84c3d4aaec
Manual merge of: arch/powerpc/Kconfig arch/powerpc/kernel/stacktrace.c arch/powerpc/mm/slice.c arch/ppc/kernel/smp.c
726 lines
20 KiB
C
726 lines
20 KiB
C
/*
|
|
* address space "slices" (meta-segments) support
|
|
*
|
|
* Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
|
|
*
|
|
* Based on hugetlb implementation
|
|
*
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/err.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/spu.h>
|
|
|
|
static DEFINE_SPINLOCK(slice_convert_lock);
|
|
|
|
|
|
#ifdef DEBUG
|
|
int _slice_debug = 1;
|
|
|
|
static void slice_print_mask(const char *label, struct slice_mask mask)
|
|
{
|
|
char *p, buf[16 + 3 + 16 + 1];
|
|
int i;
|
|
|
|
if (!_slice_debug)
|
|
return;
|
|
p = buf;
|
|
for (i = 0; i < SLICE_NUM_LOW; i++)
|
|
*(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
|
|
*(p++) = ' ';
|
|
*(p++) = '-';
|
|
*(p++) = ' ';
|
|
for (i = 0; i < SLICE_NUM_HIGH; i++)
|
|
*(p++) = (mask.high_slices & (1 << i)) ? '1' : '0';
|
|
*(p++) = 0;
|
|
|
|
printk(KERN_DEBUG "%s:%s\n", label, buf);
|
|
}
|
|
|
|
#define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
|
|
|
|
#else
|
|
|
|
static void slice_print_mask(const char *label, struct slice_mask mask) {}
|
|
#define slice_dbg(fmt...)
|
|
|
|
#endif
|
|
|
|
static struct slice_mask slice_range_to_mask(unsigned long start,
|
|
unsigned long len)
|
|
{
|
|
unsigned long end = start + len - 1;
|
|
struct slice_mask ret = { 0, 0 };
|
|
|
|
if (start < SLICE_LOW_TOP) {
|
|
unsigned long mend = min(end, SLICE_LOW_TOP);
|
|
unsigned long mstart = min(start, SLICE_LOW_TOP);
|
|
|
|
ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
|
|
- (1u << GET_LOW_SLICE_INDEX(mstart));
|
|
}
|
|
|
|
if ((start + len) > SLICE_LOW_TOP)
|
|
ret.high_slices = (1u << (GET_HIGH_SLICE_INDEX(end) + 1))
|
|
- (1u << GET_HIGH_SLICE_INDEX(start));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
|
|
unsigned long len)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
if ((mm->task_size - len) < addr)
|
|
return 0;
|
|
vma = find_vma(mm, addr);
|
|
return (!vma || (addr + len) <= vma->vm_start);
|
|
}
|
|
|
|
static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
|
|
{
|
|
return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
|
|
1ul << SLICE_LOW_SHIFT);
|
|
}
|
|
|
|
static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
|
|
{
|
|
unsigned long start = slice << SLICE_HIGH_SHIFT;
|
|
unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
|
|
|
|
/* Hack, so that each addresses is controlled by exactly one
|
|
* of the high or low area bitmaps, the first high area starts
|
|
* at 4GB, not 0 */
|
|
if (start == 0)
|
|
start = SLICE_LOW_TOP;
|
|
|
|
return !slice_area_is_free(mm, start, end - start);
|
|
}
|
|
|
|
static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
|
|
{
|
|
struct slice_mask ret = { 0, 0 };
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < SLICE_NUM_LOW; i++)
|
|
if (!slice_low_has_vma(mm, i))
|
|
ret.low_slices |= 1u << i;
|
|
|
|
if (mm->task_size <= SLICE_LOW_TOP)
|
|
return ret;
|
|
|
|
for (i = 0; i < SLICE_NUM_HIGH; i++)
|
|
if (!slice_high_has_vma(mm, i))
|
|
ret.high_slices |= 1u << i;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
|
|
{
|
|
struct slice_mask ret = { 0, 0 };
|
|
unsigned long i;
|
|
u64 psizes;
|
|
|
|
psizes = mm->context.low_slices_psize;
|
|
for (i = 0; i < SLICE_NUM_LOW; i++)
|
|
if (((psizes >> (i * 4)) & 0xf) == psize)
|
|
ret.low_slices |= 1u << i;
|
|
|
|
psizes = mm->context.high_slices_psize;
