android_kernel_xiaomi_sm8350/kernel/dma/swiotlb.c
Linus Torvalds 45824fc0da powerpc updates for 5.4
- Initial support for running on a system with an Ultravisor, which is software
    that runs below the hypervisor and protects guests against some attacks by
    the hypervisor.
 
  - Support for building the kernel to run as a "Secure Virtual Machine", ie. as
    a guest capable of running on a system with an Ultravisor.
 
  - Some changes to our DMA code on bare metal, to allow devices with medium
    sized DMA masks (> 32 && < 59 bits) to use more than 2GB of DMA space.
 
  - Support for firmware assisted crash dumps on bare metal (powernv).
 
  - Two series fixing bugs in and refactoring our PCI EEH code.
 
  - A large series refactoring our exception entry code to use gas macros, both
    to make it more readable and also enable some future optimisations.
 
 As well as many cleanups and other minor features & fixups.
 
 Thanks to:
   Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan, Aneesh
   Kumar K.V, Anju T Sudhakar, Anshuman Khandual, Balbir Singh, Benjamin
   Herrenschmidt, Cédric Le Goater, Christophe JAILLET, Christophe Leroy,
   Christopher M. Riedl, Christoph Hellwig, Claudio Carvalho, Daniel Axtens,
   David Gibson, David Hildenbrand, Desnes A. Nunes do Rosario, Ganesh Goudar,
   Gautham R. Shenoy, Greg Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari
   Bathini, Joakim Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras,
   Lianbo Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
   Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan Chancellor,
   Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Qian Cai, Ram
   Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm, Sam Bobroff, Santosh Sivaraj,
   Segher Boessenkool, Sukadev Bhattiprolu, Thiago Bauermann, Thiago Jung
   Bauermann, Thomas Gleixner, Tom Lendacky, Vasant Hegde.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl2EtEcTHG1wZUBlbGxl
 cm1hbi5pZC5hdQAKCRBR6+o8yOGlgPfsD/9uXyBXn3anI/H08+mk74k5gCsmMQpn
 D442CD/ByogZcccp23yBTlhawtCE03hcHnCLygn0Xgd8a4YvHts/RGHUe3fPHqlG
 bEyZ7jsLVz5ebNZQP7r4eGs2pSzCajwJy2N9HJ/C1ojf15rrfRxoVJtnyhE2wXpm
 DL+6o2K+nUCB3gTQ1Inr3DnWzoGOOUfNTOea2u+J+yfHwGRqOBYpevwqiwy5eelK
 aRjUJCqMTvrzra49MeFwjo0Nt3/Y8UNcwA+JlGdeR8bRuWhFrYmyBRiZEKPaujNO
 5EAfghBBlB0KQCqvF/tRM/c0OftHqK59AMobP9T7u9oOaBXeF/FpZX/iXjzNDPsN
 j9Oo2tKLTu/YVEXqBFuREGP+znANr1Wo4CFyOG8SbvYz0HFjR6XbtRJsS+0e8GWl
 kqX5/ZhYz3lBnKSNe9jgWOrh/J0KCSFigBTEWJT3xsn4YE8x8kK2l9KPqAIldWEP
 sKb2UjGS7v0NKq+NvShH88Q9AeQUEIjTcg/9aDDQDe6FaRQ7KiF8bUxSdwSPi+Fn
 j0lnF6i+1ATWZKuCr85veVi7C5qoe/+MqalnmP7MxULyzgXLLxUgN0SzEYO6QofK
 LQK/VaH2XVr5+M5YAb7K4/NX5gbM3s1bKrCiUy4EyHNvgG7gricYdbz6HgAjKpR7
 oP0rHfgmVYvF1g==
 =WlW+
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "This is a bit late, partly due to me travelling, and partly due to a
  power outage knocking out some of my test systems *while* I was
  travelling.

   - Initial support for running on a system with an Ultravisor, which
     is software that runs below the hypervisor and protects guests
     against some attacks by the hypervisor.

   - Support for building the kernel to run as a "Secure Virtual
     Machine", ie. as a guest capable of running on a system with an
     Ultravisor.

   - Some changes to our DMA code on bare metal, to allow devices with
     medium sized DMA masks (> 32 && < 59 bits) to use more than 2GB of
     DMA space.

   - Support for firmware assisted crash dumps on bare metal (powernv).

   - Two series fixing bugs in and refactoring our PCI EEH code.

   - A large series refactoring our exception entry code to use gas
     macros, both to make it more readable and also enable some future
     optimisations.

  As well as many cleanups and other minor features & fixups.

