android_kernel_xiaomi_sm8350/drivers/net/atl1/atl1_hw.c
Denis Cheng ff8ac60948 drivers/net/: all drivers/net/ cleanup with ARRAY_SIZE
Signed-off-by: Denis Cheng <crquan@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-10-10 16:51:15 -07:00

721 lines
19 KiB
C

/*
* Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
* Copyright(c) 2006 Chris Snook <csnook@redhat.com>
* Copyright(c) 2006 Jay Cliburn <jcliburn@gmail.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/if_vlan.h>
#include <linux/etherdevice.h>
#include <linux/crc32.h>
#include <asm/byteorder.h>
#include "atl1.h"
/*
* Reset the transmit and receive units; mask and clear all interrupts.
* hw - Struct containing variables accessed by shared code
* return : ATL1_SUCCESS or idle status (if error)
*/
s32 atl1_reset_hw(struct atl1_hw *hw)
{
struct pci_dev *pdev = hw->back->pdev;
u32 icr;
int i;
/*
* Clear Interrupt mask to stop board from generating
* interrupts & Clear any pending interrupt events
*/
/*
* iowrite32(0, hw->hw_addr + REG_IMR);
* iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
*/
/*
* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
ioread32(hw->hw_addr + REG_MASTER_CTRL);
iowrite16(1, hw->hw_addr + REG_GPHY_ENABLE);
ioread16(hw->hw_addr + REG_GPHY_ENABLE);
msleep(1); /* delay about 1ms */
/* Wait at least 10ms for All module to be Idle */
for (i = 0; i < 10; i++) {
icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
if (!icr)
break;
msleep(1); /* delay 1 ms */
cpu_relax(); /* FIXME: is this still the right way to do this? */
}
if (icr) {
dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
return icr;
}
return ATL1_SUCCESS;
}
/* function about EEPROM
*
* check_eeprom_exist
* return 0 if eeprom exist
*/
static int atl1_check_eeprom_exist(struct atl1_hw *hw)
{
u32 value;
value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
if (value & SPI_FLASH_CTRL_EN_VPD) {
value &= ~SPI_FLASH_CTRL_EN_VPD;
iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
}
value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
}
static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
{
int i;
u32 control;
if (offset & 3)
return false; /* address do not align */
iowrite32(0, hw->hw_addr + REG_VPD_DATA);
control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
iowrite32(control, hw->hw_addr + REG_VPD_CAP);
ioread32(hw->hw_addr + REG_VPD_CAP);
for (i = 0; i < 10; i++) {
msleep(2);
control = ioread32(hw->hw_addr + REG_VPD_CAP);
if (control & VPD_CAP_VPD_FLAG)
break;
}
if (control & VPD_CAP_VPD_FLAG) {
*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
return true;
}
return false; /* timeout */
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
{
u32 val;
int i;
val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
MDIO_CLK_SEL_SHIFT;
iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
ioread32(hw->hw_addr + REG_MDIO_CTRL);
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (!(val & (MDIO_START | MDIO_BUSY))) {
*phy_data = (u16) val;
return ATL1_SUCCESS;
}
return ATL1_ERR_PHY;
}
#define CUSTOM_SPI_CS_SETUP 2
#define CUSTOM_SPI_CLK_HI 2
#define CUSTOM_SPI_CLK_LO 2
#define CUSTOM_SPI_CS_HOLD 2
#define CUSTOM_SPI_CS_HI 3
static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
{
int i;
u32 value;
iowrite32(0, hw->hw_addr + REG_SPI_DATA);
iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
value = SPI_FLASH_CTRL_WAIT_READY |
(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
SPI_FLASH_CTRL_CLK_HI_MASK) <<
SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
SPI_FLASH_CTRL_CLK_LO_MASK) <<
SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
SPI_FLASH_CTRL_CS_HOLD_MASK) <<
SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
SPI_FLASH_CTRL_CS_HI_MASK) <<
SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
SPI_FLASH_CTRL_INS_SHIFT;
iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
value |= SPI_FLASH_CTRL_START;
iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
for (i = 0; i < 10; i++) {
msleep(1); /* 1ms */
value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
if (!(value & SPI_FLASH_CTRL_START))
break;
}
if (value & SPI_FLASH_CTRL_START)
return false;
*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
return true;
}
/*
* get_permanent_address
* return 0 if get valid mac address,
*/
static int atl1_get_permanent_address(struct atl1_hw *hw)
{
u32 addr[2];
u32 i, control;
u16 reg;
u8 eth_addr[ETH_ALEN];
bool key_valid;
if (is_valid_ether_addr(hw->perm_mac_addr))
return 0;
/* init */
addr[0] = addr[1] = 0;
if (!atl1_check_eeprom_exist(hw)) { /* eeprom exist */
reg = 0;
key_valid = false;
/* Read out all EEPROM content */
i = 0;
while (1) {
if (atl1_read_eeprom(hw, i + 0x100, &control)) {
if (key_valid) {
if (reg == REG_MAC_STA_ADDR)
addr[0] = control;
else if (reg == (REG_MAC_STA_ADDR + 4))
addr[1] = control;
key_valid = false;
} else if ((control & 0xff) == 0x5A) {
key_valid = true;
reg = (u16) (control >> 16);
} else
