2b1bd1ac5d
This adds basic support for UP SH-X3. Signed-off-by: Paul Mundt <lethal@linux-sh.org>
398 lines
10 KiB
C
398 lines
10 KiB
C
/*
|
|
* arch/sh/kernel/setup.c
|
|
*
|
|
* This file handles the architecture-dependent parts of initialization
|
|
*
|
|
* Copyright (C) 1999 Niibe Yutaka
|
|
* Copyright (C) 2002 - 2007 Paul Mundt
|
|
*/
|
|
#include <linux/screen_info.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/console.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kexec.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/page.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/clock.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
extern void * __rd_start, * __rd_end;
|
|
|
|
/*
|
|
* Machine setup..
|
|
*/
|
|
|
|
/*
|
|
* Initialize loops_per_jiffy as 10000000 (1000MIPS).
|
|
* This value will be used at the very early stage of serial setup.
|
|
* The bigger value means no problem.
|
|
*/
|
|
struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, };
|
|
|
|
/*
|
|
* The machine vector. First entry in .machvec.init, or clobbered by
|
|
* sh_mv= on the command line, prior to .machvec.init teardown.
|
|
*/
|
|
struct sh_machine_vector sh_mv = { .mv_name = "generic", };
|
|
|
|
#ifdef CONFIG_VT
|
|
struct screen_info screen_info;
|
|
#endif
|
|
|
|
extern int root_mountflags;
|
|
|
|
/*
|
|
* This is set up by the setup-routine at boot-time
|
|
*/
|
|
#define PARAM ((unsigned char *)empty_zero_page)
|
|
|
|
#define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
|
|
#define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
|
|
#define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
|
|
#define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
|
|
#define INITRD_START (*(unsigned long *) (PARAM+0x010))
|
|
#define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
|
|
/* ... */
|
|
#define COMMAND_LINE ((char *) (PARAM+0x100))
|
|
|
|
#define RAMDISK_IMAGE_START_MASK 0x07FF
|
|
#define RAMDISK_PROMPT_FLAG 0x8000
|
|
#define RAMDISK_LOAD_FLAG 0x4000
|
|
|
|
static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
|
|
|
|
static struct resource code_resource = { .name = "Kernel code", };
|
|
static struct resource data_resource = { .name = "Kernel data", };
|
|
|
|
unsigned long memory_start, memory_end;
|
|
|
|
static int __init early_parse_mem(char *p)
|
|
{
|
|
unsigned long size;
|
|
|
|
memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
|
|
size = memparse(p, &p);
|
|
memory_end = memory_start + size;
|
|
|
|
return 0;
|
|
}
|
|
early_param("mem", early_parse_mem);
|
|
|
|
/*
|
|
* Register fully available low RAM pages with the bootmem allocator.
|
|
*/
|
|
static void __init register_bootmem_low_pages(void)
|
|
{
|
|
unsigned long curr_pfn, last_pfn, pages;
|
|
|
|
/*
|
|
* We are rounding up the start address of usable memory:
|
|
*/
|
|
curr_pfn = PFN_UP(__MEMORY_START);
|
|
|
|
/*
|
|
* ... and at the end of the usable range downwards:
|
|
*/
|
|
last_pfn = PFN_DOWN(__pa(memory_end));
|
|
|
|
if (last_pfn > max_low_pfn)
|
|
last_pfn = max_low_pfn;
|
|
|
|
pages = last_pfn - curr_pfn;
|
|
free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
|
|
}
|
|
|
|
void __init setup_bootmem_allocator(unsigned long free_pfn)
|
|
{
|
|
unsigned long bootmap_size;
|
|
|
|
/*
|
|
* Find a proper area for the bootmem bitmap. After this
|
|
* bootstrap step all allocations (until the page allocator
|
|
* is intact) must be done via bootmem_alloc().
|
|
*/
|
|
bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
|
|
min_low_pfn, max_low_pfn);
|
|
|
|
add_active_range(0, min_low_pfn, max_low_pfn);
|
|
register_bootmem_low_pages();
|
|
|
|
node_set_online(0);
|
|
|
|
/*
|
|
* Reserve the kernel text and
|
|
* Reserve the bootmem bitmap. We do this in two steps (first step
|
|
* was init_bootmem()), because this catches the (definitely buggy)
|
|
* case of us accidentally initializing the bootmem allocator with
|
|
* an invalid RAM area.
