android_kernel_xiaomi_sm8350/drivers/cpufreq/qcom-cpufreq-hw.c
Prerna Singh c62a901eab qcom: cpufreq-hw: Use the topology coreid for offset
Use the topology_core_id() API to calculate the offset
of the CPU cores. This will help to correctly calculate the
offset in case of CPU with fused cores.

Change-Id: I78992edc3a646b8062e8bdd80f4c72e8c97387ec
Signed-off-by: Prerna Singh <quic_prersing@quicinc.com>
2023-05-19 07:34:44 -07:00

771 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/bitfield.h>
#include <linux/cpufreq.h>
#include <linux/cpu_cooling.h>
#include <linux/energy_model.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/pm_opp.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/topology.h>
#define CREATE_TRACE_POINTS
#include <trace/events/dcvsh.h>
#define LUT_MAX_ENTRIES 40U
#define LUT_SRC GENMASK(31, 30)
#define LUT_L_VAL GENMASK(7, 0)
#define LUT_CORE_COUNT GENMASK(18, 16)
#define LUT_VOLT GENMASK(11, 0)
#define LUT_ROW_SIZE 32
#define CLK_HW_DIV 2
#define GT_IRQ_STATUS BIT(2)
#define MAX_FN_SIZE 20
#define LIMITS_POLLING_DELAY_MS 10
#define MAX_ROW 2
#define CYCLE_CNTR_OFFSET(core_id, m, acc_count) \
(acc_count ? ((core_id + 1) * 4) : 0)
enum {
REG_ENABLE,
REG_FREQ_LUT,
REG_VOLT_LUT,
REG_PERF_STATE,
REG_CYCLE_CNTR,
REG_DOMAIN_STATE,
REG_INTR_EN,
REG_INTR_CLR,
REG_INTR_STATUS,
REG_ARRAY_SIZE,
};
static unsigned long cpu_hw_rate, xo_rate;
static const u16 *offsets;
static unsigned int lut_row_size = LUT_ROW_SIZE;
static unsigned int lut_max_entries = LUT_MAX_ENTRIES;
static bool accumulative_counter;
static bool perf_lock_support;
struct cpufreq_qcom {
struct cpufreq_frequency_table *table;
void __iomem *base;
void __iomem *pdmem_base;
void __iomem **sdpm_base;
int sdpm_base_count;
cpumask_t related_cpus;
unsigned long dcvsh_freq_limit;
struct delayed_work freq_poll_work;
struct mutex dcvsh_lock;
struct device_attribute freq_limit_attr;
int dcvsh_irq;
char dcvsh_irq_name[MAX_FN_SIZE];
bool is_irq_enabled;
bool is_irq_requested;
};
struct cpufreq_counter {
u64 total_cycle_counter;
u32 prev_cycle_counter;
spinlock_t lock;
};
static const u16 cpufreq_qcom_std_offsets[REG_ARRAY_SIZE] = {
[REG_ENABLE] = 0x0,
[REG_FREQ_LUT] = 0x110,
[REG_VOLT_LUT] = 0x114,
[REG_PERF_STATE] = 0x920,
[REG_CYCLE_CNTR] = 0x9c0,
};
static const u16 cpufreq_qcom_epss_std_offsets[REG_ARRAY_SIZE] = {
[REG_ENABLE] = 0x0,
[REG_FREQ_LUT] = 0x100,
[REG_VOLT_LUT] = 0x200,
[REG_PERF_STATE] = 0x320,
[REG_CYCLE_CNTR] = 0x3c4,
[REG_DOMAIN_STATE] = 0x020,
[REG_INTR_EN] = 0x304,
[REG_INTR_CLR] = 0x308,
[REG_INTR_STATUS] = 0x30C,
};
static struct cpufreq_qcom *qcom_freq_domain_map[NR_CPUS];
static struct cpufreq_counter qcom_cpufreq_counter[NR_CPUS];
static unsigned int qcom_cpufreq_hw_get(unsigned int cpu);
static ssize_t dcvsh_freq_limit_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cpufreq_qcom *c = container_of(attr, struct cpufreq_qcom,
freq_limit_attr);
return scnprintf(buf, PAGE_SIZE, "%lu\n", c->dcvsh_freq_limit);
}
static unsigned long limits_mitigation_notify(struct cpufreq_qcom *c,
bool limit)
{
