android_kernel_xiaomi_sm8350/arch/ia64/sn/kernel/setup.c
John Keller 3fd0b2d9ad ACPI: Altix: reinitialize acpi tables
To provide compatibilty with SN kernels that do and do not
have ACPI IO support, the SN PROM must build different
versions of some ACPI tables based on which kernel is booting.
As such, the tables may have to change at kernel boot time.
By default, prior to kernel boot, the PROM builds an empty
DSDT (header only) and no SSDTs. If an ACPI capable kernel
boots, the kernel will notify the PROM, at platform setup time,
and the PROM will build full DSDT and SSDT tables.

With the latest changes to acpi_table_init(), the table lengths
are saved, and when our PROM changes them, the changes are not seen,
and the kernel will crash on boot. Because of issues with kexec support,
we are not able to create the tables prior to acpi_table_init().
As a result, we are making a second call to acpi_table_init() to
process the rebuilt DSDT and SSDTs.

Signed-off-by: John Keller <jpk@sgi.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2007-03-01 02:32:58 -05:00

792 lines
21 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1999,2001-2006 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/kdev_t.h>
#include <linux/string.h>
#include <linux/screen_info.h>
#include <linux/console.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/serial.h>
#include <linux/irq.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/interrupt.h>
#include <linux/acpi.h>
#include <linux/compiler.h>
#include <linux/sched.h>
#include <linux/root_dev.h>
#include <linux/nodemask.h>
#include <linux/pm.h>
#include <linux/efi.h>
#include <asm/io.h>
#include <asm/sal.h>
#include <asm/machvec.h>
#include <asm/system.h>
#include <asm/processor.h>
#include <asm/vga.h>
#include <asm/sn/arch.h>
#include <asm/sn/addrs.h>
#include <asm/sn/pda.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/simulator.h>
#include <asm/sn/leds.h>
#include <asm/sn/bte.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/clksupport.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/geo.h>
#include <asm/sn/sn_feature_sets.h>
#include "xtalk/xwidgetdev.h"
#include "xtalk/hubdev.h"
#include <asm/sn/klconfig.h>
DEFINE_PER_CPU(struct pda_s, pda_percpu);
#define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */
extern void bte_init_node(nodepda_t *, cnodeid_t);
extern void sn_timer_init(void);
extern unsigned long last_time_offset;
extern void (*ia64_mark_idle) (int);
extern void snidle(int);
extern unsigned long long (*ia64_printk_clock)(void);
unsigned long sn_rtc_cycles_per_second;
EXPORT_SYMBOL(sn_rtc_cycles_per_second);
DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_COMPACT_NODES]);
EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
char sn_system_serial_number_string[128];
EXPORT_SYMBOL(sn_system_serial_number_string);
u64 sn_partition_serial_number;
EXPORT_SYMBOL(sn_partition_serial_number);
u8 sn_partition_id;
EXPORT_SYMBOL(sn_partition_id);
u8 sn_system_size;
EXPORT_SYMBOL(sn_system_size);
u8 sn_sharing_domain_size;
EXPORT_SYMBOL(sn_sharing_domain_size);
u8 sn_coherency_id;
EXPORT_SYMBOL(sn_coherency_id);
u8 sn_region_size;
EXPORT_SYMBOL(sn_region_size);
int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
short physical_node_map[MAX_NUMALINK_NODES];
static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];
EXPORT_SYMBOL(physical_node_map);
int num_cnodes;
static void sn_init_pdas(char **);
static void build_cnode_tables(void);
static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
/*
* The format of "screen_info" is strange, and due to early i386-setup
* code. This is just enough to make the console code think we're on a
* VGA color display.
*/
struct screen_info sn_screen_info = {
.orig_x = 0,
.orig_y = 0,
.orig_video_mode = 3,
.orig_video_cols = 80,
.orig_video_ega_bx = 3,
.orig_video_lines = 25,
.orig_video_isVGA = 1,
.orig_video_points = 16
};
/*
* This routine can only be used during init, since
* smp_boot_data is an init data structure.
* We have to use smp_boot_data.cpu_phys_id to find
* the physical id of the processor because the normal
* cpu_physical_id() relies on data structures that
* may not be initialized yet.