  Thanks to: Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew
  Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Anshuman Khandual,
  Balbir Singh, Benjamin Herrenschmidt, Cédric Le Goater, Christophe
  JAILLET, Christophe Leroy, Christopher M. Riedl, Christoph Hellwig,
  Claudio Carvalho, Daniel Axtens, David Gibson, David Hildenbrand,
  Desnes A. Nunes do Rosario, Ganesh Goudar, Gautham R. Shenoy, Greg
  Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari Bathini, Joakim
  Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras, Lianbo
  Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
  Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan
  Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver
  O'Halloran, Qian Cai, Ram Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm,
  Sam Bobroff, Santosh Sivaraj, Segher Boessenkool, Sukadev Bhattiprolu,
  Thiago Bauermann, Thiago Jung Bauermann, Thomas Gleixner, Tom
  Lendacky, Vasant Hegde"

* tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (264 commits)
  powerpc/mm/mce: Keep irqs disabled during lockless page table walk
  powerpc: Use ftrace_graph_ret_addr() when unwinding
  powerpc/ftrace: Enable HAVE_FUNCTION_GRAPH_RET_ADDR_PTR
  ftrace: Look up the address of return_to_handler() using helpers
  powerpc: dump kernel log before carrying out fadump or kdump
  docs: powerpc: Add missing documentation reference
  powerpc/xmon: Fix output of XIVE IPI
  powerpc/xmon: Improve output of XIVE interrupts
  powerpc/mm/radix: remove useless kernel messages
  powerpc/fadump: support holes in kernel boot memory area
  powerpc/fadump: remove RMA_START and RMA_END macros
  powerpc/fadump: update documentation about option to release opalcore
  powerpc/fadump: consider f/w load area
  powerpc/opalcore: provide an option to invalidate /sys/firmware/opal/core file
  powerpc/opalcore: export /sys/firmware/opal/core for analysing opal crashes
  powerpc/fadump: update documentation about CONFIG_PRESERVE_FA_DUMP
  powerpc/fadump: add support to preserve crash data on FADUMP disabled kernel
  powerpc/fadump: improve how crashed kernel's memory is reserved
  powerpc/fadump: consider reserved ranges while releasing memory
  powerpc/fadump: make crash memory ranges array allocation generic
  ...
2019-09-20 11:48:06 -07:00