struct cpufreq_policy *policy;
u32 cpu;
unsigned long freq;
if (limit) {
freq = readl_relaxed(c->base + offsets[REG_DOMAIN_STATE]) &
GENMASK(7, 0);
freq = DIV_ROUND_CLOSEST_ULL(freq * xo_rate, 1000);
} else {
cpu = cpumask_first(&c->related_cpus);
policy = cpufreq_cpu_get_raw(cpu);
if (!policy)
freq = U32_MAX;
else
freq = policy->cpuinfo.max_freq;
}
sched_update_cpu_freq_min_max(&c->related_cpus, 0, freq);
trace_dcvsh_freq(cpumask_first(&c->related_cpus), freq);
c->dcvsh_freq_limit = freq;
return freq;
}
static void limits_dcvsh_poll(struct work_struct *work)
{
struct cpufreq_qcom *c = container_of(work, struct cpufreq_qcom,
freq_poll_work.work);
unsigned long freq_limit, dcvsh_freq;
u32 regval, cpu;
mutex_lock(&c->dcvsh_lock);
cpu = cpumask_first(&c->related_cpus);
freq_limit = limits_mitigation_notify(c, true);
dcvsh_freq = qcom_cpufreq_hw_get(cpu);
if (freq_limit != dcvsh_freq) {
mod_delayed_work(system_highpri_wq, &c->freq_poll_work,
msecs_to_jiffies(LIMITS_POLLING_DELAY_MS));
} else {
/* Update scheduler for throttle removal */
limits_mitigation_notify(c, false);
regval = readl_relaxed(c->base + offsets[REG_INTR_CLR]);
regval |= GT_IRQ_STATUS;
writel_relaxed(regval, c->base + offsets[REG_INTR_CLR]);
c->is_irq_enabled = true;
enable_irq(c->dcvsh_irq);
}
mutex_unlock(&c->dcvsh_lock);
}
static irqreturn_t dcvsh_handle_isr(int irq, void *data)
{
struct cpufreq_qcom *c = data;
u32 regval;
regval = readl_relaxed(c->base + offsets[REG_INTR_STATUS]);
if (!(regval & GT_IRQ_STATUS))
return IRQ_HANDLED;
mutex_lock(&c->dcvsh_lock);
if (c->is_irq_enabled) {
c->is_irq_enabled = false;
disable_irq_nosync(c->dcvsh_irq);
limits_mitigation_notify(c, true);
mod_delayed_work(system_highpri_wq, &c->freq_poll_work,
msecs_to_jiffies(LIMITS_POLLING_DELAY_MS));
}
mutex_unlock(&c->dcvsh_lock);
return IRQ_HANDLED;
}
static u64 qcom_cpufreq_get_cpu_cycle_counter(int cpu)
{
struct cpufreq_counter *cpu_counter;
struct cpufreq_policy *policy;
u64 cycle_counter_ret;
unsigned long flags;
u16 offset;
u32 val;
policy = cpufreq_cpu_get_raw(cpu);
if (!policy)
return 0;
cpu_counter = &qcom_cpufreq_counter[cpu];
spin_lock_irqsave(&cpu_counter->lock, flags);
offset = CYCLE_CNTR_OFFSET(topology_core_id(cpu), policy->related_cpus,
accumulative_counter);
val = readl_relaxed_no_log(policy->driver_data +
offsets[REG_CYCLE_CNTR] + offset);
if (val < cpu_counter->prev_cycle_counter) {
/* Handle counter overflow */
cpu_counter->total_cycle_counter += UINT_MAX -
cpu_counter->prev_cycle_counter + val;
cpu_counter->prev_cycle_counter = val;
} else {
cpu_counter->total_cycle_counter += val -
cpu_counter->prev_cycle_counter;
cpu_counter->prev_cycle_counter = val;
}
cycle_counter_ret = cpu_counter->total_cycle_counter;
spin_unlock_irqrestore(&cpu_counter->lock, flags);
pr_debug("CPU %u, core-id 0x%x, offset %u\n", cpu, topology_core_id(cpu), offset);
return cycle_counter_ret;
}
static int
qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_qcom *c = qcom_freq_domain_map[policy->cpu];
unsigned long freq = policy->freq_table[index].frequency;
int i;
if (perf_lock_support) {
