android_kernel_xiaomi_sm8350/drivers/net/sfc/bitfield.h
Ben Hutchings 8ceee660aa New driver "sfc" for Solarstorm SFC4000 controller.
The driver supports the 10Xpress PHY and XFP modules on our reference
designs SFE4001 and SFE4002 and the SMC models SMC10GPCIe-XFP and
SMC10GPCIe-10BT.

Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-04-29 01:42:43 -04:00

509 lines
18 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_BITFIELD_H
#define EFX_BITFIELD_H
/*
* Efx bitfield access
*
* Efx NICs make extensive use of bitfields up to 128 bits
* wide. Since there is no native 128-bit datatype on most systems,
* and since 64-bit datatypes are inefficient on 32-bit systems and
* vice versa, we wrap accesses in a way that uses the most efficient
* datatype.
*
* The NICs are PCI devices and therefore little-endian. Since most
* of the quantities that we deal with are DMAed to/from host memory,
* we define our datatypes (efx_oword_t, efx_qword_t and
* efx_dword_t) to be little-endian.
*/
/* Lowest bit numbers and widths */
#define EFX_DUMMY_FIELD_LBN 0
#define EFX_DUMMY_FIELD_WIDTH 0
#define EFX_DWORD_0_LBN 0
#define EFX_DWORD_0_WIDTH 32
#define EFX_DWORD_1_LBN 32
#define EFX_DWORD_1_WIDTH 32
#define EFX_DWORD_2_LBN 64
#define EFX_DWORD_2_WIDTH 32
#define EFX_DWORD_3_LBN 96
#define EFX_DWORD_3_WIDTH 32
/* Specified attribute (e.g. LBN) of the specified field */
#define EFX_VAL(field, attribute) field ## _ ## attribute
/* Low bit number of the specified field */
#define EFX_LOW_BIT(field) EFX_VAL(field, LBN)
/* Bit width of the specified field */
#define EFX_WIDTH(field) EFX_VAL(field, WIDTH)
/* High bit number of the specified field */
#define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1)
/* Mask equal in width to the specified field.
*
* For example, a field with width 5 would have a mask of 0x1f.
*
* The maximum width mask that can be generated is 64 bits.
*/
#define EFX_MASK64(field) \
(EFX_WIDTH(field) == 64 ? ~((u64) 0) : \
(((((u64) 1) << EFX_WIDTH(field))) - 1))
/* Mask equal in width to the specified field.
*
* For example, a field with width 5 would have a mask of 0x1f.
*
* The maximum width mask that can be generated is 32 bits. Use
* EFX_MASK64 for higher width fields.
*/
#define EFX_MASK32(field) \
(EFX_WIDTH(field) == 32 ? ~((u32) 0) : \
(((((u32) 1) << EFX_WIDTH(field))) - 1))
/* A doubleword (i.e. 4 byte) datatype - little-endian in HW */
typedef union efx_dword {
__le32 u32[1];
} efx_dword_t;
/* A quadword (i.e. 8 byte) datatype - little-endian in HW */
typedef union efx_qword {
__le64 u64[1];
__le32 u32[2];
efx_dword_t dword[2];
} efx_qword_t;
/* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */
typedef union efx_oword {
__le64 u64[2];
efx_qword_t qword[2];
__le32 u32[4];
efx_dword_t dword[4];
} efx_oword_t;
/* Format string and value expanders for printk */
#define EFX_DWORD_FMT "%08x"
#define EFX_QWORD_FMT "%08x:%08x"
#define EFX_OWORD_FMT "%08x:%08x:%08x:%08x"
#define EFX_DWORD_VAL(dword) \
((unsigned int) le32_to_cpu((dword).u32[0]))
#define EFX_QWORD_VAL(qword) \
((unsigned int) le32_to_cpu((qword).u32[1])), \
((unsigned int) le32_to_cpu((qword).u32[0]))
#define EFX_OWORD_VAL(oword) \
((unsigned int) le32_to_cpu((oword).u32[3])), \
((unsigned int) le32_to_cpu((oword).u32[2])), \
((unsigned int) le32_to_cpu((oword).u32[1])), \
((unsigned int) le32_to_cpu((oword).u32[0]))
/*
* Extract bit field portion [low,high) from the native-endian element
* which contains bits [min,max).