719 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Dynamic DMA mapping support.
*
* This implementation is a fallback for platforms that do not support
* I/O TLBs (aka DMA address translation hardware).
* Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
* Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
* Copyright (C) 2000, 2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
* 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
* unnecessary i-cache flushing.
* 04/07/.. ak Better overflow handling. Assorted fixes.
* 05/09/10 linville Add support for syncing ranges, support syncing for
* DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
* 08/12/11 beckyb Add highmem support
*/
#define pr_fmt(fmt) "software IO TLB: " fmt
#include <linux/cache.h>
#include <linux/dma-direct.h>
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/swiotlb.h>
#include <linux/pfn.h>
#include <linux/types.h>
#include <linux/ctype.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/scatterlist.h>
#include <linux/mem_encrypt.h>
#include <linux/set_memory.h>
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#endif
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <linux/iommu-helper.h>
#define CREATE_TRACE_POINTS
#include <trace/events/swiotlb.h>
#define OFFSET(val,align) ((unsigned long) \
( (val) & ( (align) - 1)))
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
/*
* Minimum IO TLB size to bother booting with. Systems with mainly
* 64bit capable cards will only lightly use the swiotlb. If we can't
* allocate a contiguous 1MB, we're probably in trouble anyway.
*/
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
enum swiotlb_force swiotlb_force;
/*
* Used to do a quick range check in swiotlb_tbl_unmap_single and
* swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
* API.
*/
phys_addr_t io_tlb_start, io_tlb_end;
/*
* The number of IO TLB blocks (in groups of 64) between io_tlb_start and
* io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
*/
static unsigned long io_tlb_nslabs;
/*
* The number of used IO TLB block
*/
static unsigned long io_tlb_used;
/*
* This is a free list describing the number of free entries available from
* each index
*/
static unsigned int *io_tlb_list;
static unsigned int io_tlb_index;
/*
* Max segment that we can provide which (if pages are contingous) will
* not be bounced (unless SWIOTLB_FORCE is set).
*/
unsigned int max_segment;
/*
* We need to save away the original address corresponding to a mapped entry
* for the sync operations.
*/
#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
static phys_addr_t *io_tlb_orig_addr;
/*
* Protect the above data structures in the map and unmap calls
*/
static DEFINE_SPINLOCK(io_tlb_lock);
static int late_alloc;
static int __init
setup_io_tlb_npages(char *str)
{
if (isdigit(*str)) {
io_tlb_nslabs = simple_strtoul(str, &str, 0);
/* avoid tail segment of size < IO_TLB_SEGSIZE */
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
if (*str == ',')
++str;
if (!strcmp(str, "force")) {
swiotlb_force = SWIOTLB_FORCE;
} else if (!strcmp(str, "noforce")) {
swiotlb_force = SWIOTLB_NO_FORCE;
io_tlb_nslabs = 1;
}
return 0;
}
early_param("swiotlb", setup_io_tlb_npages);
static bool no_iotlb_memory;
unsigned long swiotlb_nr_tbl(void)
{
return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs;
}
EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
unsigned int swiotlb_max_segment(void)
{
return unlikely(no_iotlb_memory) ? 0 : max_segment;
}
EXPORT_SYMBOL_GPL(swiotlb_max_segment);
void swiotlb_set_max_segment(unsigned int val)
{
if (swiotlb_force == SWIOTLB_FORCE)
max_segment = 1;
else
max_segment = rounddown(val, PAGE_SIZE);
}
/* default to 64MB */
#define IO_TLB_DEFAULT_SIZE (64UL<<20)
unsigned long swiotlb_size_or_default(void)
{
unsigned long size;
size = io_tlb_nslabs << IO_TLB_SHIFT;
return size ? size : (IO_TLB_DEFAULT_SIZE);
}
void swiotlb_print_info(void)
{
unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
if (no_iotlb_memory) {
pr_warn("No low mem\n");
return;
}
pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
(unsigned long long)io_tlb_start,
(unsigned long long)io_tlb_end,
bytes >> 20);
}
/*
* Early SWIOTLB allocation may be too early to allow an architecture to
* perform the desired operations. This function allows the architecture to
* call SWIOTLB when the operations are possible. It needs to be called
* before the SWIOTLB memory is used.
*/
void __init swiotlb_update_mem_attributes(void)
{
void *vaddr;
unsigned long bytes;
if (no_iotlb_memory || late_alloc)
return;
vaddr = phys_to_virt(io_tlb_start);
bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
memset(vaddr, 0, bytes);
}
int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
{
unsigned long i, bytes;
size_t alloc_size;
bytes = nslabs << IO_TLB_SHIFT;
io_tlb_nslabs = nslabs;
io_tlb_start = __pa(tlb);
io_tlb_end = io_tlb_start + bytes;
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
* between io_tlb_start and io_tlb_end.
*/
alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int));
io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE);
if (!io_tlb_list)
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
__func__, alloc_size, PAGE_SIZE);
alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t));
io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE);
if (!io_tlb_orig_addr)
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
__func__, alloc_size, PAGE_SIZE);
for (i = 0; i < io_tlb_nslabs; i++) {
io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