if (c->pdmem_base)
writel_relaxed(index, c->pdmem_base);
}
for (i = 0; i < c->sdpm_base_count && freq > policy->cur; i++)
writel_relaxed(freq / 1000, c->sdpm_base[i]);
writel_relaxed(index, policy->driver_data + offsets[REG_PERF_STATE]);
arch_set_freq_scale(policy->related_cpus, freq,
policy->cpuinfo.max_freq);
for (i = 0; i < c->sdpm_base_count && freq < policy->cur; i++)
writel_relaxed(freq / 1000, c->sdpm_base[i]);
return 0;
}
static unsigned int qcom_cpufreq_hw_get(unsigned int cpu)
{
struct cpufreq_policy *policy;
unsigned int index;
policy = cpufreq_cpu_get_raw(cpu);
if (!policy)
return 0;
index = readl_relaxed(policy->driver_data + offsets[REG_PERF_STATE]);
index = min(index, lut_max_entries - 1);
return policy->freq_table[index].frequency;
}
static unsigned int
qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
int index;
index = policy->cached_resolved_idx;
if (index < 0)
return 0;
if (qcom_cpufreq_hw_target_index(policy, index))
return 0;
return policy->freq_table[index].frequency;
}
static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
{
struct cpufreq_qcom *c;
struct device *cpu_dev;
int ret;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
policy->cpu);
return -ENODEV;
}
c = qcom_freq_domain_map[policy->cpu];
if (!c) {
pr_err("No scaling support for CPU%d\n", policy->cpu);
return -ENODEV;
}
cpumask_copy(policy->cpus, &c->related_cpus);
ret = dev_pm_opp_get_opp_count(cpu_dev);
if (ret <= 0)
dev_err(cpu_dev, "OPP table is not ready\n");
policy->freq_table = c->table;
policy->driver_data = c->base;
policy->fast_switch_possible = true;
policy->dvfs_possible_from_any_cpu = true;
dev_pm_opp_of_register_em(policy->cpus);
if (c->dcvsh_irq > 0 && !c->is_irq_requested) {
snprintf(c->dcvsh_irq_name, sizeof(c->dcvsh_irq_name),
"dcvsh-irq-%d", policy->cpu);
ret = devm_request_threaded_irq(cpu_dev, c->dcvsh_irq, NULL,
dcvsh_handle_isr, IRQF_TRIGGER_HIGH | IRQF_ONESHOT |
IRQF_NO_SUSPEND, c->dcvsh_irq_name, c);
if (ret) {
dev_err(cpu_dev, "Failed to register irq %d\n", ret);
return ret;
}
ret = irq_set_affinity_hint(c->dcvsh_irq, &c->related_cpus);
if (ret)
dev_err(cpu_dev, "Failed to set affinity for irq %d\n",
c->dcvsh_irq);
c->is_irq_requested = true;
writel_relaxed(0x0, c->base + offsets[REG_INTR_CLR]);
c->is_irq_enabled = true;
sysfs_attr_init(&c->freq_limit_attr.attr);
c->freq_limit_attr.attr.name = "dcvsh_freq_limit";
c->freq_limit_attr.show = dcvsh_freq_limit_show;
c->freq_limit_attr.attr.mode = 0444;
c->dcvsh_freq_limit = U32_MAX;
device_create_file(cpu_dev, &c->freq_limit_attr);
}
return 0;
}
static struct freq_attr *qcom_cpufreq_hw_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
&cpufreq_freq_attr_scaling_boost_freqs,
NULL
};
static void qcom_cpufreq_ready(struct cpufreq_policy *policy)
{
static struct thermal_cooling_device *cdev[NR_CPUS];
struct device_node *np;
unsigned int cpu = policy->cpu;
if (cdev[cpu])
return;
np = of_cpu_device_node_get(cpu);
if (WARN_ON(!np))
return;
/*
* For now, just loading the cooling device;
* thermal DT code takes care of matching them.