*
* For example, suppose "element" represents the high 32 bits of a
* 64-bit value, and we wish to extract the bits belonging to the bit
* field occupying bits 28-45 of this 64-bit value.
*
* Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give
*
* ( element ) << 4
*
* The result will contain the relevant bits filled in in the range
* [0,high-low), with garbage in bits [high-low+1,...).
*/
#define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \
(((low > max) || (high < min)) ? 0 : \
((low > min) ? \
((native_element) >> (low - min)) : \
((native_element) << (min - low))))
/*
* Extract bit field portion [low,high) from the 64-bit little-endian
* element which contains bits [min,max)
*/
#define EFX_EXTRACT64(element, min, max, low, high) \
EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high)
/*
* Extract bit field portion [low,high) from the 32-bit little-endian
* element which contains bits [min,max)
*/
#define EFX_EXTRACT32(element, min, max, low, high) \
EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high)
#define EFX_EXTRACT_OWORD64(oword, low, high) \
(EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \
EFX_EXTRACT64((oword).u64[1], 64, 127, low, high))
#define EFX_EXTRACT_QWORD64(qword, low, high) \
EFX_EXTRACT64((qword).u64[0], 0, 63, low, high)
#define EFX_EXTRACT_OWORD32(oword, low, high) \
(EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \
EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \
EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \
EFX_EXTRACT32((oword).u32[3], 96, 127, low, high))
#define EFX_EXTRACT_QWORD32(qword, low, high) \
(EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \
EFX_EXTRACT32((qword).u32[1], 32, 63, low, high))
#define EFX_EXTRACT_DWORD(dword, low, high) \
EFX_EXTRACT32((dword).u32[0], 0, 31, low, high)
#define EFX_OWORD_FIELD64(oword, field) \
(EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK64(field))
#define EFX_QWORD_FIELD64(qword, field) \
(EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK64(field))
#define EFX_OWORD_FIELD32(oword, field) \
(EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK32(field))
#define EFX_QWORD_FIELD32(qword, field) \
(EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK32(field))
#define EFX_DWORD_FIELD(dword, field) \
(EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK32(field))
#define EFX_OWORD_IS_ZERO64(oword) \
(((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0)
#define EFX_QWORD_IS_ZERO64(qword) \
(((qword).u64[0]) == (__force __le64) 0)
#define EFX_OWORD_IS_ZERO32(oword) \
(((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \
== (__force __le32) 0)
#define EFX_QWORD_IS_ZERO32(qword) \
(((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0)
#define EFX_DWORD_IS_ZERO(dword) \
(((dword).u32[0]) == (__force __le32) 0)
#define EFX_OWORD_IS_ALL_ONES64(oword) \
(((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0))
#define EFX_QWORD_IS_ALL_ONES64(qword) \
((qword).u64[0] == ~((__force __le64) 0))
#define EFX_OWORD_IS_ALL_ONES32(oword) \
(((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \
== ~((__force __le32) 0))
#define EFX_QWORD_IS_ALL_ONES32(qword) \
(((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0))
#define EFX_DWORD_IS_ALL_ONES(dword) \
((dword).u32[0] == ~((__force __le32) 0))
#if BITS_PER_LONG == 64
#define EFX_OWORD_FIELD EFX_OWORD_FIELD64
#define EFX_QWORD_FIELD EFX_QWORD_FIELD64
#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64
#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64
#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64
#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64
#else
#define EFX_OWORD_FIELD EFX_OWORD_FIELD32
#define EFX_QWORD_FIELD EFX_QWORD_FIELD32
#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32
#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32
#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32
#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32
#endif
/*
* Construct bit field portion
*
* Creates the portion of the bit field [low,high) that lies within
* the range [min,max).
