android_kernel_xiaomi_sm8350/arch/powerpc/kernel/setup_64.c
Benjamin Herrenschmidt 3c726f8dee [PATCH] ppc64: support 64k pages
Adds a new CONFIG_PPC_64K_PAGES which, when enabled, changes the kernel
base page size to 64K.  The resulting kernel still boots on any
hardware.  On current machines with 4K pages support only, the kernel
will maintain 16 "subpages" for each 64K page transparently.

Note that while real 64K capable HW has been tested, the current patch
will not enable it yet as such hardware is not released yet, and I'm
still verifying with the firmware architects the proper to get the
information from the newer hypervisors.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-06 16:56:47 -08:00

930 lines
24 KiB
C

/*
*
* Common boot and setup code.
*
* Copyright (C) 2001 PPC64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/ide.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/ppcdebug.h>
#include <asm/time.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/system.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/lmb.h>
#include <asm/iseries/it_lp_naca.h>
#include <asm/firmware.h>
#include <asm/systemcfg.h>
#include <asm/xmon.h>
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
/*
* Here are some early debugging facilities. You can enable one
* but your kernel will not boot on anything else if you do so
*/
/* This one is for use on LPAR machines that support an HVC console
* on vterm 0
*/
extern void udbg_init_debug_lpar(void);
/* This one is for use on Apple G5 machines
*/
extern void udbg_init_pmac_realmode(void);
/* That's RTAS panel debug */
extern void call_rtas_display_status_delay(unsigned char c);
/* Here's maple real mode debug */
extern void udbg_init_maple_realmode(void);
#define EARLY_DEBUG_INIT() do {} while(0)
#if 0
#define EARLY_DEBUG_INIT() udbg_init_debug_lpar()
#define EARLY_DEBUG_INIT() udbg_init_maple_realmode()
#define EARLY_DEBUG_INIT() udbg_init_pmac_realmode()
#define EARLY_DEBUG_INIT() \
do { udbg_putc = call_rtas_display_status_delay; } while(0)
#endif
/* extern void *stab; */
extern unsigned long klimit;
extern void mm_init_ppc64(void);
extern void stab_initialize(unsigned long stab);
extern void htab_initialize(void);
extern void early_init_devtree(void *flat_dt);
extern void unflatten_device_tree(void);
int have_of = 1;
int boot_cpuid = 0;
int boot_cpuid_phys = 0;
dev_t boot_dev;
u64 ppc64_pft_size;
struct ppc64_caches ppc64_caches;
EXPORT_SYMBOL_GPL(ppc64_caches);
/*
* These are used in binfmt_elf.c to put aux entries on the stack
* for each elf executable being started.
*/
int dcache_bsize;
int icache_bsize;
int ucache_bsize;
/* The main machine-dep calls structure
*/
struct machdep_calls ppc_md;
EXPORT_SYMBOL(ppc_md);
#ifdef CONFIG_MAGIC_SYSRQ
unsigned long SYSRQ_KEY;
#endif /* CONFIG_MAGIC_SYSRQ */
static int ppc64_panic_event(struct notifier_block *, unsigned long, void *);
static struct notifier_block ppc64_panic_block = {
.notifier_call = ppc64_panic_event,
.priority = INT_MIN /* may not return; must be done last */
};
#ifdef CONFIG_SMP
static int smt_enabled_cmdline;
/* Look for ibm,smt-enabled OF option */
static void check_smt_enabled(void)
{
struct device_node *dn;
char *smt_option;
/* Allow the command line to overrule the OF option */
if (smt_enabled_cmdline)
return;
dn = of_find_node_by_path("/options");
if (dn) {
smt_option = (char *)get_property(dn, "ibm,smt-enabled", NULL);
if (smt_option) {
if (!strcmp(smt_option, "on"))
smt_enabled_at_boot = 1;
else if (!strcmp(smt_option, "off"))
smt_enabled_at_boot = 0;
}
}
}
/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