|
|
*/
|
|
reserve_bootmem(__MEMORY_START+PAGE_SIZE,
|
|
(PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
|
|
|
|
/*
|
|
* reserve physical page 0 - it's a special BIOS page on many boxes,
|
|
* enabling clean reboots, SMP operation, laptop functions.
|
|
*/
|
|
reserve_bootmem(__MEMORY_START, PAGE_SIZE);
|
|
|
|
sparse_memory_present_with_active_regions(0);
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
|
|
if (&__rd_start != &__rd_end) {
|
|
LOADER_TYPE = 1;
|
|
INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
|
|
__MEMORY_START;
|
|
INITRD_SIZE = (unsigned long)&__rd_end -
|
|
(unsigned long)&__rd_start;
|
|
}
|
|
|
|
if (LOADER_TYPE && INITRD_START) {
|
|
if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
|
|
reserve_bootmem(INITRD_START + __MEMORY_START,
|
|
INITRD_SIZE);
|
|
initrd_start = INITRD_START + PAGE_OFFSET +
|
|
__MEMORY_START;
|
|
initrd_end = initrd_start + INITRD_SIZE;
|
|
} else {
|
|
printk("initrd extends beyond end of memory "
|
|
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
|
|
INITRD_START + INITRD_SIZE,
|
|
max_low_pfn << PAGE_SHIFT);
|
|
initrd_start = 0;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_KEXEC
|
|
if (crashk_res.start != crashk_res.end)
|
|
reserve_bootmem(crashk_res.start,
|
|
crashk_res.end - crashk_res.start + 1);
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
static void __init setup_memory(void)
|
|
{
|
|
unsigned long start_pfn;
|
|
|
|
/*
|
|
* Partially used pages are not usable - thus
|
|
* we are rounding upwards:
|
|
*/
|
|
start_pfn = PFN_UP(__pa(_end));
|
|
setup_bootmem_allocator(start_pfn);
|
|
}
|
|
#else
|
|
extern void __init setup_memory(void);
|
|
#endif
|
|
|
|
void __init setup_arch(char **cmdline_p)
|
|
{
|
|
enable_mmu();
|
|
|
|
ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
|
|
|
|
#ifdef CONFIG_BLK_DEV_RAM
|
|
rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
|
|
rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
|
|
rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
|
|
#endif
|
|
|
|
if (!MOUNT_ROOT_RDONLY)
|
|
root_mountflags &= ~MS_RDONLY;
|
|
init_mm.start_code = (unsigned long) _text;
|
|
init_mm.end_code = (unsigned long) _etext;
|
|
init_mm.end_data = (unsigned long) _edata;
|
|
init_mm.brk = (unsigned long) _end;
|
|
|
|
code_resource.start = virt_to_phys(_text);
|
|
code_resource.end = virt_to_phys(_etext)-1;
|
|
data_resource.start = virt_to_phys(_etext);
|
|
data_resource.end = virt_to_phys(_edata)-1;
|
|
|
|
memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
|
|
memory_end = memory_start + __MEMORY_SIZE;
|
|
|
|
#ifdef CONFIG_CMDLINE_BOOL
|
|
strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
|
|
#else
|
|
strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
|
|
#endif
|
|
|
|
/* Save unparsed command line copy for /proc/cmdline */
|
|
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
|
|
*cmdline_p = command_line;
|
|
|
|
parse_early_param();
|
|
|
|
sh_mv_setup();
|
|
|
|
/*
|
|
* Find the highest page frame number we have available
|
|
*/
|
|
max_pfn = PFN_DOWN(__pa(memory_end));
|
|
|
|
/*
|
|
* Determine low and high memory ranges:
|
|
*/
|
|
max_low_pfn = max_pfn;
|
|
min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
|
|
|
|
nodes_clear(node_online_map);
|
|
|
|
/* Setup bootmem with available RAM */
|
|
setup_memory();
|
|
sparse_init();
|
|
|
|
#ifdef CONFIG_DUMMY_CONSOLE
|
|
conswitchp = &dummy_con;
|
|
#endif
|
|
|
|
/* Perform the machine specific initialisation */
|
|
if (likely(sh_mv.mv_setup))
|
|
sh_mv.mv_setup(cmdline_p);
|
|
|
|
paging_init();
|
|
}
|
|
|
|
