android_kernel_xiaomi_sm8350/drivers/scsi/libsrp.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

447 lines
10 KiB
C

/*
* SCSI RDMA Protocol lib functions
*
* Copyright (C) 2006 FUJITA Tomonori <tomof@acm.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/kfifo.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_tgt.h>
#include <scsi/srp.h>
#include <scsi/libsrp.h>
enum srp_task_attributes {
SRP_SIMPLE_TASK = 0,
SRP_HEAD_TASK = 1,
SRP_ORDERED_TASK = 2,
SRP_ACA_TASK = 4
};
/* tmp - will replace with SCSI logging stuff */
#define eprintk(fmt, args...) \
do { \
printk("%s(%d) " fmt, __func__, __LINE__, ##args); \
} while (0)
/* #define dprintk eprintk */
#define dprintk(fmt, args...)
static int srp_iu_pool_alloc(struct srp_queue *q, size_t max,
struct srp_buf **ring)
{
int i;
struct iu_entry *iue;
q->pool = kcalloc(max, sizeof(struct iu_entry *), GFP_KERNEL);
if (!q->pool)
return -ENOMEM;
q->items = kcalloc(max, sizeof(struct iu_entry), GFP_KERNEL);
if (!q->items)
goto free_pool;
spin_lock_init(&q->lock);
kfifo_init(&q->queue, (void *) q->pool, max * sizeof(void *));
for (i = 0, iue = q->items; i < max; i++) {
kfifo_in(&q->queue, (void *) &iue, sizeof(void *));
iue->sbuf = ring[i];
iue++;
}
return 0;
kfree(q->items);
free_pool:
kfree(q->pool);
return -ENOMEM;
}
static void srp_iu_pool_free(struct srp_queue *q)
{
kfree(q->items);
kfree(q->pool);
}
static struct srp_buf **srp_ring_alloc(struct device *dev,
size_t max, size_t size)
{
int i;
struct srp_buf **ring;
ring = kcalloc(max, sizeof(struct srp_buf *), GFP_KERNEL);
if (!ring)
return NULL;
for (i = 0; i < max; i++) {
ring[i] = kzalloc(sizeof(struct srp_buf), GFP_KERNEL);
if (!ring[i])
goto out;
ring[i]->buf = dma_alloc_coherent(dev, size, &ring[i]->dma,
GFP_KERNEL);
if (!ring[i]->buf)
goto out;
}
return ring;
out:
for (i = 0; i < max && ring[i]; i++) {
if (ring[i]->buf)
dma_free_coherent(dev, size, ring[i]->buf, ring[i]->dma);
kfree(ring[i]);
}
kfree(ring);
return NULL;
}
static void srp_ring_free(struct device *dev, struct srp_buf **ring, size_t max,
size_t size)
{
int i;
for (i = 0; i < max; i++) {
dma_free_coherent(dev, size, ring[i]->buf, ring[i]->dma);
kfree(ring[i]);
}
kfree(ring);
}
int srp_target_alloc(struct srp_target *target, struct device *dev,
size_t nr, size_t iu_size)
{
int err;
spin_lock_init(&target->lock);
INIT_LIST_HEAD(&target->cmd_queue);
target->dev = dev;
dev_set_drvdata(target->dev, target);
target->srp_iu_size = iu_size;
target->rx_ring_size = nr;
target->rx_ring = srp_ring_alloc(target->dev, nr, iu_size);
if (!target->rx_ring)
return -ENOMEM;
err = srp_iu_pool_alloc(&target->iu_queue, nr, target->rx_ring);
if (err)
goto free_ring;
return 0;
free_ring:
srp_ring_free(target->dev, target->rx_ring, nr, iu_size);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(srp_target_alloc);
void srp_target_free(struct srp_target *target)
{
srp_ring_free(target->dev, target->rx_ring, target->rx_ring_size,
target->srp_iu_size);
srp_iu_pool_free(&target->iu_queue);
}
EXPORT_SYMBOL_GPL(srp_target_free);
struct iu_entry *srp_iu_get(struct srp_target *target)
{
struct iu_entry *iue = NULL;
if (kfifo_out_locked(&target->iu_queue.queue, (void *) &iue,
sizeof(void *), &target->iu_queue.lock) != sizeof(void *)) {
WARN_ONCE(1, "unexpected fifo state");
return NULL;
}
if (!iue)
return iue;
iue->target = target;