smt_enabled_cmdline = 1;
if (!p)
return 0;
if (!strcmp(p, "on") || !strcmp(p, "1"))
smt_enabled_at_boot = 1;
else if (!strcmp(p, "off") || !strcmp(p, "0"))
smt_enabled_at_boot = 0;
return 0;
}
early_param("smt-enabled", early_smt_enabled);
#else
#define check_smt_enabled()
#endif /* CONFIG_SMP */
extern struct machdep_calls pSeries_md;
extern struct machdep_calls pmac_md;
extern struct machdep_calls maple_md;
extern struct machdep_calls cell_md;
extern struct machdep_calls iseries_md;
/* Ultimately, stuff them in an elf section like initcalls... */
static struct machdep_calls __initdata *machines[] = {
#ifdef CONFIG_PPC_PSERIES
&pSeries_md,
#endif /* CONFIG_PPC_PSERIES */
#ifdef CONFIG_PPC_PMAC
&pmac_md,
#endif /* CONFIG_PPC_PMAC */
#ifdef CONFIG_PPC_MAPLE
&maple_md,
#endif /* CONFIG_PPC_MAPLE */
#ifdef CONFIG_PPC_CELL
&cell_md,
#endif
#ifdef CONFIG_PPC_ISERIES
&iseries_md,
#endif
NULL
};
/*
* Early initialization entry point. This is called by head.S
* with MMU translation disabled. We rely on the "feature" of
* the CPU that ignores the top 2 bits of the address in real
* mode so we can access kernel globals normally provided we
* only toy with things in the RMO region. From here, we do
* some early parsing of the device-tree to setup out LMB
* data structures, and allocate & initialize the hash table
* and segment tables so we can start running with translation
* enabled.
*
* It is this function which will call the probe() callback of
* the various platform types and copy the matching one to the
* global ppc_md structure. Your platform can eventually do
* some very early initializations from the probe() routine, but
* this is not recommended, be very careful as, for example, the
* device-tree is not accessible via normal means at this point.
*/
void __init early_setup(unsigned long dt_ptr)
{
struct paca_struct *lpaca = get_paca();
static struct machdep_calls **mach;
/*
* Enable early debugging if any specified (see top of
* this file)
*/
EARLY_DEBUG_INIT();
DBG(" -> early_setup()\n");
/*
* Fill the default DBG level (do we want to keep
* that old mecanism around forever ?)
*/
ppcdbg_initialize();
/*
* Do early initializations using the flattened device
* tree, like retreiving the physical memory map or
* calculating/retreiving the hash table size
*/
early_init_devtree(__va(dt_ptr));
/*
* Iterate all ppc_md structures until we find the proper
* one for the current machine type
*/
DBG("Probing machine type for platform %x...\n",
systemcfg->platform);
for (mach = machines; *mach; mach++) {
if ((*mach)->probe(systemcfg->platform))
break;
}
/* What can we do if we didn't find ? */
if (*mach == NULL) {
DBG("No suitable machine found !\n");
for (;;);
}
ppc_md = **mach;
DBG("Found, Initializing memory management...\n");
/*
* Initialize the MMU Hash table and create the linear mapping
* of memory. Has to be done before stab/slb initialization as
* this is currently where the page size encoding is obtained
*/
htab_initialize();
/*
* Initialize stab / SLB management except on iSeries
*/
if (!firmware_has_feature(FW_FEATURE_ISERIES)) {
if (cpu_has_feature(CPU_FTR_SLB))
slb_initialize();
else
stab_initialize(lpaca->stab_real);
}
DBG(" <- early_setup()\n");
}
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
void smp_release_cpus(void)
{
extern unsigned long __secondary_hold_spinloop;
DBG(" -> smp_release_cpus()\n");
/* All secondary cpus are spinning on a common spinloop, release them
* all now so they can start to spin on their individual paca
* spinloops. For non SMP kernels, the secondary cpus never get out
* of the common spinloop.
