636bdeaa12
'ack' is currently a simple integer that flags whether or not a client is done touching fields in the given descriptor. It is effectively just a single bit of information. Converting this to a flags parameter allows the other bits to be put to use to control completion actions, like dma-unmap, and capture results, like xor-zero-sum == 0. Changes are one of: 1/ convert all open-coded ->ack manipulations to use async_tx_ack and async_tx_test_ack. 2/ set the ack bit at prep time where possible 3/ make drivers store the flags at prep time 4/ add flags to the device_prep_dma_interrupt prototype Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
633 lines
16 KiB
C
633 lines
16 KiB
C
/*
|
|
* core routines for the asynchronous memory transfer/transform api
|
|
*
|
|
* Copyright © 2006, Intel Corporation.
|
|
*
|
|
* Dan Williams <dan.j.williams@intel.com>
|
|
*
|
|
* with architecture considerations by:
|
|
* Neil Brown <neilb@suse.de>
|
|
* Jeff Garzik <jeff@garzik.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/async_tx.h>
|
|
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
static enum dma_state_client
|
|
dma_channel_add_remove(struct dma_client *client,
|
|
struct dma_chan *chan, enum dma_state state);
|
|
|
|
static struct dma_client async_tx_dma = {
|
|
.event_callback = dma_channel_add_remove,
|
|
/* .cap_mask == 0 defaults to all channels */
|
|
};
|
|
|
|
/**
|
|
* dma_cap_mask_all - enable iteration over all operation types
|
|
*/
|
|
static dma_cap_mask_t dma_cap_mask_all;
|
|
|
|
/**
|
|
* chan_ref_percpu - tracks channel allocations per core/opertion
|
|
*/
|
|
struct chan_ref_percpu {
|
|
struct dma_chan_ref *ref;
|
|
};
|
|
|
|
static int channel_table_initialized;
|
|
static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END];
|
|
|
|
/**
|
|
* async_tx_lock - protect modification of async_tx_master_list and serialize
|
|
* rebalance operations
|
|
*/
|
|
static spinlock_t async_tx_lock;
|
|
|
|
static LIST_HEAD(async_tx_master_list);
|
|
|
|
/* async_tx_issue_pending_all - start all transactions on all channels */
|
|
void async_tx_issue_pending_all(void)
|
|
{
|
|
struct dma_chan_ref *ref;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(ref, &async_tx_master_list, node)
|
|
ref->chan->device->device_issue_pending(ref->chan);
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL_GPL(async_tx_issue_pending_all);
|
|
|
|
/* dma_wait_for_async_tx - spin wait for a transcation to complete
|
|
* @tx: transaction to wait on
|
|
*/
|
|
enum dma_status
|
|
dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
enum dma_status status;
|
|
struct dma_async_tx_descriptor *iter;
|
|
struct dma_async_tx_descriptor *parent;
|
|
|
|
if (!tx)
|
|
return DMA_SUCCESS;
|
|
|
|
/* poll through the dependency chain, return when tx is complete */
|
|
do {
|
|
iter = tx;
|
|
|
|
/* find the root of the unsubmitted dependency chain */
|
|
do {
|
|
parent = iter->parent;
|
|
if (!parent)
|
|
break;
|
|
else
|
|
iter = parent;
|
|
} while (parent);
|
|
|
|
/* there is a small window for ->parent == NULL and
|
|
* ->cookie == -EBUSY
|
|
*/
|
|
while (iter->cookie == -EBUSY)
|
|
cpu_relax();
|
|
|
|
status = dma_sync_wait(iter->chan, iter->cookie);
|
|
} while (status == DMA_IN_PROGRESS || (iter != tx));
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
|
|
|
|
/* async_tx_run_dependencies - helper routine for dma drivers to process
|
|
* (start) dependent operations on their target channel
|
|
* @tx: transaction with dependencies
|
|
*/
|
|
void
|
|
async_tx_run_dependencies(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct dma_async_tx_descriptor *next = tx->next;
|
|
struct dma_chan *chan;
|
|
|
|
if (!next)
|
|
return;
|
|
|
|
tx->next = NULL;
|
|
chan = next->chan;
|
|
|
|
