android_kernel_xiaomi_sm8350/arch/mn10300/kernel/rtc.c
David Howells b920de1b77 mn10300: add the MN10300/AM33 architecture to the kernel
Add architecture support for the MN10300/AM33 CPUs produced by MEI to the
kernel.

This patch also adds board support for the ASB2303 with the ASB2308 daughter
board, and the ASB2305.  The only processor supported is the MN103E010, which
is an AM33v2 core plus on-chip devices.

[akpm@linux-foundation.org: nuke cvs control strings]
Signed-off-by: Masakazu Urade <urade.masakazu@jp.panasonic.com>
Signed-off-by: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 09:22:30 -08:00

174 lines
5.0 KiB
C

/* MN10300 RTC management
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/bcd.h>
#include <linux/timex.h>
#include <asm/rtc-regs.h>
#include <asm/rtc.h>
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
/* last time the RTC got updated */
static long last_rtc_update;
/* time for RTC to update itself in ioclks */
static unsigned long mn10300_rtc_update_period;
/*
* read the current RTC time
*/
unsigned long __init get_initial_rtc_time(void)
{
struct rtc_time tm;
get_rtc_time(&tm);
return mktime(tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
}
/*
* In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
* ms after the second nowtime has started, because when nowtime is written
* into the registers of the CMOS clock, it will jump to the next second
* precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
* sheet for details.
*
* BUG: This routine does not handle hour overflow properly; it just
* sets the minutes. Usually you'll only notice that after reboot!
*/
static int set_rtc_mmss(unsigned long nowtime)
{
unsigned char save_control, save_freq_select;
int retval = 0;
int real_seconds, real_minutes, cmos_minutes;
/* gets recalled with irq locally disabled */
spin_lock(&rtc_lock);
save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being
* set */
CMOS_WRITE(save_control | RTC_SET, RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset
* prescaler */
CMOS_WRITE(save_freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
cmos_minutes = CMOS_READ(RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
BCD_TO_BIN(cmos_minutes);
/*
* since we're only adjusting minutes and seconds,
* don't interfere with hour overflow. This avoids
* messing with unknown time zones but requires your
* RTC not to be off by more than 15 minutes
*/
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
/* correct for half hour time zone */
real_minutes += 30;
real_minutes %= 60;
if (abs(real_minutes - cmos_minutes) < 30) {
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BIN_TO_BCD(real_seconds);
BIN_TO_BCD(real_minutes);
}
CMOS_WRITE(real_seconds, RTC_SECONDS);
CMOS_WRITE(real_minutes, RTC_MINUTES);
} else {
printk(KERN_WARNING
"set_rtc_mmss: can't update from %d to %d\n",
cmos_minutes, real_minutes);
retval = -1;
}
/* The following flags have to be released exactly in this order,
* otherwise the DS12887 (popular MC146818A clone with integrated
* battery and quartz) will not reset the oscillator and will not
* update precisely 500 ms later. You won't find this mentioned in
* the Dallas Semiconductor data sheets, but who believes data
* sheets anyway ... -- Markus Kuhn
*/
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
spin_unlock(&rtc_lock);
return retval;
}
void check_rtc_time(void)
{
/* the RTC clock just finished ticking over again this second
* - if we have an externally synchronized Linux clock, then update
* RTC clock accordingly every ~11 minutes. set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*/
if ((time_status & STA_UNSYNC) == 0 &&
xtime.tv_sec > last_rtc_update + 660 &&
xtime.tv_nsec / 1000 >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
xtime.tv_nsec / 1000 <= 500000 + ((unsigned) TICK_SIZE) / 2
) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
/* do it again in 60s */
last_rtc_update = xtime.tv_sec - 600;
}
}
/*
* calibrate the TSC clock against the RTC
*/
void __init calibrate_clock(void)
{
unsigned long count0, counth, count1;
unsigned char status;
/* make sure the RTC is running and is set to operate in 24hr mode */
status = RTSRC;
RTCRB |= RTCRB_SET;
RTCRB |= RTCRB_TM_24HR;
RTCRA |= RTCRA_DVR;
RTCRA &= ~RTCRA_DVR;
RTCRB &= ~RTCRB_SET;
/* work out the clock speed by counting clock cycles between ends of
* the RTC update cycle - track the RTC through one complete update
* cycle (1 second)
*/
startup_timestamp_counter();
while (!(RTCRA & RTCRA_UIP)) {}
while ((RTCRA & RTCRA_UIP)) {}
count0 = TMTSCBC;
while (!(RTCRA & RTCRA_UIP)) {}
counth = TMTSCBC;
while ((RTCRA & RTCRA_UIP)) {}
count1 = TMTSCBC;
shutdown_timestamp_counter();
MN10300_TSCCLK = count0 - count1; /* the timers count down */
mn10300_rtc_update_period = counth - count1;
MN10300_TSC_PER_HZ = MN10300_TSCCLK / HZ;
}