|
|
for (i = 0; i < SLICE_NUM_HIGH; i++)
|
|
if (((psizes >> (i * 4)) & 0xf) == psize)
|
|
ret.high_slices |= 1u << i;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
|
|
{
|
|
return (mask.low_slices & available.low_slices) == mask.low_slices &&
|
|
(mask.high_slices & available.high_slices) == mask.high_slices;
|
|
}
|
|
|
|
static void slice_flush_segments(void *parm)
|
|
{
|
|
struct mm_struct *mm = parm;
|
|
unsigned long flags;
|
|
|
|
if (mm != current->active_mm)
|
|
return;
|
|
|
|
/* update the paca copy of the context struct */
|
|
get_paca()->context = current->active_mm->context;
|
|
|
|
local_irq_save(flags);
|
|
slb_flush_and_rebolt();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
|
|
{
|
|
/* Write the new slice psize bits */
|
|
u64 lpsizes, hpsizes;
|
|
unsigned long i, flags;
|
|
|
|
slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
|
|
slice_print_mask(" mask", mask);
|
|
|
|
/* We need to use a spinlock here to protect against
|
|
* concurrent 64k -> 4k demotion ...
|
|
*/
|
|
spin_lock_irqsave(&slice_convert_lock, flags);
|
|
|
|
lpsizes = mm->context.low_slices_psize;
|
|
for (i = 0; i < SLICE_NUM_LOW; i++)
|
|
if (mask.low_slices & (1u << i))
|
|
lpsizes = (lpsizes & ~(0xful << (i * 4))) |
|
|
(((unsigned long)psize) << (i * 4));
|
|
|
|
hpsizes = mm->context.high_slices_psize;
|
|
for (i = 0; i < SLICE_NUM_HIGH; i++)
|
|
if (mask.high_slices & (1u << i))
|
|
hpsizes = (hpsizes & ~(0xful << (i * 4))) |
|
|
(((unsigned long)psize) << (i * 4));
|
|
|
|
mm->context.low_slices_psize = lpsizes;
|
|
mm->context.high_slices_psize = hpsizes;
|
|
|
|
slice_dbg(" lsps=%lx, hsps=%lx\n",
|
|
mm->context.low_slices_psize,
|
|
mm->context.high_slices_psize);
|
|
|
|
spin_unlock_irqrestore(&slice_convert_lock, flags);
|
|
|
|
#ifdef CONFIG_SPU_BASE
|
|
spu_flush_all_slbs(mm);
|
|
#endif
|
|
}
|
|
|
|
static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
|
|
unsigned long len,
|
|
struct slice_mask available,
|
|
int psize, int use_cache)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long start_addr, addr;
|
|
struct slice_mask mask;
|
|
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
|
|
|
|
if (use_cache) {
|
|
if (len <= mm->cached_hole_size) {
|
|
start_addr = addr = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = 0;
|
|
} else
|
|
start_addr = addr = mm->free_area_cache;
|
|
} else
|
|
start_addr = addr = TASK_UNMAPPED_BASE;
|
|
|
|
full_search:
|
|
for (;;) {
|
|
addr = _ALIGN_UP(addr, 1ul << pshift);
|
|
if ((TASK_SIZE - len) < addr)
|
|
break;
|
|
vma = find_vma(mm, addr);
|
|
BUG_ON(vma && (addr >= vma->vm_end));
|
|
|
|
mask = slice_range_to_mask(addr, len);
|
|
if (!slice_check_fit(mask, available)) {
|
|
if (addr < SLICE_LOW_TOP)
|
|
addr = _ALIGN_UP(addr + 1, 1ul << SLICE_LOW_SHIFT);
|
|
else
|
|
addr = _ALIGN_UP(addr + 1, 1ul << SLICE_HIGH_SHIFT);
|
|
continue;
|
|
}
|
|
if (!vma || addr + len <= vma->vm_start) {
|
|
/*
|
|
* Remember the place where we stopped the search:
|
|
*/
|
|
if (use_cache)
|
|
mm->free_area_cache = addr + len;
|
|
return addr;
|
|
}
|
|
if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
|
|
mm->cached_hole_size = vma->vm_start - addr;
|
|
addr = vma->vm_end;
|
|
}
|
|
|
|
/* Make sure we didn't miss any holes */
|
|
if (use_cache && start_addr != TASK_UNMAPPED_BASE) {
|
|
start_addr = addr = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = 0;
|
|
goto full_search;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static unsigned long slice_find_area_topdown(struct mm_struct *mm,
