android_kernel_xiaomi_sm8350/msm/vidc/msm_smem.c
Shi Zhongbo 2f4c502bab msm: vidc: revise debug levels
Clean up debug log levels as:
    1. Revise VIDC_WARN to VIDC_ERR;
    2. Revise VIDC_PROF as VIDC_PERF;
    3. Mark some one-time logs, e.g most of logs
       in initialization and deinitialization as VIDC_HIGH;
    4. Keep VIDC_PKT;
    5. All other logs change to VIDC_LOW;

Change-Id: I8fc30f97dc3424da8418aab00e8af074ec8d4ef9
Signed-off-by: Shi Zhongbo <zhongbos@codeaurora.org>
2019-05-27 13:37:45 +08:00

595 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2019, The Linux Foundation. All rights reserved.
*/
#include <asm/dma-iommu.h>
#include <linux/dma-buf.h>
#include <linux/dma-direction.h>
#include <linux/iommu.h>
#include <linux/msm_dma_iommu_mapping.h>
#include <linux/msm_ion.h>
#include <linux/ion_kernel.h>
#include <linux/slab.h>
#include <linux/types.h>
#include "msm_vidc.h"
#include "msm_vidc_debug.h"
#include "msm_vidc_resources.h"
static int msm_dma_get_device_address(struct dma_buf *dbuf, unsigned long align,
dma_addr_t *iova, unsigned long *buffer_size,
unsigned long flags, enum hal_buffer buffer_type,
unsigned long session_type, struct msm_vidc_platform_resources *res,
struct dma_mapping_info *mapping_info)
{
int rc = 0;
struct dma_buf_attachment *attach;
struct sg_table *table = NULL;
struct context_bank_info *cb = NULL;
if (!dbuf || !iova || !buffer_size || !mapping_info) {
dprintk(VIDC_ERR, "Invalid params: %pK, %pK, %pK, %pK\n",
dbuf, iova, buffer_size, mapping_info);
return -EINVAL;
}
if (is_iommu_present(res)) {
cb = msm_smem_get_context_bank(
session_type, (flags & SMEM_SECURE),
res, buffer_type);
if (!cb) {
dprintk(VIDC_ERR,
"%s: Failed to get context bank device\n",
__func__);
rc = -EIO;
goto mem_map_failed;
}
/* Check if the dmabuf size matches expected size */
if (dbuf->size < *buffer_size) {
rc = -EINVAL;
dprintk(VIDC_ERR,
"Size mismatch: Dmabuf size: %zu Expected Size: %lu",
dbuf->size, *buffer_size);
msm_vidc_res_handle_fatal_hw_error(res,
true);
goto mem_buf_size_mismatch;
}
/* Prepare a dma buf for dma on the given device */
attach = dma_buf_attach(dbuf, cb->dev);
if (IS_ERR_OR_NULL(attach)) {
rc = PTR_ERR(attach) ? PTR_ERR(attach) : -ENOMEM;
dprintk(VIDC_ERR, "Failed to attach dmabuf\n");
goto mem_buf_attach_failed;
}
/*
* Get the scatterlist for the given attachment
* Mapping of sg is taken care by map attachment
*/
attach->dma_map_attrs = DMA_ATTR_DELAYED_UNMAP;
/*
* We do not need dma_map function to perform cache operations
* on the whole buffer size and hence pass skip sync flag.