break; /* assume data end while encount an invalid KEYWORD */
} else
break; /* read error */
i += 4;
}
*(u32 *) &eth_addr[2] = swab32(addr[0]);
*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
if (is_valid_ether_addr(eth_addr)) {
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
return 0;
}
return 1;
}
/* see if SPI FLAGS exist ? */
addr[0] = addr[1] = 0;
reg = 0;
key_valid = false;
i = 0;
while (1) {
if (atl1_spi_read(hw, i + 0x1f000, &control)) {
if (key_valid) {
if (reg == REG_MAC_STA_ADDR)
addr[0] = control;
else if (reg == (REG_MAC_STA_ADDR + 4))
addr[1] = control;
key_valid = false;
} else if ((control & 0xff) == 0x5A) {
key_valid = true;
reg = (u16) (control >> 16);
} else
break; /* data end */
} else
break; /* read error */
i += 4;
}
*(u32 *) &eth_addr[2] = swab32(addr[0]);
*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
if (is_valid_ether_addr(eth_addr)) {
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
return 0;
}
/*
* On some motherboards, the MAC address is written by the
* BIOS directly to the MAC register during POST, and is
* not stored in eeprom. If all else thus far has failed
* to fetch the permanent MAC address, try reading it directly.
*/
addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
*(u32 *) &eth_addr[2] = swab32(addr[0]);
*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
if (is_valid_ether_addr(eth_addr)) {
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
return 0;
}
return 1;
}
/*
* Reads the adapter's MAC address from the EEPROM
* hw - Struct containing variables accessed by shared code
*/
s32 atl1_read_mac_addr(struct atl1_hw *hw)
{
u16 i;
if (atl1_get_permanent_address(hw))
random_ether_addr(hw->perm_mac_addr);
for (i = 0; i < ETH_ALEN; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return ATL1_SUCCESS;
}
/*
* Hashes an address to determine its location in the multicast table
* hw - Struct containing variables accessed by shared code
* mc_addr - the multicast address to hash
*
* atl1_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
{
u32 crc32, value = 0;
int i;
crc32 = ether_crc_le(6, mc_addr);
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/*
* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
mta |= (1 << hash_bit);
iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
{
int i;
u32 val;
val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
MDIO_SUP_PREAMBLE |
MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
ioread32(hw->hw_addr + REG_MDIO_CTRL);
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (!(val & (MDIO_START | MDIO_BUSY)))
return ATL1_SUCCESS;
return ATL1_ERR_PHY;
}
/*
* Make L001's PHY out of Power Saving State (bug)
* hw - Struct containing variables accessed by shared code
* when power on, L001's PHY always on Power saving State
* (Gigabit Link forbidden)
*/
static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
{
s32 ret;
ret = atl1_write_phy_reg(hw, 29, 0x0029);
if (ret)
return ret;
return atl1_write_phy_reg(hw, 30, 0);
}
/*
*TODO: do something or get rid of this
*/
s32 atl1_phy_enter_power_saving(struct atl1_hw *hw)
{
/* s32 ret_val;
* u16 phy_data;
*/
/*
ret_val = atl1_write_phy_reg(hw, ...);
ret_val = atl1_write_phy_reg(hw, ...);
....
*/
return ATL1_SUCCESS;
}
/*
* Resets the PHY and make all config validate
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
*/
static s32 atl1_phy_reset(struct atl1_hw *hw)
{
struct pci_dev *pdev = hw->back->pdev;
s32 ret_val;
u16 phy_data;
if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
hw->media_type == MEDIA_TYPE_1000M_FULL)
phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
else {
switch (hw->media_type) {
case MEDIA_TYPE_100M_FULL:
phy_data =
MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
MII_CR_RESET;
break;
case MEDIA_TYPE_100M_HALF:
phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
break;
case MEDIA_TYPE_10M_FULL:
phy_data =
MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
break;
default: /* MEDIA_TYPE_10M_HALF: */
phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
break;
}
}
ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
if (ret_val) {
u32 val;
int i;
/* pcie serdes link may be down! */
dev_dbg(&pdev->dev, "pcie phy link down\n");
for (i = 0; i < 25; i++) {
msleep(1);
val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
dev_warn(&pdev->dev, "pcie link down at least 25ms\n");
return ret_val;
}
}
return ATL1_SUCCESS;
}
/*
* Configures PHY autoneg and flow control advertisement settings
* hw - Struct containing variables accessed by shared code
*/
s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
{
s32 ret_val;
s16 mii_autoneg_adv_reg;
s16 mii_1000t_ctrl_reg;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
/* Read the MII 1000Base-T Control Register (Address 9). */
mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
/*
* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK;
/*
* Need to parse media_type and set up
* the appropriate PHY registers.