*/
#define EFX_INSERT_NATIVE64(min, max, low, high, value) \
(((low > max) || (high < min)) ? 0 : \
((low > min) ? \
(((u64) (value)) << (low - min)) : \
(((u64) (value)) >> (min - low))))
#define EFX_INSERT_NATIVE32(min, max, low, high, value) \
(((low > max) || (high < min)) ? 0 : \
((low > min) ? \
(((u32) (value)) << (low - min)) : \
(((u32) (value)) >> (min - low))))
#define EFX_INSERT_NATIVE(min, max, low, high, value) \
((((max - min) >= 32) || ((high - low) >= 32)) ? \
EFX_INSERT_NATIVE64(min, max, low, high, value) : \
EFX_INSERT_NATIVE32(min, max, low, high, value))
/*
* Construct bit field portion
*
* Creates the portion of the named bit field that lies within the
* range [min,max).
*/
#define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \
EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \
EFX_HIGH_BIT(field), value)
/*
* Construct bit field
*
* Creates the portion of the named bit fields that lie within the
* range [min,max).
*/
#define EFX_INSERT_FIELDS_NATIVE(min, max, \
field1, value1, \
field2, value2, \
field3, value3, \
field4, value4, \
field5, value5, \
field6, value6, \
field7, value7, \
field8, value8, \
field9, value9, \
field10, value10) \
(EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10)))
#define EFX_INSERT_FIELDS64(...) \
cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
#define EFX_INSERT_FIELDS32(...) \
cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
#define EFX_POPULATE_OWORD64(oword, ...) do { \
(oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
(oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \
} while (0)
#define EFX_POPULATE_QWORD64(qword, ...) do { \
(qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
} while (0)
#define EFX_POPULATE_OWORD32(oword, ...) do { \
(oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
(oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
(oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \
(oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \
} while (0)
#define EFX_POPULATE_QWORD32(qword, ...) do { \
(qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
(qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
} while (0)
#define EFX_POPULATE_DWORD(dword, ...) do { \
(dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
} while (0)
#if BITS_PER_LONG == 64
#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64
#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64
#else
#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32
#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32
#endif
/* Populate an octword field with various numbers of arguments */
#define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD
#define EFX_POPULATE_OWORD_9(oword, ...) \
EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_8(oword, ...) \
EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_7(oword, ...) \
EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_6(oword, ...) \
EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_5(oword, ...) \
EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_4(oword, ...) \
EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_3(oword, ...) \
EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_2(oword, ...) \
EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_1(oword, ...) \
EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_ZERO_OWORD(oword) \
EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0)
#define EFX_SET_OWORD(oword) \
EFX_POPULATE_OWORD_4(oword, \
EFX_DWORD_0, 0xffffffff, \
EFX_DWORD_1, 0xffffffff, \
EFX_DWORD_2, 0xffffffff, \
EFX_DWORD_3, 0xffffffff)
/* Populate a quadword field with various numbers of arguments */
#define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD
#define EFX_POPULATE_QWORD_9(qword, ...) \
EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_8(qword, ...) \
EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_7(qword, ...) \
EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_6(qword, ...) \
EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_5(qword, ...) \
EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_4(qword, ...) \
EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_3(qword, ...) \
EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_2(qword, ...) \
EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_1(qword, ...) \
EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_ZERO_QWORD(qword) \
EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0)
#define EFX_SET_QWORD(qword) \
EFX_POPULATE_QWORD_2(qword, \
EFX_DWORD_0, 0xffffffff, \
EFX_DWORD_1, 0xffffffff)
/* Populate a dword field with various numbers of arguments */
#define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD
#define EFX_POPULATE_DWORD_9(dword, ...) \
EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_8(dword, ...) \
EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_7(dword, ...) \
EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_6(dword, ...) \
EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_5(dword, ...) \
EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_4(dword, ...) \
EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_3(dword, ...) \
EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_2(dword, ...) \
EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_1(dword, ...) \
EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_ZERO_DWORD(dword) \
EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0)
#define EFX_SET_DWORD(dword) \
EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff)
/*
* Modify a named field within an already-populated structure. Used
* for read-modify-write operations.