* We do the required cache operations separately for the
* required buffer size
*/
attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
if (res->sys_cache_present)
attach->dma_map_attrs |=
DMA_ATTR_IOMMU_USE_UPSTREAM_HINT;
table = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
if (IS_ERR_OR_NULL(table)) {
rc = PTR_ERR(table) ? PTR_ERR(table) : -ENOMEM;
dprintk(VIDC_ERR, "Failed to map table\n");
goto mem_map_table_failed;
}
/* debug trace's need to be updated later */
trace_msm_smem_buffer_iommu_op_start("MAP", 0, 0,
align, *iova, *buffer_size);
if (table->sgl) {
*iova = table->sgl->dma_address;
*buffer_size = table->sgl->dma_length;
} else {
dprintk(VIDC_ERR, "sgl is NULL\n");
rc = -ENOMEM;
goto mem_map_sg_failed;
}
mapping_info->dev = cb->dev;
mapping_info->domain = cb->domain;
mapping_info->table = table;
mapping_info->attach = attach;
mapping_info->buf = dbuf;
mapping_info->cb_info = (void *)cb;
trace_msm_smem_buffer_iommu_op_end("MAP", 0, 0,
align, *iova, *buffer_size);
} else {
dprintk(VIDC_HIGH, "iommu not present, use phys mem addr\n");
}
return 0;
mem_map_sg_failed:
dma_buf_unmap_attachment(attach, table, DMA_BIDIRECTIONAL);
mem_map_table_failed:
dma_buf_detach(dbuf, attach);
mem_buf_size_mismatch:
mem_buf_attach_failed:
mem_map_failed:
return rc;
}
static int msm_dma_put_device_address(u32 flags,
struct dma_mapping_info *mapping_info,
enum hal_buffer buffer_type)
{
int rc = 0;
if (!mapping_info) {
dprintk(VIDC_ERR, "Invalid mapping_info\n");
return -EINVAL;
}
if (!mapping_info->dev || !mapping_info->table ||
!mapping_info->buf || !mapping_info->attach ||
!mapping_info->cb_info) {
dprintk(VIDC_ERR, "Invalid params\n");
return -EINVAL;
}
trace_msm_smem_buffer_iommu_op_start("UNMAP", 0, 0, 0, 0, 0);
dma_buf_unmap_attachment(mapping_info->attach,
mapping_info->table, DMA_BIDIRECTIONAL);
dma_buf_detach(mapping_info->buf, mapping_info->attach);
trace_msm_smem_buffer_iommu_op_end("UNMAP", 0, 0, 0, 0, 0);
mapping_info->dev = NULL;
mapping_info->domain = NULL;
mapping_info->table = NULL;
mapping_info->attach = NULL;
mapping_info->buf = NULL;
mapping_info->cb_info = NULL;
return rc;
}
struct dma_buf *msm_smem_get_dma_buf(int fd)
{
struct dma_buf *dma_buf;
dma_buf = dma_buf_get(fd);
if (IS_ERR_OR_NULL(dma_buf)) {
dprintk(VIDC_ERR, "Failed to get dma_buf for %d, error %ld\n",
fd, PTR_ERR(dma_buf));
dma_buf = NULL;
}
return dma_buf;
}
void msm_smem_put_dma_buf(void *dma_buf)
{
if (!dma_buf) {
dprintk(VIDC_ERR, "%s: NULL dma_buf\n", __func__);
return;
}
dma_buf_put((struct dma_buf *)dma_buf);
}
int msm_smem_map_dma_buf(struct msm_vidc_inst *inst, struct msm_smem *smem)
{
int rc = 0;
dma_addr_t iova = 0;
u32 temp = 0;
unsigned long buffer_size = 0;
unsigned long align = SZ_4K;
struct dma_buf *dbuf;
unsigned long ion_flags = 0;
if (!inst || !smem) {
dprintk(VIDC_ERR, "%s: Invalid params: %pK %pK\n",
__func__, inst, smem);
rc = -EINVAL;
goto exit;
}
if (smem->refcount) {
