8ee2debce3
To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
455 lines
14 KiB
C
455 lines
14 KiB
C
/*
|
|
* Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
|
|
* August 2002: added remote node KVA remap - Martin J. Bligh
|
|
*
|
|
* Copyright (C) 2002, IBM Corp.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/acpi.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/mmzone.h>
|
|
#include <asm/bios_ebda.h>
|
|
#include <asm/proto.h>
|
|
|
|
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
/*
|
|
* numa interface - we expect the numa architecture specific code to have
|
|
* populated the following initialisation.
|
|
*
|
|
* 1) node_online_map - the map of all nodes configured (online) in the system
|
|
* 2) node_start_pfn - the starting page frame number for a node
|
|
* 3) node_end_pfn - the ending page fram number for a node
|
|
*/
|
|
unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
|
|
unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
|
|
|
|
|
|
#ifdef CONFIG_DISCONTIGMEM
|
|
/*
|
|
* 4) physnode_map - the mapping between a pfn and owning node
|
|
* physnode_map keeps track of the physical memory layout of a generic
|
|
* numa node on a 64Mb break (each element of the array will
|
|
* represent 64Mb of memory and will be marked by the node id. so,
|
|
* if the first gig is on node 0, and the second gig is on node 1
|
|
* physnode_map will contain:
|
|
*
|
|
* physnode_map[0-15] = 0;
|
|
* physnode_map[16-31] = 1;
|
|
* physnode_map[32- ] = -1;
|
|
*/
|
|
s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
|
|
EXPORT_SYMBOL(physnode_map);
|
|
|
|
void memory_present(int nid, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
|
|
nid, start, end);
|
|
printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
|
|
printk(KERN_DEBUG " ");
|
|
for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
|
|
physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
|
|
printk(KERN_CONT "%lx ", pfn);
|
|
}
|
|
printk(KERN_CONT "\n");
|
|
}
|
|
|
|
unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long nr_pages = end_pfn - start_pfn;
|
|
|
|
if (!nr_pages)
|
|
return 0;
|
|
|
|
return (nr_pages + 1) * sizeof(struct page);
|
|
}
|
|
#endif
|
|
|
|
extern unsigned long find_max_low_pfn(void);
|
|
extern unsigned long highend_pfn, highstart_pfn;
|
|
|
|
#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
|
|
|
|
unsigned long node_remap_size[MAX_NUMNODES];
|
|
static void *node_remap_start_vaddr[MAX_NUMNODES];
|
|
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
|
|
|
|
static unsigned long kva_start_pfn;
|
|
static unsigned long kva_pages;
|
|
/*
|
|
* FLAT - support for basic PC memory model with discontig enabled, essentially
|
|
* a single node with all available processors in it with a flat
|
|
* memory map.
|
|
*/
|
|
int __init get_memcfg_numa_flat(void)
|
|
{
|
|
printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
|
|
|
|
node_start_pfn[0] = 0;
|
|
node_end_pfn[0] = max_pfn;
|
|
e820_register_active_regions(0, 0, max_pfn);
|
|
memory_present(0, 0, max_pfn);
|
|
node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn);
|
|
|
|
/* Indicate there is one node available. */
|
|
nodes_clear(node_online_map);
|
|
node_set_online(0);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Find the highest page frame number we have available for the node
|
|
*/
|
|
static void __init propagate_e820_map_node(int nid)
|
|
{
|
|
if (node_end_pfn[nid] > max_pfn)
|
|
node_end_pfn[nid] = max_pfn;
|
|
/*
|
|
* if a user has given mem=XXXX, then we need to make sure
|
|
* that the node _starts_ before that, too, not just ends
|
|
*/
|
|
if (node_start_pfn[nid] > max_pfn)
|
|
node_start_pfn[nid] = max_pfn;
|
|
BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
|
|
}
|
|
|
|
/*
|
|
* Allocate memory for the pg_data_t for this node via a crude pre-bootmem
|
|
* method. For node zero take this from the bottom of memory, for
|
|
* subsequent nodes place them at node_remap_start_vaddr which contains
|
|
* node local data in physically node local memory. See setup_memory()
|
|
* for details.
|
|
*/
|
|
static void __init allocate_pgdat(int nid)
|
|
{
|
|
char buf[16];
|
|
|
|
if (node_has_online_mem(nid) && node_remap_start_vaddr[nid])
|
|
NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
|
|
else {
|
|
unsigned long pgdat_phys;
|
|
pgdat_phys = find_e820_area(min_low_pfn<<PAGE_SHIFT,
|
|
max_pfn_mapped<<PAGE_SHIFT,
|
|
sizeof(pg_data_t),
|
|
PAGE_SIZE);
|
|
NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
|
|
memset(buf, 0, sizeof(buf));
|
|
sprintf(buf, "NODE_DATA %d", nid);
|
|
reserve_early(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
|
|
}
|
|
printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
|
|
nid, (unsigned long)NODE_DATA(nid));
|
|
}
|
|
|
|
/*
|
|
* In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel
|
|
* virtual address space (KVA) is reserved and portions of nodes are mapped
|
|
* using it. This is to allow node-local memory to be allocated for
|
|
* structures that would normally require ZONE_NORMAL. The memory is
|
|
* allocated with alloc_remap() and callers should be prepared to allocate
|
|
* from the bootmem allocator instead.