}
io_tlb_index = 0;
if (verbose)
swiotlb_print_info();
swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
return 0;
}
/*
* Statically reserve bounce buffer space and initialize bounce buffer data
* structures for the software IO TLB used to implement the DMA API.
*/
void __init
swiotlb_init(int verbose)
{
size_t default_size = IO_TLB_DEFAULT_SIZE;
unsigned char *vstart;
unsigned long bytes;
if (!io_tlb_nslabs) {
io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
bytes = io_tlb_nslabs << IO_TLB_SHIFT;
/* Get IO TLB memory from the low pages */
vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE);
if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
return;
if (io_tlb_start)
memblock_free_early(io_tlb_start,
PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
pr_warn("Cannot allocate buffer");
no_iotlb_memory = true;
}
/*
* Systems with larger DMA zones (those that don't support ISA) can
* initialize the swiotlb later using the slab allocator if needed.
* This should be just like above, but with some error catching.
*/
int
swiotlb_late_init_with_default_size(size_t default_size)
{
unsigned long bytes, req_nslabs = io_tlb_nslabs;
unsigned char *vstart = NULL;
unsigned int order;
int rc = 0;
if (!io_tlb_nslabs) {
io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
/*
* Get IO TLB memory from the low pages
*/
order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
io_tlb_nslabs = SLABS_PER_PAGE << order;
bytes = io_tlb_nslabs << IO_TLB_SHIFT;
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
order);
if (vstart)
break;
order--;
}
if (!vstart) {
io_tlb_nslabs = req_nslabs;
return -ENOMEM;
}
if (order != get_order(bytes)) {
pr_warn("only able to allocate %ld MB\n",
(PAGE_SIZE << order) >> 20);
io_tlb_nslabs = SLABS_PER_PAGE << order;
}
rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
if (rc)
free_pages((unsigned long)vstart, order);
return rc;
}
static void swiotlb_cleanup(void)
{
io_tlb_end = 0;
io_tlb_start = 0;
io_tlb_nslabs = 0;
max_segment = 0;
}
int
swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
{
unsigned long i, bytes;
bytes = nslabs << IO_TLB_SHIFT;
io_tlb_nslabs = nslabs;
io_tlb_start = virt_to_phys(tlb);
io_tlb_end = io_tlb_start + bytes;
set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
memset(tlb, 0, bytes);
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
* between io_tlb_start and io_tlb_end.
*/
io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
get_order(io_tlb_nslabs * sizeof(int)));
if (!io_tlb_list)
goto cleanup3;
io_tlb_orig_addr = (phys_addr_t *)
__get_free_pages(GFP_KERNEL,
get_order(io_tlb_nslabs *
sizeof(phys_addr_t)));
if (!io_tlb_orig_addr)
goto cleanup4;
for (i = 0; i < io_tlb_nslabs; i++) {
io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
}
io_tlb_index = 0;
swiotlb_print_info();
late_alloc = 1;
swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
return 0;
cleanup4:
free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
sizeof(int)));
io_tlb_list = NULL;
cleanup3:
swiotlb_cleanup();
return -ENOMEM;
}
void __init swiotlb_exit(void)
{
if (!io_tlb_orig_addr)
return;
if (late_alloc) {
free_pages((unsigned long)io_tlb_orig_addr,
get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
sizeof(int)));
free_pages((unsigned long)phys_to_virt(io_tlb_start),
get_order(io_tlb_nslabs << IO_TLB_SHIFT));
} else {
memblock_free_late(__pa(io_tlb_orig_addr),
PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
memblock_free_late(__pa(io_tlb_list),
PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
memblock_free_late(io_tlb_start,
PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
}
swiotlb_cleanup();
}
/*
* Bounce: copy the swiotlb buffer from or back to the original dma location
*/
static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir)
{
unsigned long pfn = PFN_DOWN(orig_addr);
unsigned char *vaddr = phys_to_virt(tlb_addr);
if (PageHighMem(pfn_to_page(pfn))) {
/* The buffer does not have a mapping. Map it in and copy */
unsigned int offset = orig_addr & ~PAGE_MASK;
char *buffer;
unsigned int sz = 0;
unsigned long flags;
while (size) {
sz = min_t(size_t, PAGE_SIZE - offset, size);
local_irq_save(flags);
buffer = kmap_atomic(pfn_to_page(pfn));
if (dir == DMA_TO_DEVICE)
memcpy(vaddr, buffer + offset, sz);
else
memcpy(buffer + offset, vaddr, sz);
kunmap_atomic(buffer);
local_irq_restore(flags);
size -= sz;
pfn++;
vaddr += sz;
offset = 0;
}
} else if (dir == DMA_TO_DEVICE) {
memcpy(vaddr, phys_to_virt(orig_addr), size);
} else {
memcpy(phys_to_virt(orig_addr), vaddr, size);
}
}
phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
dma_addr_t tbl_dma_addr,
phys_addr_t orig_addr,
size_t mapping_size,
size_t alloc_size,
enum dma_data_direction dir,
unsigned long attrs)
{
unsigned long flags;
phys_addr_t tlb_addr;
unsigned int nslots, stride, index, wrap;
int i;
unsigned long mask;
unsigned long offset_slots;
unsigned long max_slots;
unsigned long tmp_io_tlb_used;
if (no_iotlb_memory)
panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
if (mem_encrypt_active())
pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
if (mapping_size > alloc_size) {
dev_warn_once(hwdev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
mapping_size, alloc_size);
return (phys_addr_t)DMA_MAPPING_ERROR;
}
mask = dma_get_seg_boundary(hwdev);
tbl_dma_addr &= mask;
offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
/*
* Carefully handle integer overflow which can occur when mask == ~0UL.
*/
max_slots = mask + 1
? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