smem->refcount++;
goto exit;
}
dbuf = msm_smem_get_dma_buf(smem->fd);
if (!dbuf) {
rc = -EINVAL;
goto exit;
}
smem->dma_buf = dbuf;
rc = dma_buf_get_flags(dbuf, &ion_flags);
if (rc) {
dprintk(VIDC_ERR, "Failed to get dma buf flags: %d\n", rc);
goto exit;
}
if (ion_flags & ION_FLAG_CACHED)
smem->flags |= SMEM_CACHED;
if (ion_flags & ION_FLAG_SECURE)
smem->flags |= SMEM_SECURE;
buffer_size = smem->size;
rc = msm_dma_get_device_address(dbuf, align, &iova, &buffer_size,
smem->flags, smem->buffer_type, inst->session_type,
&(inst->core->resources), &smem->mapping_info);
if (rc) {
dprintk(VIDC_ERR, "Failed to get device address: %d\n", rc);
goto exit;
}
temp = (u32)iova;
if ((dma_addr_t)temp != iova) {
dprintk(VIDC_ERR, "iova(%pa) truncated to %#x", &iova, temp);
rc = -EINVAL;
goto exit;
}
smem->device_addr = (u32)iova + smem->offset;
smem->refcount++;
exit:
return rc;
}
int msm_smem_unmap_dma_buf(struct msm_vidc_inst *inst, struct msm_smem *smem)
{
int rc = 0;
if (!inst || !smem) {
dprintk(VIDC_ERR, "%s: Invalid params: %pK %pK\n",
__func__, inst, smem);
rc = -EINVAL;
goto exit;
}
if (smem->refcount) {
smem->refcount--;
} else {
dprintk(VIDC_ERR,
"unmap called while refcount is zero already\n");
return -EINVAL;
}
if (smem->refcount)
goto exit;
rc = msm_dma_put_device_address(smem->flags, &smem->mapping_info,
smem->buffer_type);
if (rc) {
dprintk(VIDC_ERR, "Failed to put device address: %d\n", rc);
goto exit;
}
msm_smem_put_dma_buf(smem->dma_buf);
smem->device_addr = 0x0;
smem->dma_buf = NULL;
exit:
return rc;
}
static int get_secure_flag_for_buffer_type(
u32 session_type, enum hal_buffer buffer_type)
{
switch (buffer_type) {
case HAL_BUFFER_INPUT:
if (session_type == MSM_VIDC_ENCODER)
return ION_FLAG_CP_PIXEL;
else
return ION_FLAG_CP_BITSTREAM;
case HAL_BUFFER_OUTPUT:
case HAL_BUFFER_OUTPUT2:
if (session_type == MSM_VIDC_ENCODER)
return ION_FLAG_CP_BITSTREAM;
else
return ION_FLAG_CP_PIXEL;
case HAL_BUFFER_INTERNAL_SCRATCH:
return ION_FLAG_CP_BITSTREAM;
case HAL_BUFFER_INTERNAL_SCRATCH_1:
return ION_FLAG_CP_NON_PIXEL;
case HAL_BUFFER_INTERNAL_SCRATCH_2:
return ION_FLAG_CP_PIXEL;
case HAL_BUFFER_INTERNAL_PERSIST:
if (session_type == MSM_VIDC_ENCODER)
return ION_FLAG_CP_NON_PIXEL;
else
return ION_FLAG_CP_BITSTREAM;
case HAL_BUFFER_INTERNAL_PERSIST_1:
return ION_FLAG_CP_NON_PIXEL;
default:
WARN(1, "No matching secure flag for buffer type : %x\n",
buffer_type);
return -EINVAL;
}
}
static int alloc_dma_mem(size_t size, u32 align, u32 flags,
enum hal_buffer buffer_type, int map_kernel,
struct msm_vidc_platform_resources *res, u32 session_type,
struct msm_smem *mem)
{
dma_addr_t iova = 0;
unsigned long buffer_size = 0;
unsigned long heap_mask = 0;
int rc = 0;
int ion_flags = 0;
struct dma_buf *dbuf = NULL;
if (!res) {
dprintk(VIDC_ERR, "%s: NULL res\n", __func__);
return -EINVAL;
}
align = ALIGN(align, SZ_4K);
size = ALIGN(size, SZ_4K);
if (is_iommu_present(res)) {
if (flags & SMEM_ADSP) {
