android_kernel_xiaomi_sm8350/ipc/sem.c
Manfred Spraul 758a6ba39e ipc/sem.c: rename try_atomic_semop() to perform_atomic_semop(), docu update
Cleanup: Some minor points that I noticed while writing the previous
patches

1) The name try_atomic_semop() is misleading: The function performs the
   operation (if it is possible).

2) Some documentation updates.

No real code change, a rename and documentation changes.

Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:28 -07:00

2078 lines
52 KiB
C

/*
* linux/ipc/sem.c
* Copyright (C) 1992 Krishna Balasubramanian
* Copyright (C) 1995 Eric Schenk, Bruno Haible
*
* /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
*
* SMP-threaded, sysctl's added
* (c) 1999 Manfred Spraul <manfred@colorfullife.com>
* Enforced range limit on SEM_UNDO
* (c) 2001 Red Hat Inc
* Lockless wakeup
* (c) 2003 Manfred Spraul <manfred@colorfullife.com>
* Further wakeup optimizations, documentation
* (c) 2010 Manfred Spraul <manfred@colorfullife.com>
*
* support for audit of ipc object properties and permission changes
* Dustin Kirkland <dustin.kirkland@us.ibm.com>
*
* namespaces support
* OpenVZ, SWsoft Inc.
* Pavel Emelianov <xemul@openvz.org>
*
* Implementation notes: (May 2010)
* This file implements System V semaphores.
*
* User space visible behavior:
* - FIFO ordering for semop() operations (just FIFO, not starvation
* protection)
* - multiple semaphore operations that alter the same semaphore in
* one semop() are handled.
* - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
* SETALL calls.
* - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
* - undo adjustments at process exit are limited to 0..SEMVMX.
* - namespace are supported.
* - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
* to /proc/sys/kernel/sem.
* - statistics about the usage are reported in /proc/sysvipc/sem.
*
* Internals:
* - scalability:
* - all global variables are read-mostly.
* - semop() calls and semctl(RMID) are synchronized by RCU.
* - most operations do write operations (actually: spin_lock calls) to
* the per-semaphore array structure.
* Thus: Perfect SMP scaling between independent semaphore arrays.
* If multiple semaphores in one array are used, then cache line
* trashing on the semaphore array spinlock will limit the scaling.
* - semncnt and semzcnt are calculated on demand in count_semncnt() and
* count_semzcnt()
* - the task that performs a successful semop() scans the list of all
* sleeping tasks and completes any pending operations that can be fulfilled.
* Semaphores are actively given to waiting tasks (necessary for FIFO).
* (see update_queue())
* - To improve the scalability, the actual wake-up calls are performed after
* dropping all locks. (see wake_up_sem_queue_prepare(),
* wake_up_sem_queue_do())
* - All work is done by the waker, the woken up task does not have to do
* anything - not even acquiring a lock or dropping a refcount.
* - A woken up task may not even touch the semaphore array anymore, it may
* have been destroyed already by a semctl(RMID).
* - The synchronizations between wake-ups due to a timeout/signal and a
* wake-up due to a completed semaphore operation is achieved by using an
* intermediate state (IN_WAKEUP).
* - UNDO values are stored in an array (one per process and per
* semaphore array, lazily allocated). For backwards compatibility, multiple
* modes for the UNDO variables are supported (per process, per thread)
* (see copy_semundo, CLONE_SYSVSEM)
* - There are two lists of the pending operations: a per-array list
* and per-semaphore list (stored in the array). This allows to achieve FIFO
* ordering without always scanning all pending operations.
* The worst-case behavior is nevertheless O(N^2) for N wakeups.
*/
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/time.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/audit.h>
#include <linux/capability.h>
#include <linux/seq_file.h>
#include <linux/rwsem.h>
#include <linux/nsproxy.h>
#include <linux/ipc_namespace.h>
#include <asm/uaccess.h>
#include "util.h"
/* One semaphore structure for each semaphore in the system. */
struct sem {
int semval; /* current value */
int sempid; /* pid of last operation */
spinlock_t lock; /* spinlock for fine-grained semtimedop */
struct list_head pending_alter; /* pending single-sop operations */
/* that alter the semaphore */
struct list_head pending_const; /* pending single-sop operations */
/* that do not alter the semaphore*/
time_t sem_otime; /* candidate for sem_otime */
} ____cacheline_aligned_in_smp;
/* One queue for each sleeping process in the system. */
struct sem_queue {
struct list_head list; /* queue of pending operations */
struct task_struct *sleeper; /* this process */
struct sem_undo *undo; /* undo structure */
int pid; /* process id of requesting process */
int status; /* completion status of operation */
struct sembuf *sops; /* array of pending operations */
int nsops; /* number of operations */
int alter; /* does *sops alter the array? */
};
/* Each task has a list of undo requests. They are executed automatically
* when the process exits.
*/
struct sem_undo {
struct list_head list_proc; /* per-process list: *
* all undos from one process
* rcu protected */
struct rcu_head rcu; /* rcu struct for sem_undo */
struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
struct list_head list_id; /* per semaphore array list:
* all undos for one array */
int semid; /* semaphore set identifier */
short *semadj; /* array of adjustments */
/* one per semaphore */
};
/* sem_undo_list controls shared access to the list of sem_undo structures
* that may be shared among all a CLONE_SYSVSEM task group.
*/
struct sem_undo_list {
atomic_t refcnt;
spinlock_t lock;
struct list_head list_proc;
};
#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
static int newary(struct ipc_namespace *, struct ipc_params *);
static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
#endif
#define SEMMSL_FAST 256 /* 512 bytes on stack */
#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
/*
* Locking:
* sem_undo.id_next,
* sem_array.complex_count,
* sem_array.pending{_alter,_cont},
* sem_array.sem_undo: global sem_lock() for read/write
* sem_undo.proc_next: only "current" is allowed to read/write that field.
*
* sem_array.sem_base[i].pending_{const,alter}:
* global or semaphore sem_lock() for read/write
*/
#define sc_semmsl sem_ctls[0]
#define sc_semmns sem_ctls[1]
#define sc_semopm sem_ctls[2]
#define sc_semmni sem_ctls[3]
void sem_init_ns(struct ipc_namespace *ns)
{
ns->sc_semmsl = SEMMSL;
ns->sc_semmns = SEMMNS;
ns->sc_semopm = SEMOPM;
ns->sc_semmni = SEMMNI;
ns->used_sems = 0;
ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
}
#ifdef CONFIG_IPC_NS
void sem_exit_ns(struct ipc_namespace *ns)
{
free_ipcs(ns, &sem_ids(ns), freeary);
idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
}
#endif
void __init sem_init (void)
{
sem_init_ns(&init_ipc_ns);
ipc_init_proc_interface("sysvipc/sem",
" key semid perms nsems uid gid cuid cgid otime ctime\n",
IPC_SEM_IDS, sysvipc_sem_proc_show);
}
/**
* unmerge_queues - unmerge queues, if possible.