*/
if (of_find_property(np, "#cooling-cells", NULL)) {
cdev[cpu] = of_cpufreq_cooling_register(policy);
if (IS_ERR(cdev[cpu])) {
pr_err("running cpufreq for CPU%d without cooling dev: %ld\n",
cpu, PTR_ERR(cdev[cpu]));
cdev[cpu] = NULL;
}
}
of_node_put(np);
}
static int qcom_cpufreq_hw_suspend(struct cpufreq_policy *policy)
{
struct cpufreq_qcom *c = qcom_freq_domain_map[policy->cpu];
unsigned long freq = policy->freq_table[0].frequency;
int i;
for (i = 0; i < c->sdpm_base_count && freq < policy->cur; i++)
writel_relaxed(freq / 1000, c->sdpm_base[i]);
return 0;
}
static int qcom_cpufreq_hw_resume(struct cpufreq_policy *policy)
{
struct cpufreq_qcom *c = qcom_freq_domain_map[policy->cpu];
unsigned long freq = policy->cur;
int i;
for (i = 0; i < c->sdpm_base_count; i++)
writel_relaxed(freq / 1000, c->sdpm_base[i]);
return 0;
}
static struct cpufreq_driver cpufreq_qcom_hw_driver = {
.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = qcom_cpufreq_hw_target_index,
.get = qcom_cpufreq_hw_get,
.init = qcom_cpufreq_hw_cpu_init,
.fast_switch = qcom_cpufreq_hw_fast_switch,
.name = "qcom-cpufreq-hw",
.attr = qcom_cpufreq_hw_attr,
.boost_enabled = true,
.ready = qcom_cpufreq_ready,
.suspend = qcom_cpufreq_hw_suspend,
.resume = qcom_cpufreq_hw_resume,
};
static int qcom_cpufreq_hw_read_lut(struct platform_device *pdev,
struct cpufreq_qcom *c, u32 max_cores)
{
struct device *dev = &pdev->dev, *cpu_dev;
u32 data, src, lval, i, core_count, prev_cc, prev_freq, freq, volt;
unsigned long cpu;
c->table = devm_kcalloc(dev, lut_max_entries + 1,
sizeof(*c->table), GFP_KERNEL);
if (!c->table)
return -ENOMEM;
cpu = cpumask_first(&c->related_cpus);
cpu_dev = get_cpu_device(cpu);
prev_cc = 0;
for (i = 0; i < lut_max_entries; i++) {
data = readl_relaxed(c->base + offsets[REG_FREQ_LUT] +
i * lut_row_size);
src = FIELD_GET(LUT_SRC, data);
lval = FIELD_GET(LUT_L_VAL, data);
core_count = FIELD_GET(LUT_CORE_COUNT, data);
data = readl_relaxed(c->base + offsets[REG_VOLT_LUT] +
i * lut_row_size);
volt = FIELD_GET(LUT_VOLT, data) * 1000;
if (src)
freq = xo_rate * lval / 1000;
else
freq = cpu_hw_rate / 1000;
c->table[i].frequency = freq;
dev_dbg(dev, "index=%d freq=%d, core_count %d\n",
i, c->table[i].frequency, core_count);
if (core_count != max_cores)
c->table[i].flags = CPUFREQ_BOOST_FREQ;
/*
* Two of the same frequencies with the same core counts means
* end of table.