INIT_LIST_HEAD(&iue->ilist);
iue->flags = 0;
return iue;
}
EXPORT_SYMBOL_GPL(srp_iu_get);
void srp_iu_put(struct iu_entry *iue)
{
kfifo_in_locked(&iue->target->iu_queue.queue, (void *) &iue,
sizeof(void *), &iue->target->iu_queue.lock);
}
EXPORT_SYMBOL_GPL(srp_iu_put);
static int srp_direct_data(struct scsi_cmnd *sc, struct srp_direct_buf *md,
enum dma_data_direction dir, srp_rdma_t rdma_io,
int dma_map, int ext_desc)
{
struct iu_entry *iue = NULL;
struct scatterlist *sg = NULL;
int err, nsg = 0, len;
if (dma_map) {
iue = (struct iu_entry *) sc->SCp.ptr;
sg = scsi_sglist(sc);
dprintk("%p %u %u %d\n", iue, scsi_bufflen(sc),
md->len, scsi_sg_count(sc));
nsg = dma_map_sg(iue->target->dev, sg, scsi_sg_count(sc),
DMA_BIDIRECTIONAL);
if (!nsg) {
printk("fail to map %p %d\n", iue, scsi_sg_count(sc));
return 0;
}
len = min(scsi_bufflen(sc), md->len);
} else
len = md->len;
err = rdma_io(sc, sg, nsg, md, 1, dir, len);
if (dma_map)
dma_unmap_sg(iue->target->dev, sg, nsg, DMA_BIDIRECTIONAL);
return err;
}
static int srp_indirect_data(struct scsi_cmnd *sc, struct srp_cmd *cmd,
struct srp_indirect_buf *id,
enum dma_data_direction dir, srp_rdma_t rdma_io,
int dma_map, int ext_desc)
{
struct iu_entry *iue = NULL;
struct srp_direct_buf *md = NULL;
struct scatterlist dummy, *sg = NULL;
dma_addr_t token = 0;
int err = 0;
int nmd, nsg = 0, len;
if (dma_map || ext_desc) {
iue = (struct iu_entry *) sc->SCp.ptr;
sg = scsi_sglist(sc);
dprintk("%p %u %u %d %d\n",
iue, scsi_bufflen(sc), id->len,
cmd->data_in_desc_cnt, cmd->data_out_desc_cnt);
}
nmd = id->table_desc.len / sizeof(struct srp_direct_buf);
if ((dir == DMA_FROM_DEVICE && nmd == cmd->data_in_desc_cnt) ||
(dir == DMA_TO_DEVICE && nmd == cmd->data_out_desc_cnt)) {
md = &id->desc_list[0];
goto rdma;
}
if (ext_desc && dma_map) {
md = dma_alloc_coherent(iue->target->dev, id->table_desc.len,
&token, GFP_KERNEL);
if (!md) {
eprintk("Can't get dma memory %u\n", id->table_desc.len);
return -ENOMEM;
}
sg_init_one(&dummy, md, id->table_desc.len);
sg_dma_address(&dummy) = token;
sg_dma_len(&dummy) = id->table_desc.len;
err = rdma_io(sc, &dummy, 1, &id->table_desc, 1, DMA_TO_DEVICE,
id->table_desc.len);
if (err) {
eprintk("Error copying indirect table %d\n", err);
goto free_mem;
}
} else {
eprintk("This command uses external indirect buffer\n");
return -EINVAL;
}
rdma:
if (dma_map) {
nsg = dma_map_sg(iue->target->dev, sg, scsi_sg_count(sc),
DMA_BIDIRECTIONAL);
if (!nsg) {
eprintk("fail to map %p %d\n", iue, scsi_sg_count(sc));
err = -EIO;
goto free_mem;
}
len = min(scsi_bufflen(sc), id->len);
} else
len = id->len;
err = rdma_io(sc, sg, nsg, md, nmd, dir, len);
if (dma_map)
dma_unmap_sg(iue->target->dev, sg, nsg, DMA_BIDIRECTIONAL);
free_mem:
if (token && dma_map)
dma_free_coherent(iue->target->dev, id->table_desc.len, md, token);
return err;
}
static int data_out_desc_size(struct srp_cmd *cmd)
{
int size = 0;
u8 fmt = cmd->buf_fmt >> 4;
switch (fmt) {
case SRP_NO_DATA_DESC:
break;
case SRP_DATA_DESC_DIRECT:
size = sizeof(struct srp_direct_buf);
break;
case SRP_DATA_DESC_INDIRECT:
size = sizeof(struct srp_indirect_buf) +
sizeof(struct srp_direct_buf) * cmd->data_out_desc_cnt;
break;
default:
eprintk("client error. Invalid data_out_format %x\n", fmt);
break;
}
return size;
}
/*
* TODO: this can be called multiple times for a single command if it
* has very long data.