* This is useless but harmless on iSeries, secondaries are already
* waiting on their paca spinloops. */
__secondary_hold_spinloop = 1;
mb();
DBG(" <- smp_release_cpus()\n");
}
#else
#define smp_release_cpus()
#endif /* CONFIG_SMP || CONFIG_KEXEC */
/*
* Initialize some remaining members of the ppc64_caches and systemcfg structures
* (at least until we get rid of them completely). This is mostly some
* cache informations about the CPU that will be used by cache flush
* routines and/or provided to userland
*/
static void __init initialize_cache_info(void)
{
struct device_node *np;
unsigned long num_cpus = 0;
DBG(" -> initialize_cache_info()\n");
for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
num_cpus += 1;
/* We're assuming *all* of the CPUs have the same
* d-cache and i-cache sizes... -Peter
*/
if ( num_cpus == 1 ) {
u32 *sizep, *lsizep;
u32 size, lsize;
const char *dc, *ic;
/* Then read cache informations */
if (systemcfg->platform == PLATFORM_POWERMAC) {
dc = "d-cache-block-size";
ic = "i-cache-block-size";
} else {
dc = "d-cache-line-size";
ic = "i-cache-line-size";
}
size = 0;
lsize = cur_cpu_spec->dcache_bsize;
sizep = (u32 *)get_property(np, "d-cache-size", NULL);
if (sizep != NULL)
size = *sizep;
lsizep = (u32 *) get_property(np, dc, NULL);
if (lsizep != NULL)
lsize = *lsizep;
if (sizep == 0 || lsizep == 0)
DBG("Argh, can't find dcache properties ! "
"sizep: %p, lsizep: %p\n", sizep, lsizep);
systemcfg->dcache_size = ppc64_caches.dsize = size;
systemcfg->dcache_line_size =
ppc64_caches.dline_size = lsize;
ppc64_caches.log_dline_size = __ilog2(lsize);
ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
size = 0;
lsize = cur_cpu_spec->icache_bsize;
sizep = (u32 *)get_property(np, "i-cache-size", NULL);
if (sizep != NULL)
size = *sizep;
lsizep = (u32 *)get_property(np, ic, NULL);
if (lsizep != NULL)
lsize = *lsizep;
if (sizep == 0 || lsizep == 0)
DBG("Argh, can't find icache properties ! "
"sizep: %p, lsizep: %p\n", sizep, lsizep);
systemcfg->icache_size = ppc64_caches.isize = size;
systemcfg->icache_line_size =
ppc64_caches.iline_size = lsize;
ppc64_caches.log_iline_size = __ilog2(lsize);
ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
}
}
/* Add an eye catcher and the systemcfg layout version number */
strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64");
systemcfg->version.major = SYSTEMCFG_MAJOR;
systemcfg->version.minor = SYSTEMCFG_MINOR;
systemcfg->processor = mfspr(SPRN_PVR);
DBG(" <- initialize_cache_info()\n");
}
static void __init check_for_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
u64 *prop;
DBG(" -> check_for_initrd()\n");
if (of_chosen) {
prop = (u64 *)get_property(of_chosen,
"linux,initrd-start", NULL);
if (prop != NULL) {
initrd_start = (unsigned long)__va(*prop);
prop = (u64 *)get_property(of_chosen,
"linux,initrd-end", NULL);
if (prop != NULL) {
initrd_end = (unsigned long)__va(*prop);
initrd_below_start_ok = 1;
} else
initrd_start = 0;
}
}
/* If we were passed an initrd, set the ROOT_DEV properly if the values
* look sensible. If not, clear initrd reference.
*/
if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
initrd_end > initrd_start)
ROOT_DEV = Root_RAM0;
else
initrd_start = initrd_end = 0;
if (initrd_start)
printk("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
DBG(" <- check_for_initrd()\n");
#endif /* CONFIG_BLK_DEV_INITRD */
}
/*
* Do some initial setup of the system. The parameters are those which
* were passed in from the bootloader.
*/
void __init setup_system(void)
{
DBG(" -> setup_system()\n");
/*
* Unflatten the device-tree passed by prom_init or kexec
*/
unflatten_device_tree();
/*
* Fill the ppc64_caches & systemcfg structures with informations
* retreived from the device-tree. Need to be called before
* finish_device_tree() since the later requires some of the
* informations filled up here to properly parse the interrupt
* tree.
* It also sets up the cache line sizes which allows to call
* routines like flush_icache_range (used by the hash init
* later on).