/* keep submitting up until a channel switch is detected
|
|
* in that case we will be called again as a result of
|
|
* processing the interrupt from async_tx_channel_switch
|
|
*/
|
|
while (next && next->chan == chan) {
|
|
struct dma_async_tx_descriptor *_next;
|
|
|
|
spin_lock_bh(&next->lock);
|
|
next->parent = NULL;
|
|
_next = next->next;
|
|
next->next = NULL;
|
|
spin_unlock_bh(&next->lock);
|
|
|
|
next->tx_submit(next);
|
|
next = _next;
|
|
}
|
|
|
|
chan->device->device_issue_pending(chan);
|
|
}
|
|
EXPORT_SYMBOL_GPL(async_tx_run_dependencies);
|
|
|
|
static void
|
|
free_dma_chan_ref(struct rcu_head *rcu)
|
|
{
|
|
struct dma_chan_ref *ref;
|
|
ref = container_of(rcu, struct dma_chan_ref, rcu);
|
|
kfree(ref);
|
|
}
|
|
|
|
static void
|
|
init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan)
|
|
{
|
|
INIT_LIST_HEAD(&ref->node);
|
|
INIT_RCU_HEAD(&ref->rcu);
|
|
ref->chan = chan;
|
|
atomic_set(&ref->count, 0);
|
|
}
|
|
|
|
/**
|
|
* get_chan_ref_by_cap - returns the nth channel of the given capability
|
|
* defaults to returning the channel with the desired capability and the
|
|
* lowest reference count if the index can not be satisfied
|
|
* @cap: capability to match
|
|
* @index: nth channel desired, passing -1 has the effect of forcing the
|
|
* default return value
|
|
*/
|
|
static struct dma_chan_ref *
|
|
get_chan_ref_by_cap(enum dma_transaction_type cap, int index)
|
|
{
|
|
struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(ref, &async_tx_master_list, node)
|
|
if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
|
|
if (!min_ref)
|
|
min_ref = ref;
|
|
else if (atomic_read(&ref->count) <
|
|
atomic_read(&min_ref->count))
|
|
min_ref = ref;
|
|
|
|
if (index-- == 0) {
|
|
ret_ref = ref;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!ret_ref)
|
|
ret_ref = min_ref;
|
|
|
|
if (ret_ref)
|
|
atomic_inc(&ret_ref->count);
|
|
|
|
return ret_ref;
|
|
}
|
|
|
|
/**
|
|
* async_tx_rebalance - redistribute the available channels, optimize
|
|
* for cpu isolation in the SMP case, and opertaion isolation in the
|
|
* uniprocessor case
|
|
*/
|
|
static void async_tx_rebalance(void)
|
|
{
|
|
int cpu, cap, cpu_idx = 0;
|
|
unsigned long flags;
|
|
|
|
if (!channel_table_initialized)
|
|
return;
|
|
|
|
spin_lock_irqsave(&async_tx_lock, flags);
|
|
|
|
/* undo the last distribution */
|
|
for_each_dma_cap_mask(cap, dma_cap_mask_all)
|
|
for_each_possible_cpu(cpu) {
|
|
struct dma_chan_ref *ref =
|
|
per_cpu_ptr(channel_table[cap], cpu)->ref;
|
|
if (ref) {
|
|
atomic_set(&ref->count, 0);
|
|
per_cpu_ptr(channel_table[cap], cpu)->ref =
|
|
NULL;
|
|
}
|
|
}
|
|
|
|
for_each_dma_cap_mask(cap, dma_cap_mask_all)
|
|
for_each_online_cpu(cpu) {
|
|
struct dma_chan_ref *new;
|
|
if (NR_CPUS > 1)
|
|
new = get_chan_ref_by_cap(cap, cpu_idx++);
|
|
else
|
|
new = get_chan_ref_by_cap(cap, -1);
|
|
|
|
per_cpu_ptr(channel_table[cap], cpu)->ref = new;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&async_tx_lock, flags);
|
|
}
|
|
|
|
static enum dma_state_client
|
|
dma_channel_add_remove(struct dma_client *client,
|
|
struct dma_chan *chan, enum dma_state state)
|
|
{
|
|
unsigned long found, flags;
|
|
struct dma_chan_ref *master_ref, *ref;
|
|
enum dma_state_client ack = DMA_DUP; /* default: take no action */
|
|
|
|
switch (state) {
|
|
case DMA_RESOURCE_AVAILABLE:
|
|
found = 0;
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(ref, &async_tx_master_list, node)
|
|
if (ref->chan == chan) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
pr_debug("async_tx: dma resource available [%s]\n",
|
|
found ? "old" : "new");
|
|
|
|
if (!found)
|
|
ack = DMA_ACK;
|
|
else
|
|
break;
|
|
|
|
/* add the channel to the generic management list */
|
|
master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL);
|
|