|
|
unsigned long len,
|
|
struct slice_mask available,
|
|
int psize, int use_cache)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long addr;
|
|
struct slice_mask mask;
|
|
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
|
|
|
|
/* check if free_area_cache is useful for us */
|
|
if (use_cache) {
|
|
if (len <= mm->cached_hole_size) {
|
|
mm->cached_hole_size = 0;
|
|
mm->free_area_cache = mm->mmap_base;
|
|
}
|
|
|
|
/* either no address requested or can't fit in requested
|
|
* address hole
|
|
*/
|
|
addr = mm->free_area_cache;
|
|
|
|
/* make sure it can fit in the remaining address space */
|
|
if (addr > len) {
|
|
addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
|
|
mask = slice_range_to_mask(addr, len);
|
|
if (slice_check_fit(mask, available) &&
|
|
slice_area_is_free(mm, addr, len))
|
|
/* remember the address as a hint for
|
|
* next time
|
|
*/
|
|
return (mm->free_area_cache = addr);
|
|
}
|
|
}
|
|
|
|
addr = mm->mmap_base;
|
|
while (addr > len) {
|
|
/* Go down by chunk size */
|
|
addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
|
|
|
|
/* Check for hit with different page size */
|
|
mask = slice_range_to_mask(addr, len);
|
|
if (!slice_check_fit(mask, available)) {
|
|
if (addr < SLICE_LOW_TOP)
|
|
addr = _ALIGN_DOWN(addr, 1ul << SLICE_LOW_SHIFT);
|
|
else if (addr < (1ul << SLICE_HIGH_SHIFT))
|
|
addr = SLICE_LOW_TOP;
|
|
else
|
|
addr = _ALIGN_DOWN(addr, 1ul << SLICE_HIGH_SHIFT);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Lookup failure means no vma is above this address,
|
|
* else if new region fits below vma->vm_start,
|
|
* return with success:
|
|
*/
|
|
vma = find_vma(mm, addr);
|
|
if (!vma || (addr + len) <= vma->vm_start) {
|
|
/* remember the address as a hint for next time */
|
|
if (use_cache)
|
|
mm->free_area_cache = addr;
|
|
return addr;
|
|
}
|
|
|
|
/* remember the largest hole we saw so far */
|
|
if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
|
|
mm->cached_hole_size = vma->vm_start - addr;
|
|
|
|
/* try just below the current vma->vm_start */
|
|
addr = vma->vm_start;
|
|
}
|
|
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
addr = slice_find_area_bottomup(mm, len, available, psize, 0);
|
|
|
|
/*
|
|
* Restore the topdown base:
|
|
*/
|
|
if (use_cache) {
|
|
mm->free_area_cache = mm->mmap_base;
|
|
mm->cached_hole_size = ~0UL;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
|
|
static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
|
|
struct slice_mask mask, int psize,
|
|
int topdown, int use_cache)
|
|
{
|
|
if (topdown)
|
|
return slice_find_area_topdown(mm, len, mask, psize, use_cache);
|
|
else
|
|
return slice_find_area_bottomup(mm, len, mask, psize, use_cache);
|
|
}
|
|
|
|
#define or_mask(dst, src) do { \
|
|
(dst).low_slices |= (src).low_slices; \
|
|
(dst).high_slices |= (src).high_slices; \
|
|
} while (0)
|
|
|
|
#define andnot_mask(dst, src) do { \
|
|
(dst).low_slices &= ~(src).low_slices; \
|
|
(dst).high_slices &= ~(src).high_slices; \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
#define MMU_PAGE_BASE MMU_PAGE_64K
|
|
#else
|
|
#define MMU_PAGE_BASE MMU_PAGE_4K
|
|
#endif
|
|
|
|
unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
|
|
unsigned long flags, unsigned int psize,
|
|
int topdown, int use_cache)
|
|
{
|
|
struct slice_mask mask = {0, 0};
|
|
struct slice_mask good_mask;
|
|
struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
|
|
struct slice_mask compat_mask = {0, 0};
|
|