static const char *cpu_name[] = {
|
|
[CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
|
|
[CPU_SH7300] = "SH7300",
|
|
[CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
|
|
[CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
|
|
[CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
|
|
[CPU_SH7712] = "SH7712",
|
|
[CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750",
|
|
[CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R",
|
|
[CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R",
|
|
[CPU_SH7760] = "SH7760", [CPU_SH73180] = "SH73180",
|
|
[CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1",
|
|
[CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
|
|
[CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
|
|
[CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
|
|
[CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722",
|
|
[CPU_SHX3] = "SH-X3", [CPU_SH_NONE] = "Unknown"
|
|
};
|
|
|
|
const char *get_cpu_subtype(struct sh_cpuinfo *c)
|
|
{
|
|
return cpu_name[c->type];
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
|
|
static const char *cpu_flags[] = {
|
|
"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
|
|
"ptea", "llsc", "l2", "op32", NULL
|
|
};
|
|
|
|
static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
|
|
{
|
|
unsigned long i;
|
|
|
|
seq_printf(m, "cpu flags\t:");
|
|
|
|
if (!c->flags) {
|
|
seq_printf(m, " %s\n", cpu_flags[0]);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; cpu_flags[i]; i++)
|
|
if ((c->flags & (1 << i)))
|
|
seq_printf(m, " %s", cpu_flags[i+1]);
|
|
|
|
seq_printf(m, "\n");
|
|
}
|
|
|
|
static void show_cacheinfo(struct seq_file *m, const char *type,
|
|
struct cache_info info)
|
|
{
|
|
unsigned int cache_size;
|
|
|
|
cache_size = info.ways * info.sets * info.linesz;
|
|
|
|
seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
|
|
type, cache_size >> 10, info.ways);
|
|
}
|
|
|
|
/*
|
|
* Get CPU information for use by the procfs.
|
|
*/
|
|
static int show_cpuinfo(struct seq_file *m, void *v)
|
|
{
|
|
struct sh_cpuinfo *c = v;
|
|
unsigned int cpu = c - cpu_data;
|
|
|
|
if (!cpu_online(cpu))
|
|
return 0;
|
|
|
|
if (cpu == 0)
|
|
seq_printf(m, "machine\t\t: %s\n", get_system_type());
|
|
|
|
seq_printf(m, "processor\t: %d\n", cpu);
|
|
seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
|
|
seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
|
|
|
|
show_cpuflags(m, c);
|
|
|
|
seq_printf(m, "cache type\t: ");
|
|
|
|
/*
|
|
* Check for what type of cache we have, we support both the
|
|
* unified cache on the SH-2 and SH-3, as well as the harvard
|
|
* style cache on the SH-4.
|
|
*/
|
|
if (c->icache.flags & SH_CACHE_COMBINED) {
|
|
seq_printf(m, "unified\n");
|
|
show_cacheinfo(m, "cache", c->icache);
|
|
} else {
|
|
seq_printf(m, "split (harvard)\n");
|
|
show_cacheinfo(m, "icache", c->icache);
|
|
show_cacheinfo(m, "dcache", c->dcache);
|
|
}
|
|
|
|
/* Optional secondary cache */
|
|
if (c->flags & CPU_HAS_L2_CACHE)
|
|
show_cacheinfo(m, "scache", c->scache);
|
|
|
|
seq_printf(m, "bogomips\t: %lu.%02lu\n",
|
|
c->loops_per_jiffy/(500000/HZ),
|
|
(c->loops_per_jiffy/(5000/HZ)) % 100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *c_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
|
|
}
|
|
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return c_start(m, pos);
|
|
}
|
|
static void c_stop(struct seq_file *m, void *v)
|
|
{
|
|
}
|
|
struct seq_operations cpuinfo_op = {
|
|
.start = c_start,
|
|
.next = c_next,
|
|
.stop = c_stop,
|
|
.show = show_cpuinfo,
|
|
};
|
|
#endif /* CONFIG_PROC_FS */
|