*/
int srp_transfer_data(struct scsi_cmnd *sc, struct srp_cmd *cmd,
srp_rdma_t rdma_io, int dma_map, int ext_desc)
{
struct srp_direct_buf *md;
struct srp_indirect_buf *id;
enum dma_data_direction dir;
int offset, err = 0;
u8 format;
offset = cmd->add_cdb_len & ~3;
dir = srp_cmd_direction(cmd);
if (dir == DMA_FROM_DEVICE)
offset += data_out_desc_size(cmd);
if (dir == DMA_TO_DEVICE)
format = cmd->buf_fmt >> 4;
else
format = cmd->buf_fmt & ((1U << 4) - 1);
switch (format) {
case SRP_NO_DATA_DESC:
break;
case SRP_DATA_DESC_DIRECT:
md = (struct srp_direct_buf *)
(cmd->add_data + offset);
err = srp_direct_data(sc, md, dir, rdma_io, dma_map, ext_desc);
break;
case SRP_DATA_DESC_INDIRECT:
id = (struct srp_indirect_buf *)
(cmd->add_data + offset);
err = srp_indirect_data(sc, cmd, id, dir, rdma_io, dma_map,
ext_desc);
break;
default:
eprintk("Unknown format %d %x\n", dir, format);
err = -EINVAL;
}
return err;
}
EXPORT_SYMBOL_GPL(srp_transfer_data);
static int vscsis_data_length(struct srp_cmd *cmd, enum dma_data_direction dir)
{
struct srp_direct_buf *md;
struct srp_indirect_buf *id;
int len = 0, offset = cmd->add_cdb_len & ~3;
u8 fmt;
if (dir == DMA_TO_DEVICE)
fmt = cmd->buf_fmt >> 4;
else {
fmt = cmd->buf_fmt & ((1U << 4) - 1);
offset += data_out_desc_size(cmd);
}
switch (fmt) {
case SRP_NO_DATA_DESC:
break;
case SRP_DATA_DESC_DIRECT:
md = (struct srp_direct_buf *) (cmd->add_data + offset);
len = md->len;
break;
case SRP_DATA_DESC_INDIRECT:
id = (struct srp_indirect_buf *) (cmd->add_data + offset);
len = id->len;
break;
default:
eprintk("invalid data format %x\n", fmt);
break;
}
return len;
}
int srp_cmd_queue(struct Scsi_Host *shost, struct srp_cmd *cmd, void *info,
u64 itn_id, u64 addr)
{
enum dma_data_direction dir;
struct scsi_cmnd *sc;
int tag, len, err;
switch (cmd->task_attr) {
case SRP_SIMPLE_TASK:
tag = MSG_SIMPLE_TAG;
break;
case SRP_ORDERED_TASK:
tag = MSG_ORDERED_TAG;
break;
case SRP_HEAD_TASK:
tag = MSG_HEAD_TAG;
break;
default:
eprintk("Task attribute %d not supported\n", cmd->task_attr);
tag = MSG_ORDERED_TAG;
}
dir = srp_cmd_direction(cmd);
len = vscsis_data_length(cmd, dir);
dprintk("%p %x %lx %d %d %d %llx\n", info, cmd->cdb[0],
cmd->lun, dir, len, tag, (unsigned long long) cmd->tag);
sc = scsi_host_get_command(shost, dir, GFP_KERNEL);
if (!sc)
return -ENOMEM;
sc->SCp.ptr = info;
memcpy(sc->cmnd, cmd->cdb, MAX_COMMAND_SIZE);
sc->sdb.length = len;
sc->sdb.table.sgl = (void *) (unsigned long) addr;
sc->tag = tag;
err = scsi_tgt_queue_command(sc, itn_id, (struct scsi_lun *)&cmd->lun,
cmd->tag);
if (err)
scsi_host_put_command(shost, sc);
return err;
}
EXPORT_SYMBOL_GPL(srp_cmd_queue);
MODULE_DESCRIPTION("SCSI RDMA Protocol lib functions");
MODULE_AUTHOR("FUJITA Tomonori");
MODULE_LICENSE("GPL");