int fixed = (flags & MAP_FIXED);
|
|
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long newaddr;
|
|
|
|
/* Sanity checks */
|
|
BUG_ON(mm->task_size == 0);
|
|
|
|
slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
|
|
slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d, use_cache=%d\n",
|
|
addr, len, flags, topdown, use_cache);
|
|
|
|
if (len > mm->task_size)
|
|
return -ENOMEM;
|
|
if (len & ((1ul << pshift) - 1))
|
|
return -EINVAL;
|
|
if (fixed && (addr & ((1ul << pshift) - 1)))
|
|
return -EINVAL;
|
|
if (fixed && addr > (mm->task_size - len))
|
|
return -EINVAL;
|
|
|
|
/* If hint, make sure it matches our alignment restrictions */
|
|
if (!fixed && addr) {
|
|
addr = _ALIGN_UP(addr, 1ul << pshift);
|
|
slice_dbg(" aligned addr=%lx\n", addr);
|
|
/* Ignore hint if it's too large or overlaps a VMA */
|
|
if (addr > mm->task_size - len ||
|
|
!slice_area_is_free(mm, addr, len))
|
|
addr = 0;
|
|
}
|
|
|
|
/* First make up a "good" mask of slices that have the right size
|
|
* already
|
|
*/
|
|
good_mask = slice_mask_for_size(mm, psize);
|
|
slice_print_mask(" good_mask", good_mask);
|
|
|
|
/*
|
|
* Here "good" means slices that are already the right page size,
|
|
* "compat" means slices that have a compatible page size (i.e.
|
|
* 4k in a 64k pagesize kernel), and "free" means slices without
|
|
* any VMAs.
|
|
*
|
|
* If MAP_FIXED:
|
|
* check if fits in good | compat => OK
|
|
* check if fits in good | compat | free => convert free
|
|
* else bad
|
|
* If have hint:
|
|
* check if hint fits in good => OK
|
|
* check if hint fits in good | free => convert free
|
|
* Otherwise:
|
|
* search in good, found => OK
|
|
* search in good | free, found => convert free
|
|
* search in good | compat | free, found => convert free.
|
|
*/
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
/* If we support combo pages, we can allow 64k pages in 4k slices */
|
|
if (psize == MMU_PAGE_64K) {
|
|
compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
|
|
if (fixed)
|
|
or_mask(good_mask, compat_mask);
|
|
}
|
|
#endif
|
|
|
|
/* First check hint if it's valid or if we have MAP_FIXED */
|
|
if (addr != 0 || fixed) {
|
|
/* Build a mask for the requested range */
|
|
mask = slice_range_to_mask(addr, len);
|
|
slice_print_mask(" mask", mask);
|
|
|
|
/* Check if we fit in the good mask. If we do, we just return,
|
|
* nothing else to do
|
|
*/
|
|
if (slice_check_fit(mask, good_mask)) {
|
|
slice_dbg(" fits good !\n");
|
|
return addr;
|
|
}
|
|
} else {
|
|
/* Now let's see if we can find something in the existing
|
|
* slices for that size
|
|
*/
|
|
newaddr = slice_find_area(mm, len, good_mask, psize, topdown,
|
|
use_cache);
|
|
if (newaddr != -ENOMEM) {
|
|
/* Found within the good mask, we don't have to setup,
|
|
* we thus return directly
|
|
*/
|
|
slice_dbg(" found area at 0x%lx\n", newaddr);
|
|
return newaddr;
|
|
}
|
|
}
|
|
|
|
/* We don't fit in the good mask, check what other slices are
|
|
* empty and thus can be converted
|
|
*/
|
|
potential_mask = slice_mask_for_free(mm);
|
|
or_mask(potential_mask, good_mask);
|
|
slice_print_mask(" potential", potential_mask);
|
|
|
|
if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
|
|
slice_dbg(" fits potential !\n");
|
|
goto convert;
|
|
}
|
|
|
|
/* If we have MAP_FIXED and failed the above steps, then error out */
|
|
if (fixed)
|
|
return -EBUSY;
|
|
|
|
slice_dbg(" search...\n");
|
|
|
|
/* If we had a hint that didn't work out, see if we can fit
|
|
* anywhere in the good area.