|
|
*/
|
|
static unsigned long node_remap_start_pfn[MAX_NUMNODES];
|
|
static void *node_remap_end_vaddr[MAX_NUMNODES];
|
|
static void *node_remap_alloc_vaddr[MAX_NUMNODES];
|
|
static unsigned long node_remap_offset[MAX_NUMNODES];
|
|
|
|
void *alloc_remap(int nid, unsigned long size)
|
|
{
|
|
void *allocation = node_remap_alloc_vaddr[nid];
|
|
|
|
size = ALIGN(size, L1_CACHE_BYTES);
|
|
|
|
if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
|
|
return NULL;
|
|
|
|
node_remap_alloc_vaddr[nid] += size;
|
|
memset(allocation, 0, size);
|
|
|
|
return allocation;
|
|
}
|
|
|
|
static void __init remap_numa_kva(void)
|
|
{
|
|
void *vaddr;
|
|
unsigned long pfn;
|
|
int node;
|
|
|
|
for_each_online_node(node) {
|
|
printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
|
|
for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
|
|
vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
|
|
printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
|
|
(unsigned long)vaddr,
|
|
node_remap_start_pfn[node] + pfn);
|
|
set_pmd_pfn((ulong) vaddr,
|
|
node_remap_start_pfn[node] + pfn,
|
|
PAGE_KERNEL_LARGE);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
/**
|
|
* resume_map_numa_kva - add KVA mapping to the temporary page tables created
|
|
* during resume from hibernation
|
|
* @pgd_base - temporary resume page directory
|
|
*/
|
|
void resume_map_numa_kva(pgd_t *pgd_base)
|
|
{
|
|
int node;
|
|
|
|
for_each_online_node(node) {
|
|
unsigned long start_va, start_pfn, size, pfn;
|
|
|
|
start_va = (unsigned long)node_remap_start_vaddr[node];
|
|
start_pfn = node_remap_start_pfn[node];
|
|
size = node_remap_size[node];
|
|
|
|
printk(KERN_DEBUG "%s: node %d\n", __func__, node);
|
|
|
|
for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) {
|
|
unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
|
|
pgd_t *pgd = pgd_base + pgd_index(vaddr);
|
|
pud_t *pud = pud_offset(pgd, vaddr);
|
|
pmd_t *pmd = pmd_offset(pud, vaddr);
|
|
|
|
set_pmd(pmd, pfn_pmd(start_pfn + pfn,
|
|
PAGE_KERNEL_LARGE_EXEC));
|
|
|
|
printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
|
|
__func__, vaddr, start_pfn + pfn);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static __init unsigned long calculate_numa_remap_pages(void)
|
|
{
|
|
int nid;
|
|
unsigned long size, reserve_pages = 0;
|
|
|
|
for_each_online_node(nid) {
|
|
u64 node_kva_target;
|
|
u64 node_kva_final;
|
|
|
|
/*
|
|
* The acpi/srat node info can show hot-add memroy zones
|
|
* where memory could be added but not currently present.
|
|
*/
|
|
printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
|
|
nid, node_start_pfn[nid], node_end_pfn[nid]);
|
|
if (node_start_pfn[nid] > max_pfn)
|
|
continue;
|
|
if (!node_end_pfn[nid])
|
|
continue;
|
|
if (node_end_pfn[nid] > max_pfn)
|
|
node_end_pfn[nid] = max_pfn;
|
|
|
|
/* ensure the remap includes space for the pgdat. */
|
|
size = node_remap_size[nid] + sizeof(pg_data_t);
|
|
|
|
/* convert size to large (pmd size) pages, rounding up */
|
|
size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
|
|
/* now the roundup is correct, convert to PAGE_SIZE pages */
|
|
size = size * PTRS_PER_PTE;
|
|
|
|
node_kva_target = round_down(node_end_pfn[nid] - size,
|
|
PTRS_PER_PTE);
|
|
node_kva_target <<= PAGE_SHIFT;
|
|
do {
|
|
node_kva_final = find_e820_area(node_kva_target,
|
|
((u64)node_end_pfn[nid])<<PAGE_SHIFT,
|
|
((u64)size)<<PAGE_SHIFT,
|
|
LARGE_PAGE_BYTES);
|
|
node_kva_target -= LARGE_PAGE_BYTES;
|
|
} while (node_kva_final == -1ULL &&
|
|
(node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid]));
|
|
|
|
if (node_kva_final == -1ULL)
|
|
panic("Can not get kva ram\n");
|
|
|
|
node_remap_size[nid] = size;
|
|
node_remap_offset[nid] = reserve_pages;
|
|
reserve_pages += size;
|
|
printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of"
|
|
" node %d at %llx\n",
|
|
size, nid, node_kva_final>>PAGE_SHIFT);
|
|
|
|
/*
|
|
* prevent kva address below max_low_pfn want it on system
|
|
* with less memory later.