*
*/
#define EFX_INVERT_OWORD(oword) do { \
(oword).u64[0] = ~((oword).u64[0]); \
(oword).u64[1] = ~((oword).u64[1]); \
} while (0)
#define EFX_INSERT_FIELD64(...) \
cpu_to_le64(EFX_INSERT_FIELD_NATIVE(__VA_ARGS__))
#define EFX_INSERT_FIELD32(...) \
cpu_to_le32(EFX_INSERT_FIELD_NATIVE(__VA_ARGS__))
#define EFX_INPLACE_MASK64(min, max, field) \
EFX_INSERT_FIELD64(min, max, field, EFX_MASK64(field))
#define EFX_INPLACE_MASK32(min, max, field) \
EFX_INSERT_FIELD32(min, max, field, EFX_MASK32(field))
#define EFX_SET_OWORD_FIELD64(oword, field, value) do { \
(oword).u64[0] = (((oword).u64[0] \
& ~EFX_INPLACE_MASK64(0, 63, field)) \
| EFX_INSERT_FIELD64(0, 63, field, value)); \
(oword).u64[1] = (((oword).u64[1] \
& ~EFX_INPLACE_MASK64(64, 127, field)) \
| EFX_INSERT_FIELD64(64, 127, field, value)); \
} while (0)
#define EFX_SET_QWORD_FIELD64(qword, field, value) do { \
(qword).u64[0] = (((qword).u64[0] \
& ~EFX_INPLACE_MASK64(0, 63, field)) \
| EFX_INSERT_FIELD64(0, 63, field, value)); \
} while (0)
#define EFX_SET_OWORD_FIELD32(oword, field, value) do { \
(oword).u32[0] = (((oword).u32[0] \
& ~EFX_INPLACE_MASK32(0, 31, field)) \
| EFX_INSERT_FIELD32(0, 31, field, value)); \
(oword).u32[1] = (((oword).u32[1] \
& ~EFX_INPLACE_MASK32(32, 63, field)) \
| EFX_INSERT_FIELD32(32, 63, field, value)); \
(oword).u32[2] = (((oword).u32[2] \
& ~EFX_INPLACE_MASK32(64, 95, field)) \
| EFX_INSERT_FIELD32(64, 95, field, value)); \
(oword).u32[3] = (((oword).u32[3] \
& ~EFX_INPLACE_MASK32(96, 127, field)) \
| EFX_INSERT_FIELD32(96, 127, field, value)); \
} while (0)
#define EFX_SET_QWORD_FIELD32(qword, field, value) do { \
(qword).u32[0] = (((qword).u32[0] \
& ~EFX_INPLACE_MASK32(0, 31, field)) \
| EFX_INSERT_FIELD32(0, 31, field, value)); \
(qword).u32[1] = (((qword).u32[1] \
& ~EFX_INPLACE_MASK32(32, 63, field)) \
| EFX_INSERT_FIELD32(32, 63, field, value)); \
} while (0)
#define EFX_SET_DWORD_FIELD(dword, field, value) do { \
(dword).u32[0] = (((dword).u32[0] \
& ~EFX_INPLACE_MASK32(0, 31, field)) \
| EFX_INSERT_FIELD32(0, 31, field, value)); \
} while (0)
#if BITS_PER_LONG == 64
#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64
#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64
#else
#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32
#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32
#endif
#define EFX_SET_OWORD_FIELD_VER(efx, oword, field, value) do { \
if (FALCON_REV(efx) >= FALCON_REV_B0) { \
EFX_SET_OWORD_FIELD((oword), field##_B0, (value)); \
} else { \
EFX_SET_OWORD_FIELD((oword), field##_A1, (value)); \
} \
} while (0)
#define EFX_QWORD_FIELD_VER(efx, qword, field) \
(FALCON_REV(efx) >= FALCON_REV_B0 ? \
EFX_QWORD_FIELD((qword), field##_B0) : \
EFX_QWORD_FIELD((qword), field##_A1))
/* Used to avoid compiler warnings about shift range exceeding width
* of the data types when dma_addr_t is only 32 bits wide.
*/
#define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t))
#define EFX_DMA_TYPE_WIDTH(width) \
(((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH)
#define EFX_DMA_MAX_MASK ((DMA_ADDR_T_WIDTH == 64) ? \
~((u64) 0) : ~((u32) 0))
#define EFX_DMA_MASK(mask) ((mask) & EFX_DMA_MAX_MASK)
#endif /* EFX_BITFIELD_H */