*/
if (i > 0 && prev_freq == freq && prev_cc == core_count)
break;
prev_cc = core_count;
prev_freq = freq;
if (cpu_dev)
dev_pm_opp_add(cpu_dev, freq * 1000, volt);
}
c->table[i].frequency = CPUFREQ_TABLE_END;
if (cpu_dev)
dev_pm_opp_set_sharing_cpus(cpu_dev, &c->related_cpus);
return 0;
}
static void qcom_get_related_cpus(int index, struct cpumask *m)
{
struct device_node *cpu_np;
struct of_phandle_args args;
int cpu, ret;
for_each_possible_cpu(cpu) {
cpu_np = of_cpu_device_node_get(cpu);
if (!cpu_np)
continue;
ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
"#freq-domain-cells", 0, &args);
of_node_put(cpu_np);
if (ret < 0)
continue;
if (index == args.args[0])
cpumask_set_cpu(cpu, m);
}
}
static int qcom_cpu_resources_init(struct platform_device *pdev,
unsigned int cpu, int index,
unsigned int max_cores)
{
struct cpufreq_qcom *c;
struct resource *res;
struct device *dev = &pdev->dev;
void __iomem *base;
char pdmem_name[MAX_FN_SIZE] = {};
char sdpm_name[MAX_FN_SIZE] = {};
int ret, cpu_r, len, reg, size, i, j;
c = devm_kzalloc(dev, sizeof(*c), GFP_KERNEL);
if (!c)
return -ENOMEM;
offsets = of_device_get_match_data(&pdev->dev);
if (!offsets)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, index);
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
if (!of_property_read_bool(dev->of_node, "qcom,skip-enable-check")) {
/* HW should be in enabled state to proceed */
if (!(readl_relaxed(base + offsets[REG_ENABLE]) & 0x1)) {
dev_err(dev, "Domain-%d cpufreq hardware not enabled\n",
index);
return -ENODEV;
}
}
accumulative_counter = !of_property_read_bool(dev->of_node,
"qcom,no-accumulative-counter");
c->base = base;
qcom_get_related_cpus(index, &c->related_cpus);
if (!cpumask_weight(&c->related_cpus)) {
dev_err(dev, "Domain-%d failed to get related CPUs\n", index);
return -ENONET;
}
ret = qcom_cpufreq_hw_read_lut(pdev, c, max_cores);
if (ret) {
dev_err(dev, "Domain-%d failed to read LUT\n", index);
return ret;
}
perf_lock_support = of_property_read_bool(dev->of_node,
"qcom,perf-lock-support");
if (perf_lock_support) {
snprintf(pdmem_name, sizeof(pdmem_name), "pdmem-domain%d",
index);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
pdmem_name);
if (!res)
dev_err(dev, "PDMEM domain-%d failed\n", index);
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
dev_err(dev, "Failed to map PDMEM domain-%d\n", index);
else
c->pdmem_base = base;
}
snprintf(sdpm_name, sizeof(sdpm_name), "qcom,sdpm-cx-mx-%d", index);
len = of_property_count_u32_elems(dev->of_node, sdpm_name);
if (len > 0) {
c->sdpm_base_count = len / MAX_ROW;
c->sdpm_base = devm_kcalloc(dev, c->sdpm_base_count,
sizeof(*c->sdpm_base), GFP_KERNEL);
if (!c->sdpm_base)
return -ENOMEM;
for (i = 0, j = 0; i < c->sdpm_base_count; i++, j += 2) {
of_property_read_u32_index(dev->of_node, sdpm_name,
j, &reg);
of_property_read_u32_index(dev->of_node, sdpm_name,
j + 1, &size);
base = devm_ioremap(dev, reg, size);
if (IS_ERR(base)) {
dev_err(dev, "Failed to map base %d domain-%d\n",
i, index);
return PTR_ERR(base);
}
c->sdpm_base[i] = base;
}
}
if (of_find_property(dev->of_node, "interrupts", NULL)) {
c->dcvsh_irq = of_irq_get(dev->of_node, index);
if (c->dcvsh_irq > 0) {
mutex_init(&c->dcvsh_lock);
INIT_DEFERRABLE_WORK(&c->freq_poll_work,
limits_dcvsh_poll);