dprintk(VIDC_HIGH, "Allocating from ADSP heap\n");
heap_mask = ION_HEAP(ION_ADSP_HEAP_ID);
} else {
heap_mask = ION_HEAP(ION_SYSTEM_HEAP_ID);
}
} else {
dprintk(VIDC_HIGH,
"allocate shared memory from adsp heap size %zx align %d\n",
size, align);
heap_mask = ION_HEAP(ION_ADSP_HEAP_ID);
}
if (flags & SMEM_CACHED)
ion_flags |= ION_FLAG_CACHED;
if ((flags & SMEM_SECURE) ||
(buffer_type == HAL_BUFFER_INTERNAL_PERSIST &&
session_type == MSM_VIDC_ENCODER)) {
int secure_flag =
get_secure_flag_for_buffer_type(
session_type, buffer_type);
if (secure_flag < 0) {
rc = secure_flag;
goto fail_shared_mem_alloc;
}
ion_flags |= ION_FLAG_SECURE | secure_flag;
heap_mask = ION_HEAP(ION_SECURE_HEAP_ID);
if (res->slave_side_cp) {
heap_mask = ION_HEAP(ION_CP_MM_HEAP_ID);
size = ALIGN(size, SZ_1M);
align = ALIGN(size, SZ_1M);
}
flags |= SMEM_SECURE;
}
trace_msm_smem_buffer_dma_op_start("ALLOC", (u32)buffer_type,
heap_mask, size, align, flags, map_kernel);
dbuf = ion_alloc(size, heap_mask, ion_flags);
if (IS_ERR_OR_NULL(dbuf)) {
dprintk(VIDC_ERR,
"Failed to allocate shared memory = %zx, %#x\n",
size, flags);
rc = -ENOMEM;
goto fail_shared_mem_alloc;
}
trace_msm_smem_buffer_dma_op_end("ALLOC", (u32)buffer_type,
heap_mask, size, align, flags, map_kernel);
mem->flags = flags;
mem->buffer_type = buffer_type;
mem->offset = 0;
mem->size = size;
mem->dma_buf = dbuf;
mem->kvaddr = NULL;
rc = msm_dma_get_device_address(dbuf, align, &iova,
&buffer_size, flags, buffer_type,
session_type, res, &mem->mapping_info);
if (rc) {
dprintk(VIDC_ERR, "Failed to get device address: %d\n",
rc);
goto fail_device_address;
}
mem->device_addr = (u32)iova;
if ((dma_addr_t)mem->device_addr != iova) {
dprintk(VIDC_ERR, "iova(%pa) truncated to %#x",
&iova, mem->device_addr);
goto fail_device_address;
}
if (map_kernel) {
dma_buf_begin_cpu_access(dbuf, DMA_BIDIRECTIONAL);
mem->kvaddr = dma_buf_vmap(dbuf);
if (!mem->kvaddr) {
dprintk(VIDC_ERR,
"Failed to map shared mem in kernel\n");
rc = -EIO;
goto fail_map;
}
}
dprintk(VIDC_HIGH,
"%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, buffer_type = %#x, flags = %#lx\n",
__func__, mem->dma_buf, mem->device_addr, mem->size,
mem->kvaddr, mem->buffer_type, mem->flags);
return rc;
fail_map:
if (map_kernel)
dma_buf_end_cpu_access(dbuf, DMA_BIDIRECTIONAL);
fail_device_address:
dma_buf_put(dbuf);
fail_shared_mem_alloc:
return rc;
}
static int free_dma_mem(struct msm_smem *mem)
{
dprintk(VIDC_HIGH,
"%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, buffer_type = %#x\n",
__func__, mem->dma_buf, mem->device_addr, mem->size,
mem->kvaddr, mem->buffer_type);
if (mem->device_addr) {
msm_dma_put_device_address(mem->flags,
&mem->mapping_info, mem->buffer_type);
mem->device_addr = 0x0;
}
if (mem->kvaddr) {
dma_buf_vunmap(mem->dma_buf, mem->kvaddr);
mem->kvaddr = NULL;
dma_buf_end_cpu_access(mem->dma_buf, DMA_BIDIRECTIONAL);
}
if (mem->dma_buf) {
trace_msm_smem_buffer_dma_op_start("FREE",
