM
.suspend = cs4281_suspend,
.resume = cs4281_resume,
#endif
};
static int __init alsa_card_cs4281_init(void)
{
return pci_register_driver(&driver);
}
static void __exit alsa_card_cs4281_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_cs4281_init)
module_exit(alsa_card_cs4281_exit)