* @sma: semaphore array
*
* The function unmerges the wait queues if complex_count is 0.
* It must be called prior to dropping the global semaphore array lock.
*/
static void unmerge_queues(struct sem_array *sma)
{
struct sem_queue *q, *tq;
/* complex operations still around? */
if (sma->complex_count)
return;
/*
* We will switch back to simple mode.
* Move all pending operation back into the per-semaphore
* queues.
*/
list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
struct sem *curr;
curr = &sma->sem_base[q->sops[0].sem_num];
list_add_tail(&q->list, &curr->pending_alter);
}
INIT_LIST_HEAD(&sma->pending_alter);
}
/**
* merge_queues - Merge single semop queues into global queue
* @sma: semaphore array
*
* This function merges all per-semaphore queues into the global queue.
* It is necessary to achieve FIFO ordering for the pending single-sop
* operations when a multi-semop operation must sleep.
* Only the alter operations must be moved, the const operations can stay.
*/
static void merge_queues(struct sem_array *sma)
{
int i;
for (i = 0; i < sma->sem_nsems; i++) {
struct sem *sem = sma->sem_base + i;
list_splice_init(&sem->pending_alter, &sma->pending_alter);
}
}
/*
* If the request contains only one semaphore operation, and there are
* no complex transactions pending, lock only the semaphore involved.
* Otherwise, lock the entire semaphore array, since we either have
* multiple semaphores in our own semops, or we need to look at
* semaphores from other pending complex operations.
*
* Carefully guard against sma->complex_count changing between zero
* and non-zero while we are spinning for the lock. The value of
* sma->complex_count cannot change while we are holding the lock,
* so sem_unlock should be fine.
*
* The global lock path checks that all the local locks have been released,
* checking each local lock once. This means that the local lock paths
* cannot start their critical sections while the global lock is held.
*/
static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
int nsops)
{
int locknum;
again:
if (nsops == 1 && !sma->complex_count) {
struct sem *sem = sma->sem_base + sops->sem_num;
/* Lock just the semaphore we are interested in. */
spin_lock(&sem->lock);
/*
* If sma->complex_count was set while we were spinning,
* we may need to look at things we did not lock here.
*/
if (unlikely(sma->complex_count)) {
spin_unlock(&sem->lock);
goto lock_array;
}
/*
* Another process is holding the global lock on the
* sem_array; we cannot enter our critical section,
* but have to wait for the global lock to be released.
*/
if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
spin_unlock(&sem->lock);
spin_unlock_wait(&sma->sem_perm.lock);
goto again;
}
locknum = sops->sem_num;
} else {
int i;
/*
* Lock the semaphore array, and wait for all of the
* individual semaphore locks to go away. The code
* above ensures no new single-lock holders will enter
* their critical section while the array lock is held.
*/
lock_array:
ipc_lock_object(&sma->sem_perm);
for (i = 0; i < sma->sem_nsems; i++) {
struct sem *sem = sma->sem_base + i;
spin_unlock_wait(&sem->lock);
}
locknum = -1;
}
return locknum;
}
static inline void sem_unlock(struct sem_array *sma, int locknum)
{
if (locknum == -1) {
unmerge_queues(sma);
ipc_unlock_object(&sma->sem_perm);
} else {
struct sem *sem = sma->sem_base + locknum;
spin_unlock(&sem->lock);
}
}
/*
* sem_lock_(check_) routines are called in the paths where the rw_mutex
* is not held.
*
* The caller holds the RCU read lock.
*/
static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
int id, struct sembuf *sops, int nsops, int *locknum)
{
struct kern_ipc_perm *ipcp;
struct sem_array *sma;
ipcp = ipc_obtain_object(&sem_ids(ns), id);
if (IS_ERR(ipcp))
return ERR_CAST(ipcp);
sma = container_of(ipcp, struct sem_array, sem_perm);
*locknum = sem_lock(sma, sops, nsops);
/* ipc_rmid() may have already freed the ID while sem_lock
* was spinning: verify that the structure is still valid
*/
if (!ipcp->deleted)
return container_of(ipcp, struct sem_array, sem_perm);
sem_unlock(sma, *locknum);
return ERR_PTR(-EINVAL);
}
static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
{
struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
if (IS_ERR(ipcp))
return ERR_CAST(ipcp);
return container_of(ipcp, struct sem_array, sem_perm);
}
static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
int id)
{
struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
if (IS_ERR(ipcp))
return ERR_CAST(ipcp);
return container_of(ipcp, struct sem_array, sem_perm);
}
static inline void sem_lock_and_putref(struct sem_array *sma)
{
sem_lock(sma, NULL, -1);
ipc_rcu_putref(sma);
}
static inline void sem_putref(struct sem_array *sma)
{
ipc_rcu_putref(sma);
}
static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
{
ipc_rmid(&sem_ids(ns), &s->sem_perm);
}
/*
* Lockless wakeup algorithm:
* Without the check/retry algorithm a lockless wakeup is possible:
* - queue.status is initialized to -EINTR before blocking.
* - wakeup is performed by
* * unlinking the queue entry from the pending list
* * setting queue.status to IN_WAKEUP
* This is the notification for the blocked thread that a
* result value is imminent.
* * call wake_up_process
* * set queue.status to the final value.
* - the previously blocked thread checks queue.status:
* * if it's IN_WAKEUP, then it must wait until the value changes
* * if it's not -EINTR, then the operation was completed by
* update_queue. semtimedop can return queue.status without
* performing any operation on the sem array.
* * otherwise it must acquire the spinlock and check what's up.
*
* The two-stage algorithm is necessary to protect against the following
* races:
* - if queue.status is set after wake_up_process, then the woken up idle
* thread could race forward and try (and fail) to acquire sma->lock
* before update_queue had a chance to set queue.status
* - if queue.status is written before wake_up_process and if the
* blocked process is woken up by a signal between writing
* queue.status and the wake_up_process, then the woken up
* process could return from semtimedop and die by calling
* sys_exit before wake_up_process is called. Then wake_up_process
* will oops, because the task structure is already invalid.
* (yes, this happened on s390 with sysv msg).