|
|
*/
|
|
if (addr) {
|
|
addr = slice_find_area(mm, len, good_mask, psize, topdown,
|
|
use_cache);
|
|
if (addr != -ENOMEM) {
|
|
slice_dbg(" found area at 0x%lx\n", addr);
|
|
return addr;
|
|
}
|
|
}
|
|
|
|
/* Now let's see if we can find something in the existing slices
|
|
* for that size plus free slices
|
|
*/
|
|
addr = slice_find_area(mm, len, potential_mask, psize, topdown,
|
|
use_cache);
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
|
|
/* retry the search with 4k-page slices included */
|
|
or_mask(potential_mask, compat_mask);
|
|
addr = slice_find_area(mm, len, potential_mask, psize,
|
|
topdown, use_cache);
|
|
}
|
|
#endif
|
|
|
|
if (addr == -ENOMEM)
|
|
return -ENOMEM;
|
|
|
|
mask = slice_range_to_mask(addr, len);
|
|
slice_dbg(" found potential area at 0x%lx\n", addr);
|
|
slice_print_mask(" mask", mask);
|
|
|
|
convert:
|
|
andnot_mask(mask, good_mask);
|
|
andnot_mask(mask, compat_mask);
|
|
if (mask.low_slices || mask.high_slices) {
|
|
slice_convert(mm, mask, psize);
|
|
if (psize > MMU_PAGE_BASE)
|
|
on_each_cpu(slice_flush_segments, mm, 1);
|
|
}
|
|
return addr;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
|
|
|
|
unsigned long arch_get_unmapped_area(struct file *filp,
|
|
unsigned long addr,
|
|
unsigned long len,
|
|
unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
return slice_get_unmapped_area(addr, len, flags,
|
|
current->mm->context.user_psize,
|
|
0, 1);
|
|
}
|
|
|
|
unsigned long arch_get_unmapped_area_topdown(struct file *filp,
|
|
const unsigned long addr0,
|
|
const unsigned long len,
|
|
const unsigned long pgoff,
|
|
const unsigned long flags)
|
|
{
|
|
return slice_get_unmapped_area(addr0, len, flags,
|
|
current->mm->context.user_psize,
|
|
1, 1);
|
|
}
|
|
|
|
unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
u64 psizes;
|
|
int index;
|
|
|
|
if (addr < SLICE_LOW_TOP) {
|
|
psizes = mm->context.low_slices_psize;
|
|
index = GET_LOW_SLICE_INDEX(addr);
|
|
} else {
|
|
psizes = mm->context.high_slices_psize;
|
|
index = GET_HIGH_SLICE_INDEX(addr);
|
|
}
|
|
|
|
return (psizes >> (index * 4)) & 0xf;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_slice_psize);
|
|
|
|
/*
|
|
* This is called by hash_page when it needs to do a lazy conversion of
|
|
* an address space from real 64K pages to combo 4K pages (typically
|
|
* when hitting a non cacheable mapping on a processor or hypervisor
|
|
* that won't allow them for 64K pages).
|
|
*
|
|
* This is also called in init_new_context() to change back the user
|
|
* psize from whatever the parent context had it set to
|
|
* N.B. This may be called before mm->context.id has been set.
|
|
*
|
|
* This function will only change the content of the {low,high)_slice_psize
|
|
* masks, it will not flush SLBs as this shall be handled lazily by the
|
|
* caller.