*/
initialize_cache_info();
#ifdef CONFIG_PPC_RTAS
/*
* Initialize RTAS if available
*/
rtas_initialize();
#endif /* CONFIG_PPC_RTAS */
/*
* Check if we have an initrd provided via the device-tree
*/
check_for_initrd();
/*
* Do some platform specific early initializations, that includes
* setting up the hash table pointers. It also sets up some interrupt-mapping
* related options that will be used by finish_device_tree()
*/
ppc_md.init_early();
/*
* "Finish" the device-tree, that is do the actual parsing of
* some of the properties like the interrupt map
*/
finish_device_tree();
#ifdef CONFIG_BOOTX_TEXT
init_boot_display();
#endif
/*
* Initialize xmon
*/
#ifdef CONFIG_XMON_DEFAULT
xmon_init(1);
#endif
/*
* Register early console
*/
register_early_udbg_console();
/* Save unparsed command line copy for /proc/cmdline */
strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
parse_early_param();
check_smt_enabled();
smp_setup_cpu_maps();
/* Release secondary cpus out of their spinloops at 0x60 now that
* we can map physical -> logical CPU ids
*/
smp_release_cpus();
printk("Starting Linux PPC64 %s\n", system_utsname.version);
printk("-----------------------------------------------------\n");
printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size);
printk("ppc64_debug_switch = 0x%lx\n", ppc64_debug_switch);
printk("ppc64_interrupt_controller = 0x%ld\n", ppc64_interrupt_controller);
printk("systemcfg = 0x%p\n", systemcfg);
printk("systemcfg->platform = 0x%x\n", systemcfg->platform);
printk("systemcfg->processorCount = 0x%lx\n", systemcfg->processorCount);
printk("systemcfg->physicalMemorySize = 0x%lx\n", systemcfg->physicalMemorySize);
printk("ppc64_caches.dcache_line_size = 0x%x\n",
ppc64_caches.dline_size);
printk("ppc64_caches.icache_line_size = 0x%x\n",
ppc64_caches.iline_size);
printk("htab_address = 0x%p\n", htab_address);
printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
printk("-----------------------------------------------------\n");
mm_init_ppc64();
DBG(" <- setup_system()\n");
}
static int ppc64_panic_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
ppc_md.panic((char *)ptr); /* May not return */
return NOTIFY_DONE;
}
#ifdef CONFIG_IRQSTACKS
static void __init irqstack_early_init(void)
{
unsigned int i;
/*
* interrupt stacks must be under 256MB, we cannot afford to take
* SLB misses on them.
*/
for_each_cpu(i) {
softirq_ctx[i] = (struct thread_info *)
__va(lmb_alloc_base(THREAD_SIZE,
THREAD_SIZE, 0x10000000));
hardirq_ctx[i] = (struct thread_info *)
__va(lmb_alloc_base(THREAD_SIZE,
THREAD_SIZE, 0x10000000));
}
}
#else
#define irqstack_early_init()
#endif
/*
* Stack space used when we detect a bad kernel stack pointer, and
* early in SMP boots before relocation is enabled.
*/
static void __init emergency_stack_init(void)
{
unsigned long limit;
unsigned int i;
/*
* Emergency stacks must be under 256MB, we cannot afford to take
* SLB misses on them. The ABI also requires them to be 128-byte
* aligned.
*
* Since we use these as temporary stacks during secondary CPU
* bringup, we need to get at them in real mode. This means they
* must also be within the RMO region.
*/
limit = min(0x10000000UL, lmb.rmo_size);
for_each_cpu(i)
paca[i].emergency_sp =
__va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE;
}
/*
* Called from setup_arch to initialize the bitmap of available
* syscalls in the systemcfg page
*/
void __init setup_syscall_map(void)
{
unsigned int i, count64 = 0, count32 = 0;
extern unsigned long *sys_call_table;
extern unsigned long sys_ni_syscall;
for (i = 0; i < __NR_syscalls; i++) {
if (sys_call_table[i*2] != sys_ni_syscall) {
count64++;
systemcfg->syscall_map_64[i >> 5] |=
0x80000000UL >> (i & 0x1f);
}
if (sys_call_table[i*2+1] != sys_ni_syscall) {
count32++;
systemcfg->syscall_map_32[i >> 5] |=
0x80000000UL >> (i & 0x1f);
}
}
printk(KERN_INFO "Syscall map setup, %d 32-bit and %d 64-bit syscalls\n",
count32, count64);
}
/*
* Called into from start_kernel, after lock_kernel has been called.
* Initializes bootmem, which is unsed to manage page allocation until
* mem_init is called.