*
*/
#define IN_WAKEUP 1
/**
* newary - Create a new semaphore set
* @ns: namespace
* @params: ptr to the structure that contains key, semflg and nsems
*
* Called with sem_ids.rw_mutex held (as a writer)
*/
static int newary(struct ipc_namespace *ns, struct ipc_params *params)
{
int id;
int retval;
struct sem_array *sma;
int size;
key_t key = params->key;
int nsems = params->u.nsems;
int semflg = params->flg;
int i;
if (!nsems)
return -EINVAL;
if (ns->used_sems + nsems > ns->sc_semmns)
return -ENOSPC;
size = sizeof (*sma) + nsems * sizeof (struct sem);
sma = ipc_rcu_alloc(size);
if (!sma) {
return -ENOMEM;
}
memset (sma, 0, size);
sma->sem_perm.mode = (semflg & S_IRWXUGO);
sma->sem_perm.key = key;
sma->sem_perm.security = NULL;
retval = security_sem_alloc(sma);
if (retval) {
ipc_rcu_putref(sma);
return retval;
}
id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
if (id < 0) {
security_sem_free(sma);
ipc_rcu_putref(sma);
return id;
}
ns->used_sems += nsems;
sma->sem_base = (struct sem *) &sma[1];
for (i = 0; i < nsems; i++) {
INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
spin_lock_init(&sma->sem_base[i].lock);
}
sma->complex_count = 0;
INIT_LIST_HEAD(&sma->pending_alter);
INIT_LIST_HEAD(&sma->pending_const);
INIT_LIST_HEAD(&sma->list_id);
sma->sem_nsems = nsems;
sma->sem_ctime = get_seconds();
sem_unlock(sma, -1);
rcu_read_unlock();
return sma->sem_perm.id;
}
/*
* Called with sem_ids.rw_mutex and ipcp locked.
*/
static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
{
struct sem_array *sma;
sma = container_of(ipcp, struct sem_array, sem_perm);
return security_sem_associate(sma, semflg);
}
/*
* Called with sem_ids.rw_mutex and ipcp locked.
*/
static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
struct ipc_params *params)
{
struct sem_array *sma;
sma = container_of(ipcp, struct sem_array, sem_perm);
if (params->u.nsems > sma->sem_nsems)
return -EINVAL;
return 0;
}
SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
{
struct ipc_namespace *ns;
struct ipc_ops sem_ops;
struct ipc_params sem_params;
ns = current->nsproxy->ipc_ns;
if (nsems < 0 || nsems > ns->sc_semmsl)
return -EINVAL;
sem_ops.getnew = newary;
sem_ops.associate = sem_security;
sem_ops.more_checks = sem_more_checks;
sem_params.key = key;
sem_params.flg = semflg;
sem_params.u.nsems = nsems;
return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
}
/** perform_atomic_semop - Perform (if possible) a semaphore operation
* @sma: semaphore array
* @sops: array with operations that should be checked
* @nsems: number of sops
* @un: undo array
* @pid: pid that did the change
*
* Returns 0 if the operation was possible.
* Returns 1 if the operation is impossible, the caller must sleep.
* Negative values are error codes.
*/
static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
int nsops, struct sem_undo *un, int pid)
{
int result, sem_op;
struct sembuf *sop;
struct sem * curr;
for (sop = sops; sop < sops + nsops; sop++) {
curr = sma->sem_base + sop->sem_num;
sem_op = sop->sem_op;
result = curr->semval;
if (!sem_op && result)
goto would_block;
result += sem_op;
if (result < 0)
goto would_block;
if (result > SEMVMX)
goto out_of_range;
if (sop->sem_flg & SEM_UNDO) {
int undo = un->semadj[sop->sem_num] - sem_op;
/*
* Exceeding the undo range is an error.
*/
if (undo < (-SEMAEM - 1) || undo > SEMAEM)
goto out_of_range;
}
curr->semval = result;
}
sop--;
while (sop >= sops) {
sma->sem_base[sop->sem_num].sempid = pid;
if (sop->sem_flg & SEM_UNDO)
un->semadj[sop->sem_num] -= sop->sem_op;
sop--;
}
return 0;
out_of_range:
result = -ERANGE;
goto undo;
would_block:
if (sop->sem_flg & IPC_NOWAIT)
result = -EAGAIN;
else
result = 1;
undo:
sop--;
while (sop >= sops) {
sma->sem_base[sop->sem_num].semval -= sop->sem_op;
sop--;
}
return result;
}
/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
* @q: queue entry that must be signaled
* @error: Error value for the signal
*
* Prepare the wake-up of the queue entry q.
*/
static void wake_up_sem_queue_prepare(struct list_head *pt,
struct sem_queue *q, int error)
{
if (list_empty(pt)) {
/*
* Hold preempt off so that we don't get preempted and have the
* wakee busy-wait until we're scheduled back on.
*/
preempt_disable();
}
q->status = IN_WAKEUP;
q->pid = error;
list_add_tail(&q->list, pt);
}
/**
* wake_up_sem_queue_do(pt) - do the actual wake-up
* @pt: list of tasks to be woken up
*
* Do the actual wake-up.
* The function is called without any locks held, thus the semaphore array
* could be destroyed already and the tasks can disappear as soon as the
* status is set to the actual return code.
*/
static void wake_up_sem_queue_do(struct list_head *pt)
{
struct sem_queue *q, *t;
int did_something;
did_something = !list_empty(pt);
list_for_each_entry_safe(q, t, pt, list) {
wake_up_process(q->sleeper);
/* q can disappear immediately after writing q->status. */
smp_wmb();
q->status = q->pid;
}
if (did_something)
preempt_enable();
}
static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
{
list_del(&q->list);
if (q->nsops > 1)
sma->complex_count--;
}
/** check_restart(sma, q)
* @sma: semaphore array
* @q: the operation that just completed
*
* update_queue is O(N^2) when it restarts scanning the whole queue of
* waiting operations. Therefore this function checks if the restart is
* really necessary. It is called after a previously waiting operation
* modified the array.
* Note that wait-for-zero operations are handled without restart.
*/
static int check_restart(struct sem_array *sma, struct sem_queue *q)
{
/* pending complex alter operations are too difficult to analyse */
if (!list_empty(&sma->pending_alter))
return 1;
/* we were a sleeping complex operation. Too difficult */
if (q->nsops > 1)
return 1;
/* It is impossible that someone waits for the new value:
* - complex operations always restart.
* - wait-for-zero are handled seperately.
* - q is a previously sleeping simple operation that
* altered the array. It must be a decrement, because
* simple increments never sleep.
* - If there are older (higher priority) decrements
* in the queue, then they have observed the original
* semval value and couldn't proceed. The operation
* decremented to value - thus they won't proceed either.
*/
return 0;
}
/**
* wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
* @sma: semaphore array.
* @semnum: semaphore that was modified.