if (master_ref) {
|
|
/* keep a reference until async_tx is unloaded */
|
|
dma_chan_get(chan);
|
|
init_dma_chan_ref(master_ref, chan);
|
|
spin_lock_irqsave(&async_tx_lock, flags);
|
|
list_add_tail_rcu(&master_ref->node,
|
|
&async_tx_master_list);
|
|
spin_unlock_irqrestore(&async_tx_lock,
|
|
flags);
|
|
} else {
|
|
printk(KERN_WARNING "async_tx: unable to create"
|
|
" new master entry in response to"
|
|
" a DMA_RESOURCE_ADDED event"
|
|
" (-ENOMEM)\n");
|
|
return 0;
|
|
}
|
|
|
|
async_tx_rebalance();
|
|
break;
|
|
case DMA_RESOURCE_REMOVED:
|
|
found = 0;
|
|
spin_lock_irqsave(&async_tx_lock, flags);
|
|
list_for_each_entry_rcu(ref, &async_tx_master_list, node)
|
|
if (ref->chan == chan) {
|
|
/* permit backing devices to go away */
|
|
dma_chan_put(ref->chan);
|
|
list_del_rcu(&ref->node);
|
|
call_rcu(&ref->rcu, free_dma_chan_ref);
|
|
found = 1;
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&async_tx_lock, flags);
|
|
|
|
pr_debug("async_tx: dma resource removed [%s]\n",
|
|
found ? "ours" : "not ours");
|
|
|
|
if (found)
|
|
ack = DMA_ACK;
|
|
else
|
|
break;
|
|
|
|
async_tx_rebalance();
|
|
break;
|
|
case DMA_RESOURCE_SUSPEND:
|
|
case DMA_RESOURCE_RESUME:
|
|
printk(KERN_WARNING "async_tx: does not support dma channel"
|
|
" suspend/resume\n");
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return ack;
|
|
}
|
|
|
|
static int __init
|
|
async_tx_init(void)
|
|
{
|
|
enum dma_transaction_type cap;
|
|
|
|
spin_lock_init(&async_tx_lock);
|
|
bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
|
|
|
|
/* an interrupt will never be an explicit operation type.
|
|
* clearing this bit prevents allocation to a slot in 'channel_table'
|
|
*/
|
|
clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
|
|
|
|
for_each_dma_cap_mask(cap, dma_cap_mask_all) {
|
|
channel_table[cap] = alloc_percpu(struct chan_ref_percpu);
|
|
if (!channel_table[cap])
|
|
goto err;
|
|
}
|
|
|
|
channel_table_initialized = 1;
|
|
dma_async_client_register(&async_tx_dma);
|
|
dma_async_client_chan_request(&async_tx_dma);
|
|
|
|
printk(KERN_INFO "async_tx: api initialized (async)\n");
|
|
|
|
return 0;
|
|
err:
|
|
printk(KERN_ERR "async_tx: initialization failure\n");
|
|
|
|
while (--cap >= 0)
|
|
free_percpu(channel_table[cap]);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void __exit async_tx_exit(void)
|
|
{
|
|
enum dma_transaction_type cap;
|
|
|
|
channel_table_initialized = 0;
|
|
|
|
for_each_dma_cap_mask(cap, dma_cap_mask_all)
|
|
if (channel_table[cap])
|
|
free_percpu(channel_table[cap]);
|
|
|
|
dma_async_client_unregister(&async_tx_dma);
|
|
}
|
|
|
|
/**
|
|
* __async_tx_find_channel - find a channel to carry out the operation or let
|
|
* the transaction execute synchronously
|
|
* @depend_tx: transaction dependency
|
|
* @tx_type: transaction type
|
|
*/
|
|
struct dma_chan *
|
|
__async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
|
|
enum dma_transaction_type tx_type)
|
|
{
|
|
/* see if we can keep the chain on one channel */
|
|
if (depend_tx &&
|
|
dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
|
|
return depend_tx->chan;
|
|
else if (likely(channel_table_initialized)) {
|
|
struct dma_chan_ref *ref;
|
|
int cpu = get_cpu();
|
|
ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref;
|
|
put_cpu();
|
|
return ref ? ref->chan : NULL;
|
|
} else
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__async_tx_find_channel);
|
|
#else
|
|
static int __init async_tx_init(void)
|
|
{
|
|
printk(KERN_INFO "async_tx: api initialized (sync-only)\n");
|
|
return 0;
|
|
}
|
|
|
|
static void __exit async_tx_exit(void)
|
|
{
|
|
do { } while (0);
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* async_tx_channel_switch - queue an interrupt descriptor with a dependency
|
|
* pre-attached.