}
}
for_each_cpu(cpu_r, &c->related_cpus)
qcom_freq_domain_map[cpu_r] = c;
return 0;
}
static int qcom_resources_init(struct platform_device *pdev)
{
struct device_node *cpu_np;
struct of_phandle_args args;
struct clk *clk;
unsigned int cpu;
int ret;
clk = clk_get(&pdev->dev, "xo");
if (IS_ERR(clk))
return PTR_ERR(clk);
xo_rate = clk_get_rate(clk);
clk_put(clk);
clk = clk_get(&pdev->dev, "alternate");
if (IS_ERR(clk))
return PTR_ERR(clk);
cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV;
clk_put(clk);
of_property_read_u32(pdev->dev.of_node, "qcom,lut-row-size",
&lut_row_size);
of_property_read_u32(pdev->dev.of_node, "qcom,lut-max-entries",
&lut_max_entries);
for_each_possible_cpu(cpu) {
cpu_np = of_cpu_device_node_get(cpu);
if (!cpu_np) {
dev_dbg(&pdev->dev, "Failed to get cpu %d device\n",
cpu);
continue;
}
ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
"#freq-domain-cells", 0,
&args);
of_node_put(cpu_np);
if (ret)
return ret;
if (qcom_freq_domain_map[cpu])
continue;
ret = qcom_cpu_resources_init(pdev, cpu, args.args[0],
args.args[1]);
if (ret)
return ret;
}
return 0;
}
static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev)
{
struct cpu_cycle_counter_cb cycle_counter_cb = {
.get_cpu_cycle_counter = qcom_cpufreq_get_cpu_cycle_counter,
};
int rc, cpu;
/* Get the bases of cpufreq for domains */
rc = qcom_resources_init(pdev);
if (rc) {
dev_err(&pdev->dev, "CPUFreq resource init failed\n");
return rc;
}
rc = cpufreq_register_driver(&cpufreq_qcom_hw_driver);
if (rc) {
dev_err(&pdev->dev, "CPUFreq HW driver failed to register\n");
return rc;
}
for_each_possible_cpu(cpu)
spin_lock_init(&qcom_cpufreq_counter[cpu].lock);
rc = register_cpu_cycle_counter_cb(&cycle_counter_cb);
if (rc) {
dev_err(&pdev->dev, "cycle counter cb failed to register\n");
return rc;
}
of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
dev_dbg(&pdev->dev, "QCOM CPUFreq HW driver initialized\n");
return 0;
}
static int qcom_cpufreq_hw_driver_remove(struct platform_device *pdev)
{
struct cpufreq_qcom *c;
struct device *cpu_dev;
int cpu;
for_each_possible_cpu(cpu) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev)
continue;
dev_pm_opp_remove_all_dynamic(cpu_dev);
c = qcom_freq_domain_map[cpu];
if (c->dcvsh_irq > 0 && c->is_irq_requested) {
devm_free_irq(cpu_dev, c->dcvsh_irq, c);
device_remove_file(cpu_dev, &c->freq_limit_attr);
c->is_irq_requested = false;
}
}
return cpufreq_unregister_driver(&cpufreq_qcom_hw_driver);
}
static const struct of_device_id qcom_cpufreq_hw_match[] = {
{ .compatible = "qcom,cpufreq-hw", .data = &cpufreq_qcom_std_offsets },
{ .compatible = "qcom,cpufreq-hw-epss",
.data = &cpufreq_qcom_epss_std_offsets },
{}
};
static struct platform_driver qcom_cpufreq_hw_driver = {
.probe = qcom_cpufreq_hw_driver_probe,
.remove = qcom_cpufreq_hw_driver_remove,
.driver = {
.name = "qcom-cpufreq-hw",
.of_match_table = qcom_cpufreq_hw_match,
},
};
static int __init qcom_cpufreq_hw_init(void)
{
return platform_driver_register(&qcom_cpufreq_hw_driver);
}
subsys_initcall(qcom_cpufreq_hw_init);
static void __exit qcom_cpufreq_hw_exit(void)
{
platform_driver_unregister(&qcom_cpufreq_hw_driver);
}
module_exit(qcom_cpufreq_hw_exit);
MODULE_DESCRIPTION("QCOM CPUFREQ HW Driver");
MODULE_LICENSE("GPL v2");