*/
void __init setup_arch(char **cmdline_p)
{
extern void do_init_bootmem(void);
ppc64_boot_msg(0x12, "Setup Arch");
*cmdline_p = cmd_line;
/*
* Set cache line size based on type of cpu as a default.
* Systems with OF can look in the properties on the cpu node(s)
* for a possibly more accurate value.
*/
dcache_bsize = ppc64_caches.dline_size;
icache_bsize = ppc64_caches.iline_size;
/* reboot on panic */
panic_timeout = 180;
if (ppc_md.panic)
notifier_chain_register(&panic_notifier_list, &ppc64_panic_block);
init_mm.start_code = PAGE_OFFSET;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = klimit;
irqstack_early_init();
emergency_stack_init();
stabs_alloc();
/* set up the bootmem stuff with available memory */
do_init_bootmem();
sparse_init();
/* initialize the syscall map in systemcfg */
setup_syscall_map();
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
ppc_md.setup_arch();
/* Use the default idle loop if the platform hasn't provided one. */
if (NULL == ppc_md.idle_loop) {
ppc_md.idle_loop = default_idle;
printk(KERN_INFO "Using default idle loop\n");
}
paging_init();
ppc64_boot_msg(0x15, "Setup Done");
}
/* ToDo: do something useful if ppc_md is not yet setup. */
#define PPC64_LINUX_FUNCTION 0x0f000000
#define PPC64_IPL_MESSAGE 0xc0000000
#define PPC64_TERM_MESSAGE 0xb0000000
static void ppc64_do_msg(unsigned int src, const char *msg)
{
if (ppc_md.progress) {
char buf[128];
sprintf(buf, "%08X\n", src);
ppc_md.progress(buf, 0);
snprintf(buf, 128, "%s", msg);
ppc_md.progress(buf, 0);
}
}
/* Print a boot progress message. */
void ppc64_boot_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
printk("[boot]%04x %s\n", src, msg);
}
/* Print a termination message (print only -- does not stop the kernel) */
void ppc64_terminate_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
printk("[terminate]%04x %s\n", src, msg);
}
#ifndef CONFIG_PPC_ISERIES
/*
* This function can be used by platforms to "find" legacy serial ports.
* It works for "serial" nodes under an "isa" node, and will try to
* respect the "ibm,aix-loc" property if any. It works with up to 8
* ports.
*/
#define MAX_LEGACY_SERIAL_PORTS 8
static struct plat_serial8250_port serial_ports[MAX_LEGACY_SERIAL_PORTS+1];
static unsigned int old_serial_count;
void __init generic_find_legacy_serial_ports(u64 *physport,
unsigned int *default_speed)
{
struct device_node *np;
u32 *sizeprop;
struct isa_reg_property {
u32 space;
u32 address;
u32 size;
};
struct pci_reg_property {
struct pci_address addr;
u32 size_hi;
u32 size_lo;
};
DBG(" -> generic_find_legacy_serial_port()\n");
*physport = 0;
if (default_speed)
*default_speed = 0;
np = of_find_node_by_path("/");
if (!np)
return;
/* First fill our array */
for (np = NULL; (np = of_find_node_by_type(np, "serial"));) {
struct device_node *isa, *pci;
struct isa_reg_property *reg;
unsigned long phys_size, addr_size, io_base;
u32 *rangesp;
u32 *interrupts, *clk, *spd;
char *typep;
int index, rlen, rentsize;
/* Ok, first check if it's under an "isa" parent */
isa = of_get_parent(np);
if (!isa || strcmp(isa->name, "isa")) {
DBG("%s: no isa parent found\n", np->full_name);
continue;
}
/* Now look for an "ibm,aix-loc" property that gives us ordering
* if any...