* @pt: list head for the tasks that must be woken up.
*
* wake_const_ops must be called after a semaphore in a semaphore array
* was set to 0. If complex const operations are pending, wake_const_ops must
* be called with semnum = -1, as well as with the number of each modified
* semaphore.
* The tasks that must be woken up are added to @pt. The return code
* is stored in q->pid.
* The function returns 1 if at least one operation was completed successfully.
*/
static int wake_const_ops(struct sem_array *sma, int semnum,
struct list_head *pt)
{
struct sem_queue *q;
struct list_head *walk;
struct list_head *pending_list;
int semop_completed = 0;
if (semnum == -1)
pending_list = &sma->pending_const;
else
pending_list = &sma->sem_base[semnum].pending_const;
walk = pending_list->next;
while (walk != pending_list) {
int error;
q = container_of(walk, struct sem_queue, list);
walk = walk->next;
error = perform_atomic_semop(sma, q->sops, q->nsops,
q->undo, q->pid);
if (error <= 0) {
/* operation completed, remove from queue & wakeup */
unlink_queue(sma, q);
wake_up_sem_queue_prepare(pt, q, error);
if (error == 0)
semop_completed = 1;
}
}
return semop_completed;
}
/**
* do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
* @sma: semaphore array
* @sops: operations that were performed
* @nsops: number of operations
* @pt: list head of the tasks that must be woken up.
*
* do_smart_wakeup_zero() checks all required queue for wait-for-zero
* operations, based on the actual changes that were performed on the
* semaphore array.
* The function returns 1 if at least one operation was completed successfully.
*/
static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
int nsops, struct list_head *pt)
{
int i;
int semop_completed = 0;
int got_zero = 0;
/* first: the per-semaphore queues, if known */
if (sops) {
for (i = 0; i < nsops; i++) {
int num = sops[i].sem_num;
if (sma->sem_base[num].semval == 0) {
got_zero = 1;
semop_completed |= wake_const_ops(sma, num, pt);
}
}
} else {
/*
* No sops means modified semaphores not known.
* Assume all were changed.
*/
for (i = 0; i < sma->sem_nsems; i++) {
if (sma->sem_base[i].semval == 0) {
got_zero = 1;
semop_completed |= wake_const_ops(sma, i, pt);
}
}
}
/*
* If one of the modified semaphores got 0,
* then check the global queue, too.
*/
if (got_zero)
semop_completed |= wake_const_ops(sma, -1, pt);
return semop_completed;
}
/**
* update_queue(sma, semnum): Look for tasks that can be completed.
* @sma: semaphore array.
* @semnum: semaphore that was modified.
* @pt: list head for the tasks that must be woken up.
*
* update_queue must be called after a semaphore in a semaphore array
* was modified. If multiple semaphores were modified, update_queue must
* be called with semnum = -1, as well as with the number of each modified
* semaphore.
* The tasks that must be woken up are added to @pt. The return code
* is stored in q->pid.
* The function internally checks if const operations can now succeed.
*
* The function return 1 if at least one semop was completed successfully.
*/
static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
{
struct sem_queue *q;
struct list_head *walk;
struct list_head *pending_list;
int semop_completed = 0;
if (semnum == -1)
pending_list = &sma->pending_alter;
else
pending_list = &sma->sem_base[semnum].pending_alter;
again:
walk = pending_list->next;
while (walk != pending_list) {
int error, restart;
q = container_of(walk, struct sem_queue, list);
walk = walk->next;
/* If we are scanning the single sop, per-semaphore list of
* one semaphore and that semaphore is 0, then it is not
* necessary to scan further: simple increments
* that affect only one entry succeed immediately and cannot
* be in the per semaphore pending queue, and decrements
* cannot be successful if the value is already 0.
*/
if (semnum != -1 && sma->sem_base[semnum].semval == 0)
break;
error = perform_atomic_semop(sma, q->sops, q->nsops,
q->undo, q->pid);
/* Does q->sleeper still need to sleep? */
if (error > 0)
continue;
unlink_queue(sma, q);
if (error) {
restart = 0;
} else {
semop_completed = 1;
do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
restart = check_restart(sma, q);
}
wake_up_sem_queue_prepare(pt, q, error);
if (restart)
goto again;
}
return semop_completed;
}
/**
* do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
* @sma: semaphore array
* @sops: operations that were performed
* @nsops: number of operations
* @otime: force setting otime
* @pt: list head of the tasks that must be woken up.
*
* do_smart_update() does the required calls to update_queue and wakeup_zero,
* based on the actual changes that were performed on the semaphore array.
* Note that the function does not do the actual wake-up: the caller is
* responsible for calling wake_up_sem_queue_do(@pt).
* It is safe to perform this call after dropping all locks.
*/
static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
int otime, struct list_head *pt)
{
int i;
otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
if (!list_empty(&sma->pending_alter)) {
/* semaphore array uses the global queue - just process it. */
otime |= update_queue(sma, -1, pt);
} else {
if (!sops) {
/*
* No sops, thus the modified semaphores are not
* known. Check all.
*/
for (i = 0; i < sma->sem_nsems; i++)
otime |= update_queue(sma, i, pt);
} else {
/*
* Check the semaphores that were increased:
* - No complex ops, thus all sleeping ops are
* decrease.
* - if we decreased the value, then any sleeping
* semaphore ops wont be able to run: If the
* previous value was too small, then the new
* value will be too small, too.
*/
for (i = 0; i < nsops; i++) {
if (sops[i].sem_op > 0) {
otime |= update_queue(sma,
sops[i].sem_num, pt);
}
}
}
}
if (otime) {
if (sops == NULL) {
sma->sem_base[0].sem_otime = get_seconds();
} else {
sma->sem_base[sops[0].sem_num].sem_otime =
get_seconds();
}
}
}
/* The following counts are associated to each semaphore:
* semncnt number of tasks waiting on semval being nonzero
* semzcnt number of tasks waiting on semval being zero
* This model assumes that a task waits on exactly one semaphore.
* Since semaphore operations are to be performed atomically, tasks actually
* wait on a whole sequence of semaphores simultaneously.
* The counts we return here are a rough approximation, but still
* warrant that semncnt+semzcnt>0 if the task is on the pending queue.