|
|
* @depend_tx: the operation that must finish before the new operation runs
|
|
* @tx: the new operation
|
|
*/
|
|
static void
|
|
async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
|
|
struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct dma_chan *chan;
|
|
struct dma_device *device;
|
|
struct dma_async_tx_descriptor *intr_tx = (void *) ~0;
|
|
|
|
/* first check to see if we can still append to depend_tx */
|
|
spin_lock_bh(&depend_tx->lock);
|
|
if (depend_tx->parent && depend_tx->chan == tx->chan) {
|
|
tx->parent = depend_tx;
|
|
depend_tx->next = tx;
|
|
intr_tx = NULL;
|
|
}
|
|
spin_unlock_bh(&depend_tx->lock);
|
|
|
|
if (!intr_tx)
|
|
return;
|
|
|
|
chan = depend_tx->chan;
|
|
device = chan->device;
|
|
|
|
/* see if we can schedule an interrupt
|
|
* otherwise poll for completion
|
|
*/
|
|
if (dma_has_cap(DMA_INTERRUPT, device->cap_mask))
|
|
intr_tx = device->device_prep_dma_interrupt(chan, 0);
|
|
else
|
|
intr_tx = NULL;
|
|
|
|
if (intr_tx) {
|
|
intr_tx->callback = NULL;
|
|
intr_tx->callback_param = NULL;
|
|
tx->parent = intr_tx;
|
|
/* safe to set ->next outside the lock since we know we are
|
|
* not submitted yet
|
|
*/
|
|
intr_tx->next = tx;
|
|
|
|
/* check if we need to append */
|
|
spin_lock_bh(&depend_tx->lock);
|
|
if (depend_tx->parent) {
|
|
intr_tx->parent = depend_tx;
|
|
depend_tx->next = intr_tx;
|
|
async_tx_ack(intr_tx);
|
|
intr_tx = NULL;
|
|
}
|
|
spin_unlock_bh(&depend_tx->lock);
|
|
|
|
if (intr_tx) {
|
|
intr_tx->parent = NULL;
|
|
intr_tx->tx_submit(intr_tx);
|
|
async_tx_ack(intr_tx);
|
|
}
|
|
} else {
|
|
if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
|
|
panic("%s: DMA_ERROR waiting for depend_tx\n",
|
|
__func__);
|
|
tx->tx_submit(tx);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* submit_disposition - while holding depend_tx->lock we must avoid submitting
|
|
* new operations to prevent a circular locking dependency with
|
|
* drivers that already hold a channel lock when calling
|
|
* async_tx_run_dependencies.