|
|
* layout will be: KVA address , KVA RAM
|
|
*
|
|
* we are supposed to only record the one less then max_low_pfn
|
|
* but we could have some hole in high memory, and it will only
|
|
* check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide
|
|
* to use it as free.
|
|
* So reserve_early here, hope we don't run out of that array
|
|
*/
|
|
reserve_early(node_kva_final,
|
|
node_kva_final+(((u64)size)<<PAGE_SHIFT),
|
|
"KVA RAM");
|
|
|
|
node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT;
|
|
remove_active_range(nid, node_remap_start_pfn[nid],
|
|
node_remap_start_pfn[nid] + size);
|
|
}
|
|
printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n",
|
|
reserve_pages);
|
|
return reserve_pages;
|
|
}
|
|
|
|
static void init_remap_allocator(int nid)
|
|
{
|
|
node_remap_start_vaddr[nid] = pfn_to_kaddr(
|
|
kva_start_pfn + node_remap_offset[nid]);
|
|
node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
|
|
(node_remap_size[nid] * PAGE_SIZE);
|
|
node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
|
|
ALIGN(sizeof(pg_data_t), PAGE_SIZE);
|
|
|
|
printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid,
|
|
(ulong) node_remap_start_vaddr[nid],
|
|
(ulong) node_remap_end_vaddr[nid]);
|
|
}
|
|
|
|
void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
|
|
int acpi, int k8)
|
|
{
|
|
int nid;
|
|
long kva_target_pfn;
|
|
|
|
/*
|
|
* When mapping a NUMA machine we allocate the node_mem_map arrays
|
|
* from node local memory. They are then mapped directly into KVA
|
|
* between zone normal and vmalloc space. Calculate the size of
|
|
* this space and use it to adjust the boundary between ZONE_NORMAL
|
|
* and ZONE_HIGHMEM.
|
|
*/
|
|
|
|
get_memcfg_numa();
|
|
|
|
kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE);
|
|
|
|
kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE);
|
|
do {
|
|
kva_start_pfn = find_e820_area(kva_target_pfn<<PAGE_SHIFT,
|
|
max_low_pfn<<PAGE_SHIFT,
|
|
kva_pages<<PAGE_SHIFT,
|
|
PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT;
|
|
kva_target_pfn -= PTRS_PER_PTE;
|
|
} while (kva_start_pfn == -1UL && kva_target_pfn > min_low_pfn);
|
|
|
|
if (kva_start_pfn == -1UL)
|
|
panic("Can not get kva space\n");
|
|
|
|
printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
|
|
kva_start_pfn, max_low_pfn);
|
|
printk(KERN_INFO "max_pfn = %lx\n", max_pfn);
|
|
|
|
/* avoid clash with initrd */
|
|
reserve_early(kva_start_pfn<<PAGE_SHIFT,
|
|
(kva_start_pfn + kva_pages)<<PAGE_SHIFT,
|
|
"KVA PG");
|
|
#ifdef CONFIG_HIGHMEM
|
|
highstart_pfn = highend_pfn = max_pfn;
|
|
if (max_pfn > max_low_pfn)
|
|
highstart_pfn = max_low_pfn;
|
|
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
|
|
pages_to_mb(highend_pfn - highstart_pfn));
|
|
num_physpages = highend_pfn;
|
|
high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
|
|
#else
|
|
num_physpages = max_low_pfn;
|
|
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
|
|
#endif
|
|
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
|
|
pages_to_mb(max_low_pfn));
|
|
printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
|
|
max_low_pfn, highstart_pfn);
|
|
|
|
printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
|
|
(ulong) pfn_to_kaddr(max_low_pfn));
|
|
for_each_online_node(nid) {
|
|
init_remap_allocator(nid);
|
|
|
|
allocate_pgdat(nid);
|
|
}
|
|
remap_numa_kva();
|
|
|
|
printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
|
|
(ulong) pfn_to_kaddr(highstart_pfn));
|
|
for_each_online_node(nid)
|
|
propagate_e820_map_node(nid);
|
|
|
|
for_each_online_node(nid) {
|
|
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
|
|
NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
|
|
}
|
|
|
|
setup_bootmem_allocator();
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static int paddr_to_nid(u64 addr)
|
|
{
|
|
int nid;
|
|
unsigned long pfn = PFN_DOWN(addr);
|
|
|
|
for_each_node(nid)
|
|
if (node_start_pfn[nid] <= pfn &&
|
|
pfn < node_end_pfn[nid])
|
|
return nid;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* This function is used to ask node id BEFORE memmap and mem_section's
|
|
* initialization (pfn_to_nid() can't be used yet).
|
|
* If _PXM is not defined on ACPI's DSDT, node id must be found by this.
|
|
*/
|
|
int memory_add_physaddr_to_nid(u64 addr)
|
|
{
|
|
int nid = paddr_to_nid(addr);
|
|
return (nid >= 0) ? nid : 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
|
|
#endif
|
|
|