*/
switch (hw->media_type) {
case MEDIA_TYPE_AUTO_SENSOR:
mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
MII_AR_10T_FD_CAPS |
MII_AR_100TX_HD_CAPS |
MII_AR_100TX_FD_CAPS);
mii_1000t_ctrl_reg |= MII_AT001_CR_1000T_FD_CAPS;
break;
case MEDIA_TYPE_1000M_FULL:
mii_1000t_ctrl_reg |= MII_AT001_CR_1000T_FD_CAPS;
break;
case MEDIA_TYPE_100M_FULL:
mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
break;
case MEDIA_TYPE_100M_HALF:
mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
break;
case MEDIA_TYPE_10M_FULL:
mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
break;
default:
mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
break;
}
/* flow control fixed to enable all */
mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
ret_val = atl1_write_phy_reg(hw, MII_AT001_CR, mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
return ATL1_SUCCESS;
}
/*
* Configures link settings.
* hw - Struct containing variables accessed by shared code
* Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
*/
static s32 atl1_setup_link(struct atl1_hw *hw)
{
struct pci_dev *pdev = hw->back->pdev;
s32 ret_val;
/*
* Options:
* PHY will advertise value(s) parsed from
* autoneg_advertised and fc
* no matter what autoneg is , We will not wait link result.
*/
ret_val = atl1_phy_setup_autoneg_adv(hw);
if (ret_val) {
dev_dbg(&pdev->dev, "error setting up autonegotiation\n");
return ret_val;
}
/* SW.Reset , En-Auto-Neg if needed */
ret_val = atl1_phy_reset(hw);
if (ret_val) {
dev_dbg(&pdev->dev, "error resetting phy\n");
return ret_val;
}
hw->phy_configured = true;
return ret_val;
}
static struct atl1_spi_flash_dev flash_table[] = {
/* MFR_NAME WRSR READ PRGM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
{"Atmel", 0x00, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62},
{"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60},
{"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7},
};
static void atl1_init_flash_opcode(struct atl1_hw *hw)
{
if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
hw->flash_vendor = 0; /* ATMEL */
/* Init OP table */
iowrite8(flash_table[hw->flash_vendor].cmd_program,
hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
hw->hw_addr + REG_SPI_FLASH_OP_RDID);
iowrite8(flash_table[hw->flash_vendor].cmd_wren,
hw->hw_addr + REG_SPI_FLASH_OP_WREN);
iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
iowrite8(flash_table[hw->flash_vendor].cmd_read,
hw->hw_addr + REG_SPI_FLASH_OP_READ);
}
/*
* Performs basic configuration of the adapter.
* hw - Struct containing variables accessed by shared code
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes multicast table,
* and Calls routines to setup link
* Leaves the transmit and receive units disabled and uninitialized.
*/
s32 atl1_init_hw(struct atl1_hw *hw)
{
u32 ret_val = 0;
/* Zero out the Multicast HASH table */
iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
/* clear the old settings from the multicast hash table */
iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
atl1_init_flash_opcode(hw);
if (!hw->phy_configured) {
/* enable GPHY LinkChange Interrrupt */
ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
if (ret_val)
return ret_val;
/* make PHY out of power-saving state */
ret_val = atl1_phy_leave_power_saving(hw);
if (ret_val)
return ret_val;
/* Call a subroutine to configure the link */
ret_val = atl1_setup_link(hw);
}
return ret_val;
}
/*
* Detects the current speed and duplex settings of the hardware.
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
{
struct pci_dev *pdev = hw->back->pdev;
s32 ret_val;
u16 phy_data;
/* ; --- Read PHY Specific Status Register (17) */
ret_val = atl1_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
return ATL1_ERR_PHY_RES;
switch (phy_data & MII_AT001_PSSR_SPEED) {
case MII_AT001_PSSR_1000MBS:
*speed = SPEED_1000;
break;
case MII_AT001_PSSR_100MBS:
*speed = SPEED_100;
break;
case MII_AT001_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
dev_dbg(&pdev->dev, "error getting speed\n");
return ATL1_ERR_PHY_SPEED;
break;
}
if (phy_data & MII_AT001_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return ATL1_SUCCESS;
}
void atl1_set_mac_addr(struct atl1_hw *hw)
{
u32 value;
/*
* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword
*/
value = (((u32) hw->mac_addr[2]) << 24) |
(((u32) hw->mac_addr[3]) << 16) |
(((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
/* high dword */
value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
}