*/
static int count_semncnt (struct sem_array * sma, ushort semnum)
{
int semncnt;
struct sem_queue * q;
semncnt = 0;
list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
struct sembuf * sops = q->sops;
BUG_ON(sops->sem_num != semnum);
if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
semncnt++;
}
list_for_each_entry(q, &sma->pending_alter, list) {
struct sembuf * sops = q->sops;
int nsops = q->nsops;
int i;
for (i = 0; i < nsops; i++)
if (sops[i].sem_num == semnum
&& (sops[i].sem_op < 0)
&& !(sops[i].sem_flg & IPC_NOWAIT))
semncnt++;
}
return semncnt;
}
static int count_semzcnt (struct sem_array * sma, ushort semnum)
{
int semzcnt;
struct sem_queue * q;
semzcnt = 0;
list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
struct sembuf * sops = q->sops;
BUG_ON(sops->sem_num != semnum);
if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
semzcnt++;
}
list_for_each_entry(q, &sma->pending_const, list) {
struct sembuf * sops = q->sops;
int nsops = q->nsops;
int i;
for (i = 0; i < nsops; i++)
if (sops[i].sem_num == semnum
&& (sops[i].sem_op == 0)
&& !(sops[i].sem_flg & IPC_NOWAIT))
semzcnt++;
}
return semzcnt;
}
/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
* as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
* remains locked on exit.
*/
static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
{
struct sem_undo *un, *tu;
struct sem_queue *q, *tq;
struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
struct list_head tasks;
int i;
/* Free the existing undo structures for this semaphore set. */
ipc_assert_locked_object(&sma->sem_perm);
list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
list_del(&un->list_id);
spin_lock(&un->ulp->lock);
un->semid = -1;
list_del_rcu(&un->list_proc);
spin_unlock(&un->ulp->lock);
kfree_rcu(un, rcu);
}
/* Wake up all pending processes and let them fail with EIDRM. */
INIT_LIST_HEAD(&tasks);
list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
unlink_queue(sma, q);
wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
}
list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
unlink_queue(sma, q);
wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
}
for (i = 0; i < sma->sem_nsems; i++) {
struct sem *sem = sma->sem_base + i;
list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
unlink_queue(sma, q);
wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
}
list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
unlink_queue(sma, q);
wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
}
}
/* Remove the semaphore set from the IDR */
sem_rmid(ns, sma);
sem_unlock(sma, -1);
rcu_read_unlock();
wake_up_sem_queue_do(&tasks);
ns->used_sems -= sma->sem_nsems;
security_sem_free(sma);
ipc_rcu_putref(sma);
}
static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
{
switch(version) {
case IPC_64:
return copy_to_user(buf, in, sizeof(*in));
case IPC_OLD:
{
struct semid_ds out;
memset(&out, 0, sizeof(out));
ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
out.sem_otime = in->sem_otime;
out.sem_ctime = in->sem_ctime;
out.sem_nsems = in->sem_nsems;
return copy_to_user(buf, &out, sizeof(out));
}
default:
return -EINVAL;
}
}
static time_t get_semotime(struct sem_array *sma)
{
int i;
time_t res;
res = sma->sem_base[0].sem_otime;
for (i = 1; i < sma->sem_nsems; i++) {
time_t to = sma->sem_base[i].sem_otime;
if (to > res)
res = to;
}
return res;
}
static int semctl_nolock(struct ipc_namespace *ns, int semid,
int cmd, int version, void __user *p)
{
int err;
struct sem_array *sma;
switch(cmd) {
case IPC_INFO:
case SEM_INFO:
{
struct seminfo seminfo;
int max_id;
err = security_sem_semctl(NULL, cmd);
if (err)
return err;
memset(&seminfo,0,sizeof(seminfo));
seminfo.semmni = ns->sc_semmni;
seminfo.semmns = ns->sc_semmns;
seminfo.semmsl = ns->sc_semmsl;
seminfo.semopm = ns->sc_semopm;
seminfo.semvmx = SEMVMX;
seminfo.semmnu = SEMMNU;
seminfo.semmap = SEMMAP;
seminfo.semume = SEMUME;
down_read(&sem_ids(ns).rw_mutex);
if (cmd == SEM_INFO) {
seminfo.semusz = sem_ids(ns).in_use;
seminfo.semaem = ns->used_sems;
} else {
seminfo.semusz = SEMUSZ;
seminfo.semaem = SEMAEM;
}
max_id = ipc_get_maxid(&sem_ids(ns));
up_read(&sem_ids(ns).rw_mutex);
if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
return -EFAULT;
return (max_id < 0) ? 0: max_id;
}
case IPC_STAT:
case SEM_STAT:
{
struct semid64_ds tbuf;
int id = 0;
memset(&tbuf, 0, sizeof(tbuf));
rcu_read_lock();
if (cmd == SEM_STAT) {
sma = sem_obtain_object(ns, semid);
if (IS_ERR(sma)) {
err = PTR_ERR(sma);
goto out_unlock;
}
id = sma->sem_perm.id;
} else {
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
err = PTR_ERR(sma);
goto out_unlock;
}
}
err = -EACCES;
if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
goto out_unlock;
err = security_sem_semctl(sma, cmd);
if (err)
goto out_unlock;
kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
tbuf.sem_otime = get_semotime(sma);
tbuf.sem_ctime = sma->sem_ctime;
tbuf.sem_nsems = sma->sem_nsems;
rcu_read_unlock();
if (copy_semid_to_user(p, &tbuf, version))
return -EFAULT;
return id;
}
default:
return -EINVAL;
}
out_unlock:
rcu_read_unlock();
return err;
}
static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
unsigned long arg)
{
struct sem_undo *un;
struct sem_array *sma;
struct sem* curr;
int err;
struct list_head tasks;
int val;
#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
/* big-endian 64bit */
val = arg >> 32;
#else
/* 32bit or little-endian 64bit */
val = arg;
#endif
if (val > SEMVMX || val < 0)
return -ERANGE;
INIT_LIST_HEAD(&tasks);
rcu_read_lock();
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
rcu_read_unlock();
return PTR_ERR(sma);
}
if (semnum < 0 || semnum >= sma->sem_nsems) {
rcu_read_unlock();
return -EINVAL;
}
if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
rcu_read_unlock();
return -EACCES;
}
err = security_sem_semctl(sma, SETVAL);
if (err) {
rcu_read_unlock();
return -EACCES;
}
sem_lock(sma, NULL, -1);