*/
static int __init pxm_to_nasid(int pxm)
{
int i;
int nid;
nid = pxm_to_node(pxm);
for (i = 0; i < num_node_memblks; i++) {
if (node_memblk[i].nid == nid) {
return NASID_GET(node_memblk[i].start_paddr);
}
}
return -1;
}
/**
* early_sn_setup - early setup routine for SN platforms
*
* Sets up an initial console to aid debugging. Intended primarily
* for bringup. See start_kernel() in init/main.c.
*/
void __init early_sn_setup(void)
{
efi_system_table_t *efi_systab;
efi_config_table_t *config_tables;
struct ia64_sal_systab *sal_systab;
struct ia64_sal_desc_entry_point *ep;
char *p;
int i, j;
/*
* Parse enough of the SAL tables to locate the SAL entry point. Since, console
* IO on SN2 is done via SAL calls, early_printk won't work without this.
*
* This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
* Any changes to those file may have to be made hereas well.
*/
efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
config_tables = __va(efi_systab->tables);
for (i = 0; i < efi_systab->nr_tables; i++) {
if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
0) {
sal_systab = __va(config_tables[i].table);
p = (char *)(sal_systab + 1);
for (j = 0; j < sal_systab->entry_count; j++) {
if (*p == SAL_DESC_ENTRY_POINT) {
ep = (struct ia64_sal_desc_entry_point
*)p;
ia64_sal_handler_init(__va
(ep->sal_proc),
__va(ep->gp));
return;
}
p += SAL_DESC_SIZE(*p);
}
}
}
/* Uh-oh, SAL not available?? */
printk(KERN_ERR "failed to find SAL entry point\n");
}
extern int platform_intr_list[];
static int __initdata shub_1_1_found;
/*
* sn_check_for_wars
*
* Set flag for enabling shub specific wars
*/
static inline int __init is_shub_1_1(int nasid)
{
unsigned long id;
int rev;
if (is_shub2())
return 0;
id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
return rev <= 2;
}
static void __init sn_check_for_wars(void)
{
int cnode;
if (is_shub2()) {
/* none yet */
} else {
for_each_online_node(cnode) {
if (is_shub_1_1(cnodeid_to_nasid(cnode)))
shub_1_1_found = 1;
}
}
}
/*
* Scan the EFI PCDP table (if it exists) for an acceptable VGA console
* output device. If one exists, pick it and set sn_legacy_{io,mem} to
* reflect the bus offsets needed to address it.
*
* Since pcdp support in SN is not supported in the 2.4 kernel (or at least
* the one lbs is based on) just declare the needed structs here.
*
* Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf
*
* Returns 0 if no acceptable vga is found, !0 otherwise.
*
* Note: This stuff is duped here because Altix requires the PCDP to
* locate a usable VGA device due to lack of proper ACPI support. Structures
* could be used from drivers/firmware/pcdp.h, but it was decided that moving
* this file to a more public location just for Altix use was undesireable.