|
|
* @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock
|
|
* @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch
|
|
* @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly
|
|
*/
|
|
enum submit_disposition {
|
|
ASYNC_TX_SUBMITTED,
|
|
ASYNC_TX_CHANNEL_SWITCH,
|
|
ASYNC_TX_DIRECT_SUBMIT,
|
|
};
|
|
|
|
void
|
|
async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
|
|
enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx,
|
|
dma_async_tx_callback cb_fn, void *cb_param)
|
|
{
|
|
tx->callback = cb_fn;
|
|
tx->callback_param = cb_param;
|
|
|
|
if (depend_tx) {
|
|
enum submit_disposition s;
|
|
|
|
/* sanity check the dependency chain:
|
|
* 1/ if ack is already set then we cannot be sure
|
|
* we are referring to the correct operation
|
|
* 2/ dependencies are 1:1 i.e. two transactions can
|
|
* not depend on the same parent
|
|
*/
|
|
BUG_ON(async_tx_test_ack(depend_tx) || depend_tx->next ||
|
|
tx->parent);
|
|
|
|
/* the lock prevents async_tx_run_dependencies from missing
|
|
* the setting of ->next when ->parent != NULL
|
|
*/
|
|
spin_lock_bh(&depend_tx->lock);
|
|
if (depend_tx->parent) {
|
|
/* we have a parent so we can not submit directly
|
|
* if we are staying on the same channel: append
|
|
* else: channel switch
|
|
*/
|
|
if (depend_tx->chan == chan) {
|
|
tx->parent = depend_tx;
|
|
depend_tx->next = tx;
|
|
s = ASYNC_TX_SUBMITTED;
|
|
} else
|
|
s = ASYNC_TX_CHANNEL_SWITCH;
|
|
} else {
|
|
/* we do not have a parent so we may be able to submit
|
|
* directly if we are staying on the same channel
|
|
*/
|
|
if (depend_tx->chan == chan)
|
|
s = ASYNC_TX_DIRECT_SUBMIT;
|
|
else
|
|
s = ASYNC_TX_CHANNEL_SWITCH;
|
|
}
|
|
spin_unlock_bh(&depend_tx->lock);
|
|
|
|
switch (s) {
|
|
case ASYNC_TX_SUBMITTED:
|
|
break;
|
|
case ASYNC_TX_CHANNEL_SWITCH:
|
|
async_tx_channel_switch(depend_tx, tx);
|
|
break;
|
|
case ASYNC_TX_DIRECT_SUBMIT:
|
|
tx->parent = NULL;
|
|
tx->tx_submit(tx);
|
|
break;
|
|
}
|
|
} else {
|
|
tx->parent = NULL;
|
|
tx->tx_submit(tx);
|
|
}
|
|
|
|
if (flags & ASYNC_TX_ACK)
|
|
async_tx_ack(tx);
|
|
|
|
if (depend_tx && (flags & ASYNC_TX_DEP_ACK))
|
|
async_tx_ack(depend_tx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(async_tx_submit);
|
|
|
|
/**
|
|
* async_trigger_callback - schedules the callback function to be run after
|
|
* any dependent operations have been completed.
|
|
* @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
|
|
* @depend_tx: 'callback' requires the completion of this transaction
|
|
* @cb_fn: function to call after depend_tx completes
|
|
* @cb_param: parameter to pass to the callback routine
|
|
*/
|
|
struct dma_async_tx_descriptor *
|
|
async_trigger_callback(enum async_tx_flags flags,
|
|
struct dma_async_tx_descriptor *depend_tx,
|
|
dma_async_tx_callback cb_fn, void *cb_param)
|
|
{
|
|
struct dma_chan *chan;
|
|
struct dma_device *device;
|
|
struct dma_async_tx_descriptor *tx;
|
|
|
|
if (depend_tx) {
|
|
chan = depend_tx->chan;
|
|
device = chan->device;
|
|
|
|
/* see if we can schedule an interrupt
|
|
* otherwise poll for completion
|
|
*/
|
|
if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask))
|
|
device = NULL;
|
|
|
|
tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL;
|
|
} else
|
|
tx = NULL;
|
|
|
|
if (tx) {
|
|
pr_debug("%s: (async)\n", __func__);
|
|
|
|
async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
|
|
} else {
|
|
pr_debug("%s: (sync)\n", __func__);
|
|
|
|
/* wait for any prerequisite operations */
|
|
if (depend_tx) {
|
|
/* if ack is already set then we cannot be sure
|
|
* we are referring to the correct operation
|
|
*/
|
|
BUG_ON(async_tx_test_ack(depend_tx));
|
|
if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
|
|
panic("%s: DMA_ERROR waiting for depend_tx\n",
|
|
__func__);
|
|
}
|
|
|
|
async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param);
|
|
}
|
|
|
|
return tx;
|
|
}
|
|
EXPORT_SYMBOL_GPL(async_trigger_callback);
|
|
|
|
module_init(async_tx_init);
|
|
module_exit(async_tx_exit);
|
|
|
|
MODULE_AUTHOR("Intel Corporation");
|
|
MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API");
|
|
MODULE_LICENSE("GPL");
|