curr = &sma->sem_base[semnum];
ipc_assert_locked_object(&sma->sem_perm);
list_for_each_entry(un, &sma->list_id, list_id)
un->semadj[semnum] = 0;
curr->semval = val;
curr->sempid = task_tgid_vnr(current);
sma->sem_ctime = get_seconds();
/* maybe some queued-up processes were waiting for this */
do_smart_update(sma, NULL, 0, 0, &tasks);
sem_unlock(sma, -1);
rcu_read_unlock();
wake_up_sem_queue_do(&tasks);
return 0;
}
static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
int cmd, void __user *p)
{
struct sem_array *sma;
struct sem* curr;
int err, nsems;
ushort fast_sem_io[SEMMSL_FAST];
ushort* sem_io = fast_sem_io;
struct list_head tasks;
INIT_LIST_HEAD(&tasks);
rcu_read_lock();
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
rcu_read_unlock();
return PTR_ERR(sma);
}
nsems = sma->sem_nsems;
err = -EACCES;
if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
goto out_rcu_wakeup;
err = security_sem_semctl(sma, cmd);
if (err)
goto out_rcu_wakeup;
err = -EACCES;
switch (cmd) {
case GETALL:
{
ushort __user *array = p;
int i;
sem_lock(sma, NULL, -1);
if(nsems > SEMMSL_FAST) {
if (!ipc_rcu_getref(sma)) {
sem_unlock(sma, -1);
rcu_read_unlock();
err = -EIDRM;
goto out_free;
}
sem_unlock(sma, -1);
rcu_read_unlock();
sem_io = ipc_alloc(sizeof(ushort)*nsems);
if(sem_io == NULL) {
sem_putref(sma);
return -ENOMEM;
}
rcu_read_lock();
sem_lock_and_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma, -1);
rcu_read_unlock();
err = -EIDRM;
goto out_free;
}
}
for (i = 0; i < sma->sem_nsems; i++)
sem_io[i] = sma->sem_base[i].semval;
sem_unlock(sma, -1);
rcu_read_unlock();
err = 0;
if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
err = -EFAULT;
goto out_free;
}
case SETALL:
{
int i;
struct sem_undo *un;
if (!ipc_rcu_getref(sma)) {
rcu_read_unlock();
return -EIDRM;
}
rcu_read_unlock();
if(nsems > SEMMSL_FAST) {
sem_io = ipc_alloc(sizeof(ushort)*nsems);
if(sem_io == NULL) {
sem_putref(sma);
return -ENOMEM;
}
}
if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
sem_putref(sma);
err = -EFAULT;
goto out_free;
}
for (i = 0; i < nsems; i++) {
if (sem_io[i] > SEMVMX) {
sem_putref(sma);
err = -ERANGE;
goto out_free;
}
}
rcu_read_lock();
sem_lock_and_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma, -1);
rcu_read_unlock();
err = -EIDRM;
goto out_free;
}
for (i = 0; i < nsems; i++)
sma->sem_base[i].semval = sem_io[i];
ipc_assert_locked_object(&sma->sem_perm);
list_for_each_entry(un, &sma->list_id, list_id) {
for (i = 0; i < nsems; i++)
un->semadj[i] = 0;
}
sma->sem_ctime = get_seconds();
/* maybe some queued-up processes were waiting for this */
do_smart_update(sma, NULL, 0, 0, &tasks);
err = 0;
goto out_unlock;
}
/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
}
err = -EINVAL;
if (semnum < 0 || semnum >= nsems)
goto out_rcu_wakeup;
sem_lock(sma, NULL, -1);
curr = &sma->sem_base[semnum];
switch (cmd) {
case GETVAL:
err = curr->semval;
goto out_unlock;
case GETPID:
err = curr->sempid;
goto out_unlock;
case GETNCNT:
err = count_semncnt(sma,semnum);
goto out_unlock;
case GETZCNT:
err = count_semzcnt(sma,semnum);
goto out_unlock;
}
out_unlock:
sem_unlock(sma, -1);
out_rcu_wakeup:
rcu_read_unlock();
wake_up_sem_queue_do(&tasks);
out_free:
if(sem_io != fast_sem_io)
ipc_free(sem_io, sizeof(ushort)*nsems);
return err;
}
static inline unsigned long
copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
{
switch(version) {
case IPC_64:
if (copy_from_user(out, buf, sizeof(*out)))
return -EFAULT;
return 0;
case IPC_OLD:
{
struct semid_ds tbuf_old;
if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
return -EFAULT;
out->sem_perm.uid = tbuf_old.sem_perm.uid;
out->sem_perm.gid = tbuf_old.sem_perm.gid;
out->sem_perm.mode = tbuf_old.sem_perm.mode;
return 0;
}
default:
return -EINVAL;
}
}
/*
* This function handles some semctl commands which require the rw_mutex
* to be held in write mode.
* NOTE: no locks must be held, the rw_mutex is taken inside this function.
*/
static int semctl_down(struct ipc_namespace *ns, int semid,
int cmd, int version, void __user *p)
{
struct sem_array *sma;
int err;
struct semid64_ds semid64;
struct kern_ipc_perm *ipcp;
if(cmd == IPC_SET) {
if (copy_semid_from_user(&semid64, p, version))
return -EFAULT;
}
down_write(&sem_ids(ns).rw_mutex);
rcu_read_lock();
ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
&semid64.sem_perm, 0);
if (IS_ERR(ipcp)) {
err = PTR_ERR(ipcp);
goto out_unlock1;
}
sma = container_of(ipcp, struct sem_array, sem_perm);
err = security_sem_semctl(sma, cmd);
if (err)
goto out_unlock1;
switch (cmd) {
case IPC_RMID:
sem_lock(sma, NULL, -1);
/* freeary unlocks the ipc object and rcu */
freeary(ns, ipcp);
goto out_up;
case IPC_SET:
sem_lock(sma, NULL, -1);
err = ipc_update_perm(&semid64.sem_perm, ipcp);
if (err)
goto out_unlock0;
sma->sem_ctime = get_seconds();
break;
default:
err = -EINVAL;
goto out_unlock1;
}
out_unlock0:
sem_unlock(sma, -1);
out_unlock1:
rcu_read_unlock();
out_up:
up_write(&sem_ids(ns).rw_mutex);
return err;
}
SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
{
int version;
struct ipc_namespace *ns;
void __user *p = (void __user *)arg;
if (semid < 0)
return -EINVAL;
version = ipc_parse_version(&cmd);
ns = current->nsproxy->ipc_ns;
switch(cmd) {
case IPC_INFO:
case SEM_INFO:
case IPC_STAT:
case SEM_STAT:
return semctl_nolock(ns, semid, cmd, version, p);
case GETALL:
case GETVAL:
case GETPID:
case GETNCNT:
case GETZCNT:
case SETALL:
return semctl_main(ns, semid, semnum, cmd, p);
case SETVAL:
return semctl_setval(ns, semid, semnum, arg);
case IPC_RMID:
case IPC_SET:
return semctl_down(ns, semid, cmd, version, p);
default:
return -EINVAL;
}
}
/* If the task doesn't already have a undo_list, then allocate one
* here. We guarantee there is only one thread using this undo list,
* and current is THE ONE
*
* If this allocation and assignment succeeds, but later
* portions of this code fail, there is no need to free the sem_undo_list.