*/
struct hcdp_uart_desc {
u8 pad[45];
};
struct pcdp {
u8 signature[4]; /* should be 'HCDP' */
u32 length;
u8 rev; /* should be >=3 for pcdp, <3 for hcdp */
u8 sum;
u8 oem_id[6];
u64 oem_tableid;
u32 oem_rev;
u32 creator_id;
u32 creator_rev;
u32 num_type0;
struct hcdp_uart_desc uart[0]; /* num_type0 of these */
/* pcdp descriptors follow */
} __attribute__((packed));
struct pcdp_device_desc {
u8 type;
u8 primary;
u16 length;
u16 index;
/* interconnect specific structure follows */
/* device specific structure follows that */
} __attribute__((packed));
struct pcdp_interface_pci {
u8 type; /* 1 == pci */
u8 reserved;
u16 length;
u8 segment;
u8 bus;
u8 dev;
u8 fun;
u16 devid;
u16 vendid;
u32 acpi_interrupt;
u64 mmio_tra;
u64 ioport_tra;
u8 flags;
u8 translation;
} __attribute__((packed));
struct pcdp_vga_device {
u8 num_eas_desc;
/* ACPI Extended Address Space Desc follows */
} __attribute__((packed));
/* from pcdp_device_desc.primary */
#define PCDP_PRIMARY_CONSOLE 0x01
/* from pcdp_device_desc.type */
#define PCDP_CONSOLE_INOUT 0x0
#define PCDP_CONSOLE_DEBUG 0x1
#define PCDP_CONSOLE_OUT 0x2
#define PCDP_CONSOLE_IN 0x3
#define PCDP_CONSOLE_TYPE_VGA 0x8
#define PCDP_CONSOLE_VGA (PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT)
/* from pcdp_interface_pci.type */
#define PCDP_IF_PCI 1
/* from pcdp_interface_pci.translation */
#define PCDP_PCI_TRANS_IOPORT 0x02
#define PCDP_PCI_TRANS_MMIO 0x01
#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
static void
sn_scan_pcdp(void)
{
u8 *bp;
struct pcdp *pcdp;
struct pcdp_device_desc device;
struct pcdp_interface_pci if_pci;
extern struct efi efi;
if (efi.hcdp == EFI_INVALID_TABLE_ADDR)
return; /* no hcdp/pcdp table */
pcdp = __va(efi.hcdp);
if (pcdp->rev < 3)
return; /* only support PCDP (rev >= 3) */
for (bp = (u8 *)&pcdp->uart[pcdp->num_type0];
bp < (u8 *)pcdp + pcdp->length;
bp += device.length) {
memcpy(&device, bp, sizeof(device));
if (! (device.primary & PCDP_PRIMARY_CONSOLE))
continue; /* not primary console */
if (device.type != PCDP_CONSOLE_VGA)
continue; /* not VGA descriptor */
memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci));
if (if_pci.type != PCDP_IF_PCI)
continue; /* not PCI interconnect */
if (if_pci.translation & PCDP_PCI_TRANS_IOPORT)
vga_console_iobase =
if_pci.ioport_tra | __IA64_UNCACHED_OFFSET;
if (if_pci.translation & PCDP_PCI_TRANS_MMIO)
vga_console_membase =
if_pci.mmio_tra | __IA64_UNCACHED_OFFSET;
break; /* once we find the primary, we're done */
}
}
#endif
static unsigned long sn2_rtc_initial;
static unsigned long long ia64_sn2_printk_clock(void)
{
unsigned long rtc_now = rtc_time();
return (rtc_now - sn2_rtc_initial) *
(1000000000 / sn_rtc_cycles_per_second);
}
/**
* sn_setup - SN platform setup routine
* @cmdline_p: kernel command line
*
* Handles platform setup for SN machines. This includes determining
* the RTC frequency (via a SAL call), initializing secondary CPUs, and
* setting up per-node data areas. The console is also initialized here.
*/
void __init sn_setup(char **cmdline_p)
{
long status, ticks_per_sec, drift;
u32 version = sn_sal_rev();
extern void sn_cpu_init(void);
sn2_rtc_initial = rtc_time();
ia64_sn_plat_set_error_handling_features(); // obsolete
ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV);
ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES);
/*
* Note: The calls to notify the PROM of ACPI and PCI Segment
* support must be done prior to acpi_load_tables(), as
* an ACPI capable PROM will rebuild the DSDT as result
* of the call.
*/
ia64_sn_set_os_feature(OSF_PCISEGMENT_ENABLE);
ia64_sn_set_os_feature(OSF_ACPI_ENABLE);
/* Load the new DSDT and SSDT tables into the global table list. */
acpi_table_init();
#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
/*
* Handle SN vga console.
*
* SN systems do not have enough ACPI table information
* being passed from prom to identify VGA adapters and the legacy
* addresses to access them. Until that is done, SN systems rely
* on the PCDP table to identify the primary VGA console if one
* exists.
*
* However, kernel PCDP support is optional, and even if it is built
* into the kernel, it will not be used if the boot cmdline contains
* console= directives.
*
* So, to work around this mess, we duplicate some of the PCDP code
* here so that the primary VGA console (as defined by PCDP) will
* work on SN systems even if a different console (e.g. serial) is
* selected on the boot line (or CONFIG_EFI_PCDP is off).