: 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
/*
* For mappings greater than or equal to a page, we limit the stride
* (and hence alignment) to a page size.
*/
nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
if (alloc_size >= PAGE_SIZE)
stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
else
stride = 1;
BUG_ON(!nslots);
/*
* Find suitable number of IO TLB entries size that will fit this
* request and allocate a buffer from that IO TLB pool.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
if (unlikely(nslots > io_tlb_nslabs - io_tlb_used))
goto not_found;
index = ALIGN(io_tlb_index, stride);
if (index >= io_tlb_nslabs)
index = 0;
wrap = index;
do {
while (iommu_is_span_boundary(index, nslots, offset_slots,
max_slots)) {
index += stride;
if (index >= io_tlb_nslabs)
index = 0;
if (index == wrap)
goto not_found;
}
/*
* If we find a slot that indicates we have 'nslots' number of
* contiguous buffers, we allocate the buffers from that slot
* and mark the entries as '0' indicating unavailable.
*/
if (io_tlb_list[index] >= nslots) {
int count = 0;
for (i = index; i < (int) (index + nslots); i++)
io_tlb_list[i] = 0;
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
/*
* Update the indices to avoid searching in the next
* round.
*/
io_tlb_index = ((index + nslots) < io_tlb_nslabs
? (index + nslots) : 0);
goto found;
}
index += stride;
if (index >= io_tlb_nslabs)
index = 0;
} while (index != wrap);
not_found:
tmp_io_tlb_used = io_tlb_used;
spin_unlock_irqrestore(&io_tlb_lock, flags);
if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
alloc_size, io_tlb_nslabs, tmp_io_tlb_used);
return (phys_addr_t)DMA_MAPPING_ERROR;
found:
io_tlb_used += nslots;
spin_unlock_irqrestore(&io_tlb_lock, flags);
/*
* Save away the mapping from the original address to the DMA address.
* This is needed when we sync the memory. Then we sync the buffer if
* needed.
*/
for (i = 0; i < nslots; i++)
io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE);
return tlb_addr;
}
/*
* tlb_addr is the physical address of the bounce buffer to unmap.
*/
void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
size_t mapping_size, size_t alloc_size,
enum dma_data_direction dir, unsigned long attrs)
{
unsigned long flags;
int i, count, nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
phys_addr_t orig_addr = io_tlb_orig_addr[index];
/*
* First, sync the memory before unmapping the entry
*/
if (orig_addr != INVALID_PHYS_ADDR &&
!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE);
/*
* Return the buffer to the free list by setting the corresponding
* entries to indicate the number of contiguous entries available.
* While returning the entries to the free list, we merge the entries
* with slots below and above the pool being returned.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
{
count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
io_tlb_list[index + nslots] : 0);
/*
* Step 1: return the slots to the free list, merging the
* slots with superceeding slots
*/
for (i = index + nslots - 1; i >= index; i--) {
io_tlb_list[i] = ++count;
io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
}
/*
* Step 2: merge the returned slots with the preceding slots,
* if available (non zero)
*/
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
io_tlb_used -= nslots;
}
spin_unlock_irqrestore(&io_tlb_lock, flags);
}
void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir,
enum dma_sync_target target)
{
int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
phys_addr_t orig_addr = io_tlb_orig_addr[index];
if (orig_addr == INVALID_PHYS_ADDR)
return;
orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
switch (target) {
case SYNC_FOR_CPU:
if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(orig_addr, tlb_addr,
size, DMA_FROM_DEVICE);
else
BUG_ON(dir != DMA_TO_DEVICE);
break;
case SYNC_FOR_DEVICE:
if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(orig_addr, tlb_addr,
size, DMA_TO_DEVICE);
else
BUG_ON(dir != DMA_FROM_DEVICE);
break;
default:
BUG();
}
}
/*
* Create a swiotlb mapping for the buffer at @phys, and in case of DMAing
* to the device copy the data into it as well.
*/
bool swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
trace_swiotlb_bounced(dev, *dma_addr, size, swiotlb_force);
if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) {
dev_warn_ratelimited(dev,
"Cannot do DMA to address %pa\n", phys);
return false;
}
/* Oh well, have to allocate and map a bounce buffer. */
*phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start),
*phys, size, size, dir, attrs);
if (*phys == (phys_addr_t)DMA_MAPPING_ERROR)
return false;
/* Ensure that the address returned is DMA'ble */
*dma_addr = __phys_to_dma(dev, *phys);
if (unlikely(!dma_capable(dev, *dma_addr, size))) {
swiotlb_tbl_unmap_single(dev, *phys, size, size, dir,
attrs | DMA_ATTR_SKIP_CPU_SYNC);
return false;
}
return true;
}
size_t swiotlb_max_mapping_size(struct device *dev)
{
return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE;
}
bool is_swiotlb_active(void)
{
/*
* When SWIOTLB is initialized, even if io_tlb_start points to physical
* address zero, io_tlb_end surely doesn't.
*/
return io_tlb_end != 0;
}
#ifdef CONFIG_DEBUG_FS
static int __init swiotlb_create_debugfs(void)
{
struct dentry *root;
root = debugfs_create_dir("swiotlb", NULL);
debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs);
debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used);
return 0;
}
late_initcall(swiotlb_create_debugfs);
#endif