* Just let it stay associated with the task, and it'll be freed later
* at exit time.
*
* This can block, so callers must hold no locks.
*/
static inline int get_undo_list(struct sem_undo_list **undo_listp)
{
struct sem_undo_list *undo_list;
undo_list = current->sysvsem.undo_list;
if (!undo_list) {
undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
if (undo_list == NULL)
return -ENOMEM;
spin_lock_init(&undo_list->lock);
atomic_set(&undo_list->refcnt, 1);
INIT_LIST_HEAD(&undo_list->list_proc);
current->sysvsem.undo_list = undo_list;
}
*undo_listp = undo_list;
return 0;
}
static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
{
struct sem_undo *un;
list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
if (un->semid == semid)
return un;
}
return NULL;
}
static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
{
struct sem_undo *un;
assert_spin_locked(&ulp->lock);
un = __lookup_undo(ulp, semid);
if (un) {
list_del_rcu(&un->list_proc);
list_add_rcu(&un->list_proc, &ulp->list_proc);
}
return un;
}
/**
* find_alloc_undo - Lookup (and if not present create) undo array
* @ns: namespace
* @semid: semaphore array id
*
* The function looks up (and if not present creates) the undo structure.
* The size of the undo structure depends on the size of the semaphore
* array, thus the alloc path is not that straightforward.
* Lifetime-rules: sem_undo is rcu-protected, on success, the function
* performs a rcu_read_lock().
*/
static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
{
struct sem_array *sma;
struct sem_undo_list *ulp;
struct sem_undo *un, *new;
int nsems, error;
error = get_undo_list(&ulp);
if (error)
return ERR_PTR(error);
rcu_read_lock();
spin_lock(&ulp->lock);
un = lookup_undo(ulp, semid);
spin_unlock(&ulp->lock);
if (likely(un!=NULL))
goto out;
/* no undo structure around - allocate one. */
/* step 1: figure out the size of the semaphore array */
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
rcu_read_unlock();
return ERR_CAST(sma);
}
nsems = sma->sem_nsems;
if (!ipc_rcu_getref(sma)) {
rcu_read_unlock();
un = ERR_PTR(-EIDRM);
goto out;
}
rcu_read_unlock();
/* step 2: allocate new undo structure */
new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
if (!new) {
sem_putref(sma);
return ERR_PTR(-ENOMEM);
}
/* step 3: Acquire the lock on semaphore array */
rcu_read_lock();
sem_lock_and_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma, -1);
rcu_read_unlock();
kfree(new);
un = ERR_PTR(-EIDRM);
goto out;
}
spin_lock(&ulp->lock);
/*
* step 4: check for races: did someone else allocate the undo struct?
*/
un = lookup_undo(ulp, semid);
if (un) {
kfree(new);
goto success;
}
/* step 5: initialize & link new undo structure */
new->semadj = (short *) &new[1];
new->ulp = ulp;
new->semid = semid;
assert_spin_locked(&ulp->lock);
list_add_rcu(&new->list_proc, &ulp->list_proc);
ipc_assert_locked_object(&sma->sem_perm);
list_add(&new->list_id, &sma->list_id);
un = new;
success:
spin_unlock(&ulp->lock);
sem_unlock(sma, -1);
out:
return un;
}
/**
* get_queue_result - Retrieve the result code from sem_queue
* @q: Pointer to queue structure
*
* Retrieve the return code from the pending queue. If IN_WAKEUP is found in
* q->status, then we must loop until the value is replaced with the final
* value: This may happen if a task is woken up by an unrelated event (e.g.
* signal) and in parallel the task is woken up by another task because it got
* the requested semaphores.
*
* The function can be called with or without holding the semaphore spinlock.
*/
static int get_queue_result(struct sem_queue *q)
{
int error;
error = q->status;
while (unlikely(error == IN_WAKEUP)) {
cpu_relax();
error = q->status;
}
return error;
}
SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
unsigned, nsops, const struct timespec __user *, timeout)
{
int error = -EINVAL;
struct sem_array *sma;
struct sembuf fast_sops[SEMOPM_FAST];
struct sembuf* sops = fast_sops, *sop;
struct sem_undo *un;
int undos = 0, alter = 0, max, locknum;
struct sem_queue queue;
unsigned long jiffies_left = 0;
struct ipc_namespace *ns;
struct list_head tasks;
ns = current->nsproxy->ipc_ns;
if (nsops < 1 || semid < 0)
return -EINVAL;
if (nsops > ns->sc_semopm)
return -E2BIG;
if(nsops > SEMOPM_FAST) {
sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
if(sops==NULL)
return -ENOMEM;
}
if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
error=-EFAULT;
goto out_free;
}
if (timeout) {
struct timespec _timeout;
if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
error = -EFAULT;
goto out_free;
}
if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
_timeout.tv_nsec >= 1000000000L) {
error = -EINVAL;
goto out_free;
}
jiffies_left = timespec_to_jiffies(&_timeout);
}
max = 0;
for (sop = sops; sop < sops + nsops; sop++) {
if (sop->sem_num >= max)
max = sop->sem_num;
if (sop->sem_flg & SEM_UNDO)
undos = 1;
if (sop->sem_op != 0)
alter = 1;
}
INIT_LIST_HEAD(&tasks);
if (undos) {
/* On success, find_alloc_undo takes the rcu_read_lock */
un = find_alloc_undo(ns, semid);
if (IS_ERR(un)) {
error = PTR_ERR(un);
goto out_free;
}
} else {
un = NULL;
rcu_read_lock();
}
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
rcu_read_unlock();
error = PTR_ERR(sma);
goto out_free;
}
error = -EFBIG;
if (max >= sma->sem_nsems)
goto out_rcu_wakeup;
error = -EACCES;
if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
goto out_rcu_wakeup;
error = security_sem_semop(sma, sops, nsops, alter);
if (error)
goto out_rcu_wakeup;
/*
* semid identifiers are not unique - find_alloc_undo may have
* allocated an undo structure, it was invalidated by an RMID
* and now a new array with received the same id. Check and fail.
* This case can be detected checking un->semid. The existence of
* "un" itself is guaranteed by rcu.
*/
error = -EIDRM;
locknum = sem_lock(sma, sops, nsops);
if (un && un->semid == -1)
goto out_unlock_free;
error = perform_atomic_semop(sma, sops, nsops, un,
task_tgid_vnr(current));
if (error <= 0) {
if (alter && error == 0)
do_smart_update(sma, sops, nsops, 1, &tasks);
goto out_unlock_free;
}
/* We need to sleep on this operation, so we put the current
* task into the pending queue and go to sleep.