|
|
*/
|
|
void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
|
|
{
|
|
unsigned long flags, lpsizes, hpsizes;
|
|
unsigned int old_psize;
|
|
int i;
|
|
|
|
slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
|
|
|
|
spin_lock_irqsave(&slice_convert_lock, flags);
|
|
|
|
old_psize = mm->context.user_psize;
|
|
slice_dbg(" old_psize=%d\n", old_psize);
|
|
if (old_psize == psize)
|
|
goto bail;
|
|
|
|
mm->context.user_psize = psize;
|
|
wmb();
|
|
|
|
lpsizes = mm->context.low_slices_psize;
|
|
for (i = 0; i < SLICE_NUM_LOW; i++)
|
|
if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
|
|
lpsizes = (lpsizes & ~(0xful << (i * 4))) |
|
|
(((unsigned long)psize) << (i * 4));
|
|
|
|
hpsizes = mm->context.high_slices_psize;
|
|
for (i = 0; i < SLICE_NUM_HIGH; i++)
|
|
if (((hpsizes >> (i * 4)) & 0xf) == old_psize)
|
|
hpsizes = (hpsizes & ~(0xful << (i * 4))) |
|
|
(((unsigned long)psize) << (i * 4));
|
|
|
|
mm->context.low_slices_psize = lpsizes;
|
|
mm->context.high_slices_psize = hpsizes;
|
|
|
|
slice_dbg(" lsps=%lx, hsps=%lx\n",
|
|
mm->context.low_slices_psize,
|
|
mm->context.high_slices_psize);
|
|
|
|
bail:
|
|
spin_unlock_irqrestore(&slice_convert_lock, flags);
|
|
}
|
|
|
|
void slice_set_psize(struct mm_struct *mm, unsigned long address,
|
|
unsigned int psize)
|
|
{
|
|
unsigned long i, flags;
|
|
u64 *p;
|
|
|
|
spin_lock_irqsave(&slice_convert_lock, flags);
|
|
if (address < SLICE_LOW_TOP) {
|
|
i = GET_LOW_SLICE_INDEX(address);
|
|
p = &mm->context.low_slices_psize;
|
|
} else {
|
|
i = GET_HIGH_SLICE_INDEX(address);
|
|
p = &mm->context.high_slices_psize;
|
|
}
|
|
*p = (*p & ~(0xful << (i * 4))) | ((unsigned long) psize << (i * 4));
|
|
spin_unlock_irqrestore(&slice_convert_lock, flags);
|
|
|
|
#ifdef CONFIG_SPU_BASE
|
|
spu_flush_all_slbs(mm);
|
|
#endif
|
|
}
|
|
|
|
void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
|
|
unsigned long len, unsigned int psize)
|
|
{
|
|
struct slice_mask mask = slice_range_to_mask(start, len);
|
|
|
|
slice_convert(mm, mask, psize);
|
|
}
|
|
|
|
/*
|
|
* is_hugepage_only_range() is used by generic code to verify wether
|
|
* a normal mmap mapping (non hugetlbfs) is valid on a given area.
|
|
*
|
|
* until the generic code provides a more generic hook and/or starts
|
|
* calling arch get_unmapped_area for MAP_FIXED (which our implementation
|
|
* here knows how to deal with), we hijack it to keep standard mappings
|
|
* away from us.
|
|
*
|
|
* because of that generic code limitation, MAP_FIXED mapping cannot
|
|
* "convert" back a slice with no VMAs to the standard page size, only
|
|
* get_unmapped_area() can. It would be possible to fix it here but I
|
|
* prefer working on fixing the generic code instead.
|
|
*
|
|
* WARNING: This will not work if hugetlbfs isn't enabled since the
|
|
* generic code will redefine that function as 0 in that. This is ok
|
|
* for now as we only use slices with hugetlbfs enabled. This should
|
|
* be fixed as the generic code gets fixed.
|
|
*/
|
|
int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
|
|
unsigned long len)
|
|
{
|
|
struct slice_mask mask, available;
|
|
|
|
mask = slice_range_to_mask(addr, len);
|
|
available = slice_mask_for_size(mm, mm->context.user_psize);
|
|
|
|
#if 0 /* too verbose */
|
|
slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
|
|
mm, addr, len);
|
|
slice_print_mask(" mask", mask);
|
|
slice_print_mask(" available", available);
|
|
#endif
|
|
return !slice_check_fit(mask, available);
|
|
}
|
|
|