*/
typep = (char *)get_property(np, "ibm,aix-loc", NULL);
/* Get the ISA port number */
reg = (struct isa_reg_property *)get_property(np, "reg", NULL);
if (reg == NULL)
goto next_port;
/* We assume the interrupt number isn't translated ... */
interrupts = (u32 *)get_property(np, "interrupts", NULL);
/* get clock freq. if present */
clk = (u32 *)get_property(np, "clock-frequency", NULL);
/* get default speed if present */
spd = (u32 *)get_property(np, "current-speed", NULL);
/* Default to locate at end of array */
index = old_serial_count; /* end of the array by default */
/* If we have a location index, then use it */
if (typep && *typep == 'S') {
index = simple_strtol(typep+1, NULL, 0) - 1;
/* if index is out of range, use end of array instead */
if (index >= MAX_LEGACY_SERIAL_PORTS)
index = old_serial_count;
/* if our index is still out of range, that mean that
* array is full, we could scan for a free slot but that
* make little sense to bother, just skip the port
*/
if (index >= MAX_LEGACY_SERIAL_PORTS)
goto next_port;
if (index >= old_serial_count)
old_serial_count = index + 1;
/* Check if there is a port who already claimed our slot */
if (serial_ports[index].iobase != 0) {
/* if we still have some room, move it, else override */
if (old_serial_count < MAX_LEGACY_SERIAL_PORTS) {
DBG("Moved legacy port %d -> %d\n", index,
old_serial_count);
serial_ports[old_serial_count++] =
serial_ports[index];
} else {
DBG("Replacing legacy port %d\n", index);
}
}
}
if (index >= MAX_LEGACY_SERIAL_PORTS)
goto next_port;
if (index >= old_serial_count)
old_serial_count = index + 1;
/* Now fill the entry */
memset(&serial_ports[index], 0, sizeof(struct plat_serial8250_port));
serial_ports[index].uartclk = clk ? *clk : BASE_BAUD * 16;
serial_ports[index].iobase = reg->address;
serial_ports[index].irq = interrupts ? interrupts[0] : 0;
serial_ports[index].flags = ASYNC_BOOT_AUTOCONF;
DBG("Added legacy port, index: %d, port: %x, irq: %d, clk: %d\n",
index,
serial_ports[index].iobase,
serial_ports[index].irq,
serial_ports[index].uartclk);
/* Get phys address of IO reg for port 1 */
if (index != 0)
goto next_port;
pci = of_get_parent(isa);
if (!pci) {
DBG("%s: no pci parent found\n", np->full_name);
goto next_port;
}
rangesp = (u32 *)get_property(pci, "ranges", &rlen);
if (rangesp == NULL) {
of_node_put(pci);
goto next_port;
}
rlen /= 4;
/* we need the #size-cells of the PCI bridge node itself */
phys_size = 1;
sizeprop = (u32 *)get_property(pci, "#size-cells", NULL);
if (sizeprop != NULL)
phys_size = *sizeprop;
/* we need the parent #addr-cells */
addr_size = prom_n_addr_cells(pci);
rentsize = 3 + addr_size + phys_size;
io_base = 0;
for (;rlen >= rentsize; rlen -= rentsize,rangesp += rentsize) {
if (((rangesp[0] >> 24) & 0x3) != 1)
continue; /* not IO space */
io_base = rangesp[3];
if (addr_size == 2)
io_base = (io_base << 32) | rangesp[4];
}
if (io_base != 0) {
*physport = io_base + reg->address;
if (default_speed && spd)
*default_speed = *spd;
}
of_node_put(pci);
next_port:
of_node_put(isa);
}
DBG(" <- generic_find_legacy_serial_port()\n");
}
static struct platform_device serial_device = {
.name = "serial8250",
.id = PLAT8250_DEV_PLATFORM,
.dev = {
.platform_data = serial_ports,
},
};
static int __init serial_dev_init(void)
{
return platform_device_register(&serial_device);
}
arch_initcall(serial_dev_init);
#endif /* CONFIG_PPC_ISERIES */
int check_legacy_ioport(unsigned long base_port)
{
if (ppc_md.check_legacy_ioport == NULL)
return 0;
return ppc_md.check_legacy_ioport(base_port);
}
EXPORT_SYMBOL(check_legacy_ioport);
#ifdef CONFIG_XMON
static int __init early_xmon(char *p)
{
/* ensure xmon is enabled */
if (p) {
if (strncmp(p, "on", 2) == 0)
xmon_init(1);
if (strncmp(p, "off", 3) == 0)
xmon_init(0);
if (strncmp(p, "early", 5) != 0)
return 0;
}
xmon_init(1);
debugger(NULL);
return 0;
}
early_param("xmon", early_xmon);
#endif
void cpu_die(void)
{
if (ppc_md.cpu_die)
ppc_md.cpu_die();
}