(u32)mem->buffer_type, -1, mem->size, -1,
mem->flags, -1);
dma_buf_put(mem->dma_buf);
mem->dma_buf = NULL;
trace_msm_smem_buffer_dma_op_end("FREE", (u32)mem->buffer_type,
-1, mem->size, -1, mem->flags, -1);
}
return 0;
}
int msm_smem_alloc(size_t size, u32 align, u32 flags,
enum hal_buffer buffer_type, int map_kernel,
void *res, u32 session_type, struct msm_smem *smem)
{
int rc = 0;
if (!smem || !size) {
dprintk(VIDC_ERR, "%s: NULL smem or %d size\n",
__func__, (u32)size);
return -EINVAL;
}
rc = alloc_dma_mem(size, align, flags, buffer_type, map_kernel,
(struct msm_vidc_platform_resources *)res,
session_type, smem);
return rc;
}
int msm_smem_free(struct msm_smem *smem)
{
int rc = 0;
if (!smem) {
dprintk(VIDC_ERR, "NULL smem passed\n");
return -EINVAL;
}
rc = free_dma_mem(smem);
return rc;
};
int msm_smem_cache_operations(struct dma_buf *dbuf,
enum smem_cache_ops cache_op, unsigned long offset, unsigned long size)
{
int rc = 0;
unsigned long flags = 0;
if (!dbuf) {
dprintk(VIDC_ERR, "%s: Invalid params\n", __func__);
return -EINVAL;
}
/* Return if buffer doesn't support caching */
rc = dma_buf_get_flags(dbuf, &flags);
if (rc) {
dprintk(VIDC_ERR, "%s: dma_buf_get_flags failed, err %d\n",
__func__, rc);
return rc;
} else if (!(flags & ION_FLAG_CACHED)) {
return rc;
}
switch (cache_op) {
case SMEM_CACHE_CLEAN:
case SMEM_CACHE_CLEAN_INVALIDATE:
rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_TO_DEVICE,
offset, size);
if (rc)
break;
rc = dma_buf_end_cpu_access_partial(dbuf, DMA_TO_DEVICE,
offset, size);
break;
case SMEM_CACHE_INVALIDATE:
rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_TO_DEVICE,
offset, size);
if (rc)
break;
rc = dma_buf_end_cpu_access_partial(dbuf, DMA_FROM_DEVICE,
offset, size);
break;
default:
dprintk(VIDC_ERR, "%s: cache (%d) operation not supported\n",
__func__, cache_op);
rc = -EINVAL;
break;
}
return rc;
}
struct context_bank_info *msm_smem_get_context_bank(u32 session_type,
bool is_secure, struct msm_vidc_platform_resources *res,
enum hal_buffer buffer_type)
{
struct context_bank_info *cb = NULL, *match = NULL;
/*
* HAL_BUFFER_INPUT is directly mapped to bitstream CB in DT
* as the buffer type structure was initially designed
* just for decoder. For Encoder, input should be mapped to
* yuvpixel CB. Persist is mapped to nonpixel CB.
* So swap the buffer types just in this local scope.
*/
if (is_secure && session_type == MSM_VIDC_ENCODER) {
if (buffer_type == HAL_BUFFER_INPUT)
buffer_type = HAL_BUFFER_OUTPUT;
else if (buffer_type == HAL_BUFFER_OUTPUT)
buffer_type = HAL_BUFFER_INPUT;
else if (buffer_type == HAL_BUFFER_INTERNAL_PERSIST)
buffer_type = HAL_BUFFER_INTERNAL_PERSIST_1;
}
list_for_each_entry(cb, &res->context_banks, list) {
if (cb->is_secure == is_secure &&
cb->buffer_type & buffer_type) {
match = cb;
break;
}
}
if (!match)
dprintk(VIDC_ERR,
"%s: cb not found for buffer_type %x, is_secure %d\n",
__func__, buffer_type, is_secure);
return match;
}