android_kernel_xiaomi_sm8350/arch/mips/include/asm/barrier.h
David Daney 6b07d38aaa MIPS: Octeon: Use optimized memory barrier primitives.
In order to achieve correct synchronization semantics, the Octeon port
had defined CONFIG_WEAK_REORDERING_BEYOND_LLSC.  This resulted in code
that looks like:

   sync
   ll ...
   .
   .
   .
   sc ...
   .
   .
   sync

The second SYNC was redundant, but harmless.

Octeon has a SYNCW instruction that acts as a write-memory-barrier
(due to an erratum in some parts two SYNCW are used).  It is much
faster than SYNC because it imposes ordering on the writes, but
doesn't otherwise stall the execution pipeline.  On Octeon, SYNC
stalls execution until all preceeding writes are committed to the
coherent memory system.

Using:

    syncw;syncw
    ll
    .
    .
    .
    sc
    .
    .

Has identical semantics to the first sequence, but is much faster.
The SYNCW orders the writes, and the SC will not complete successfully
until the write is committed to the coherent memory system.  So at the
end all preceeding writes have been committed.  Since Octeon does not
do speculative reads, this functions as a full barrier.

The patch removes CONFIG_WEAK_REORDERING_BEYOND_LLSC, and substitutes
SYNCW for SYNC in write-memory-barriers.

Signed-off-by: David Daney <ddaney@caviumnetworks.com>
To: linux-mips@linux-mips.org
Patchwork: http://patchwork.linux-mips.org/patch/850/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2010-02-27 12:53:06 +01:00

176 lines
4.6 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2006 by Ralf Baechle (ralf@linux-mips.org)
*/
#ifndef __ASM_BARRIER_H
#define __ASM_BARRIER_H
/*
* read_barrier_depends - Flush all pending reads that subsequents reads
* depend on.
*
* No data-dependent reads from memory-like regions are ever reordered
* over this barrier. All reads preceding this primitive are guaranteed
* to access memory (but not necessarily other CPUs' caches) before any
* reads following this primitive that depend on the data return by
* any of the preceding reads. This primitive is much lighter weight than
* rmb() on most CPUs, and is never heavier weight than is
* rmb().
*
* These ordering constraints are respected by both the local CPU
* and the compiler.
*
* Ordering is not guaranteed by anything other than these primitives,
* not even by data dependencies. See the documentation for
* memory_barrier() for examples and URLs to more information.
*
* For example, the following code would force ordering (the initial
* value of "a" is zero, "b" is one, and "p" is "&a"):
*
* <programlisting>
* CPU 0 CPU 1
*
* b = 2;
* memory_barrier();
* p = &b; q = p;
* read_barrier_depends();
* d = *q;
* </programlisting>
*
* because the read of "*q" depends on the read of "p" and these
* two reads are separated by a read_barrier_depends(). However,
* the following code, with the same initial values for "a" and "b":
*
* <programlisting>
* CPU 0 CPU 1
*
* a = 2;
* memory_barrier();
* b = 3; y = b;
* read_barrier_depends();
* x = a;
* </programlisting>
*
* does not enforce ordering, since there is no data dependency between
* the read of "a" and the read of "b". Therefore, on some CPUs, such
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
* in cases like this where there are no data dependencies.
*/
#define read_barrier_depends() do { } while(0)
#define smp_read_barrier_depends() do { } while(0)
#ifdef CONFIG_CPU_HAS_SYNC
#define __sync() \
__asm__ __volatile__( \
".set push\n\t" \
".set noreorder\n\t" \
".set mips2\n\t" \
"sync\n\t" \
".set pop" \
: /* no output */ \
: /* no input */ \
: "memory")
#else
#define __sync() do { } while(0)
#endif
#define __fast_iob() \
__asm__ __volatile__( \
".set push\n\t" \
".set noreorder\n\t" \
"lw $0,%0\n\t" \
"nop\n\t" \
".set pop" \
: /* no output */ \
: "m" (*(int *)CKSEG1) \
: "memory")
#ifdef CONFIG_CPU_CAVIUM_OCTEON
# define OCTEON_SYNCW_STR ".set push\n.set arch=octeon\nsyncw\nsyncw\n.set pop\n"
# define __syncw() __asm__ __volatile__(OCTEON_SYNCW_STR : : : "memory")
# define fast_wmb() __syncw()
# define fast_rmb() barrier()
# define fast_mb() __sync()
# define fast_iob() do { } while (0)
#else /* ! CONFIG_CPU_CAVIUM_OCTEON */
# define fast_wmb() __sync()
# define fast_rmb() __sync()
# define fast_mb() __sync()
# ifdef CONFIG_SGI_IP28
# define fast_iob() \
__asm__ __volatile__( \
".set push\n\t" \
".set noreorder\n\t" \
"lw $0,%0\n\t" \
"sync\n\t" \
"lw $0,%0\n\t" \
".set pop" \
: /* no output */ \
: "m" (*(int *)CKSEG1ADDR(0x1fa00004)) \
: "memory")
# else
# define fast_iob() \
do { \
__sync(); \
__fast_iob(); \
} while (0)
# endif
#endif /* CONFIG_CPU_CAVIUM_OCTEON */
#ifdef CONFIG_CPU_HAS_WB
#include <asm/wbflush.h>
#define wmb() fast_wmb()
#define rmb() fast_rmb()
#define mb() wbflush()
#define iob() wbflush()
#else /* !CONFIG_CPU_HAS_WB */
#define wmb() fast_wmb()
#define rmb() fast_rmb()
#define mb() fast_mb()
#define iob() fast_iob()
#endif /* !CONFIG_CPU_HAS_WB */
#if defined(CONFIG_WEAK_ORDERING) && defined(CONFIG_SMP)
# ifdef CONFIG_CPU_CAVIUM_OCTEON
# define smp_mb() __sync()
# define smp_rmb() barrier()
# define smp_wmb() __syncw()
# else
# define smp_mb() __asm__ __volatile__("sync" : : :"memory")
# define smp_rmb() __asm__ __volatile__("sync" : : :"memory")
# define smp_wmb() __asm__ __volatile__("sync" : : :"memory")
# endif
#else
#define smp_mb() barrier()
#define smp_rmb() barrier()
#define smp_wmb() barrier()
#endif
#if defined(CONFIG_WEAK_REORDERING_BEYOND_LLSC) && defined(CONFIG_SMP)
#define __WEAK_LLSC_MB " sync \n"
#else
#define __WEAK_LLSC_MB " \n"
#endif
#define set_mb(var, value) \
do { var = value; smp_mb(); } while (0)
#define smp_llsc_mb() __asm__ __volatile__(__WEAK_LLSC_MB : : :"memory")
#ifdef CONFIG_CPU_CAVIUM_OCTEON
#define smp_mb__before_llsc() smp_wmb()
#else
#define smp_mb__before_llsc() smp_llsc_mb()
#endif
#endif /* __ASM_BARRIER_H */