*/
queue.sops = sops;
queue.nsops = nsops;
queue.undo = un;
queue.pid = task_tgid_vnr(current);
queue.alter = alter;
if (nsops == 1) {
struct sem *curr;
curr = &sma->sem_base[sops->sem_num];
if (alter) {
if (sma->complex_count) {
list_add_tail(&queue.list,
&sma->pending_alter);
} else {
list_add_tail(&queue.list,
&curr->pending_alter);
}
} else {
list_add_tail(&queue.list, &curr->pending_const);
}
} else {
if (!sma->complex_count)
merge_queues(sma);
if (alter)
list_add_tail(&queue.list, &sma->pending_alter);
else
list_add_tail(&queue.list, &sma->pending_const);
sma->complex_count++;
}
queue.status = -EINTR;
queue.sleeper = current;
sleep_again:
current->state = TASK_INTERRUPTIBLE;
sem_unlock(sma, locknum);
rcu_read_unlock();
if (timeout)
jiffies_left = schedule_timeout(jiffies_left);
else
schedule();
error = get_queue_result(&queue);
if (error != -EINTR) {
/* fast path: update_queue already obtained all requested
* resources.
* Perform a smp_mb(): User space could assume that semop()
* is a memory barrier: Without the mb(), the cpu could
* speculatively read in user space stale data that was
* overwritten by the previous owner of the semaphore.
*/
smp_mb();
goto out_free;
}
rcu_read_lock();
sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
/*
* Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
*/
error = get_queue_result(&queue);
/*
* Array removed? If yes, leave without sem_unlock().
*/
if (IS_ERR(sma)) {
rcu_read_unlock();
goto out_free;
}
/*
* If queue.status != -EINTR we are woken up by another process.
* Leave without unlink_queue(), but with sem_unlock().
*/
if (error != -EINTR) {
goto out_unlock_free;
}
/*
* If an interrupt occurred we have to clean up the queue
*/
if (timeout && jiffies_left == 0)
error = -EAGAIN;
/*
* If the wakeup was spurious, just retry
*/
if (error == -EINTR && !signal_pending(current))
goto sleep_again;
unlink_queue(sma, &queue);
out_unlock_free:
sem_unlock(sma, locknum);
out_rcu_wakeup:
rcu_read_unlock();
wake_up_sem_queue_do(&tasks);
out_free:
if(sops != fast_sops)
kfree(sops);
return error;
}
SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
unsigned, nsops)
{
return sys_semtimedop(semid, tsops, nsops, NULL);
}
/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
* parent and child tasks.
*/
int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
{
struct sem_undo_list *undo_list;
int error;
if (clone_flags & CLONE_SYSVSEM) {
error = get_undo_list(&undo_list);
if (error)
return error;
atomic_inc(&undo_list->refcnt);
tsk->sysvsem.undo_list = undo_list;
} else
tsk->sysvsem.undo_list = NULL;
return 0;
}
/*
* add semadj values to semaphores, free undo structures.
* undo structures are not freed when semaphore arrays are destroyed
* so some of them may be out of date.
* IMPLEMENTATION NOTE: There is some confusion over whether the
* set of adjustments that needs to be done should be done in an atomic
* manner or not. That is, if we are attempting to decrement the semval
* should we queue up and wait until we can do so legally?
* The original implementation attempted to do this (queue and wait).
* The current implementation does not do so. The POSIX standard
* and SVID should be consulted to determine what behavior is mandated.
*/
void exit_sem(struct task_struct *tsk)
{
struct sem_undo_list *ulp;
ulp = tsk->sysvsem.undo_list;
if (!ulp)
return;
tsk->sysvsem.undo_list = NULL;
if (!atomic_dec_and_test(&ulp->refcnt))
return;
for (;;) {
struct sem_array *sma;
struct sem_undo *un;
struct list_head tasks;
int semid, i;
rcu_read_lock();
un = list_entry_rcu(ulp->list_proc.next,
struct sem_undo, list_proc);
if (&un->list_proc == &ulp->list_proc)
semid = -1;
else
semid = un->semid;
if (semid == -1) {
rcu_read_unlock();
break;
}
sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
/* exit_sem raced with IPC_RMID, nothing to do */
if (IS_ERR(sma)) {
rcu_read_unlock();
continue;
}
sem_lock(sma, NULL, -1);
un = __lookup_undo(ulp, semid);
if (un == NULL) {
/* exit_sem raced with IPC_RMID+semget() that created
* exactly the same semid. Nothing to do.
*/
sem_unlock(sma, -1);
rcu_read_unlock();
continue;
}
/* remove un from the linked lists */
ipc_assert_locked_object(&sma->sem_perm);
list_del(&un->list_id);
spin_lock(&ulp->lock);
list_del_rcu(&un->list_proc);
spin_unlock(&ulp->lock);
/* perform adjustments registered in un */
for (i = 0; i < sma->sem_nsems; i++) {
struct sem * semaphore = &sma->sem_base[i];
if (un->semadj[i]) {
semaphore->semval += un->semadj[i];
/*
* Range checks of the new semaphore value,
* not defined by sus:
* - Some unices ignore the undo entirely
* (e.g. HP UX 11i 11.22, Tru64 V5.1)
* - some cap the value (e.g. FreeBSD caps
* at 0, but doesn't enforce SEMVMX)
*
* Linux caps the semaphore value, both at 0
* and at SEMVMX.
*
* Manfred <manfred@colorfullife.com>
*/
if (semaphore->semval < 0)
semaphore->semval = 0;
if (semaphore->semval > SEMVMX)
semaphore->semval = SEMVMX;
semaphore->sempid = task_tgid_vnr(current);
}
}
/* maybe some queued-up processes were waiting for this */
INIT_LIST_HEAD(&tasks);
do_smart_update(sma, NULL, 0, 1, &tasks);
sem_unlock(sma, -1);
rcu_read_unlock();
wake_up_sem_queue_do(&tasks);
kfree_rcu(un, rcu);
}
kfree(ulp);
}
#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
{
struct user_namespace *user_ns = seq_user_ns(s);
struct sem_array *sma = it;
time_t sem_otime;
sem_otime = get_semotime(sma);
return seq_printf(s,
"%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
sma->sem_perm.key,
sma->sem_perm.id,
sma->sem_perm.mode,
sma->sem_nsems,
from_kuid_munged(user_ns, sma->sem_perm.uid),
from_kgid_munged(user_ns, sma->sem_perm.gid),
from_kuid_munged(user_ns, sma->sem_perm.cuid),
from_kgid_munged(user_ns, sma->sem_perm.cgid),
sem_otime,
sma->sem_ctime);
}
#endif