*/
if (! vga_console_membase)
sn_scan_pcdp();
/*
* Setup legacy IO space.
* vga_console_iobase maps to PCI IO Space address 0 on the
* bus containing the VGA console.
*/
if (vga_console_iobase) {
io_space[0].mmio_base = vga_console_iobase;
io_space[0].sparse = 0;
}
if (vga_console_membase) {
/* usable vga ... make tty0 the preferred default console */
if (!strstr(*cmdline_p, "console="))
add_preferred_console("tty", 0, NULL);
} else {
printk(KERN_DEBUG "SGI: Disabling VGA console\n");
if (!strstr(*cmdline_p, "console="))
add_preferred_console("ttySG", 0, NULL);
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#else
conswitchp = NULL;
#endif /* CONFIG_DUMMY_CONSOLE */
}
#endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
/*
* Build the tables for managing cnodes.
*/
build_cnode_tables();
status =
ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
&drift);
if (status != 0 || ticks_per_sec < 100000) {
printk(KERN_WARNING
"unable to determine platform RTC clock frequency, guessing.\n");
/* PROM gives wrong value for clock freq. so guess */
sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
} else
sn_rtc_cycles_per_second = ticks_per_sec;
platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
ia64_printk_clock = ia64_sn2_printk_clock;
printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
/*
* we set the default root device to /dev/hda
* to make simulation easy
*/
ROOT_DEV = Root_HDA1;
/*
* Create the PDAs and NODEPDAs for all the cpus.
*/
sn_init_pdas(cmdline_p);
ia64_mark_idle = &snidle;
/*
* For the bootcpu, we do this here. All other cpus will make the
* call as part of cpu_init in slave cpu initialization.
*/
sn_cpu_init();
#ifdef CONFIG_SMP
init_smp_config();
#endif
screen_info = sn_screen_info;
sn_timer_init();
/*
* set pm_power_off to a SAL call to allow
* sn machines to power off. The SAL call can be replaced
* by an ACPI interface call when ACPI is fully implemented
* for sn.
*/
pm_power_off = ia64_sn_power_down;
current->thread.flags |= IA64_THREAD_MIGRATION;
}
/**
* sn_init_pdas - setup node data areas
*
* One time setup for Node Data Area. Called by sn_setup().
*/
static void __init sn_init_pdas(char **cmdline_p)
{
cnodeid_t cnode;
/*
* Allocate & initalize the nodepda for each node.
*/
for_each_online_node(cnode) {
nodepdaindr[cnode] =
alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
memset(nodepdaindr[cnode]->phys_cpuid, -1,
sizeof(nodepdaindr[cnode]->phys_cpuid));
spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
}
/*
* Allocate & initialize nodepda for TIOs. For now, put them on node 0.
*/
for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++) {
nodepdaindr[cnode] =
alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
}
/*
* Now copy the array of nodepda pointers to each nodepda.
*/
for (cnode = 0; cnode < num_cnodes; cnode++)
memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
sizeof(nodepdaindr));
/*
* Set up IO related platform-dependent nodepda fields.
* The following routine actually sets up the hubinfo struct
* in nodepda.
*/
for_each_online_node(cnode) {
bte_init_node(nodepdaindr[cnode], cnode);
}
/*
* Initialize the per node hubdev. This includes IO Nodes and
* headless/memless nodes.
*/
for (cnode = 0; cnode < num_cnodes; cnode++) {
hubdev_init_node(nodepdaindr[cnode], cnode);
}
}
/**
* sn_cpu_init - initialize per-cpu data areas
* @cpuid: cpuid of the caller
*
* Called during cpu initialization on each cpu as it starts.
* Currently, initializes the per-cpu data area for SNIA.
* Also sets up a few fields in the nodepda. Also known as
* platform_cpu_init() by the ia64 machvec code.
*/
void __cpuinit sn_cpu_init(void)
{
int cpuid;
int cpuphyid;
int nasid;
int subnode;
int slice;
int cnode;
int i;
static int wars_have_been_checked, set_cpu0_number;
cpuid = smp_processor_id();
if (cpuid == 0 && IS_MEDUSA()) {
if (ia64_sn_is_fake_prom())
sn_prom_type = 2;
else
sn_prom_type = 1;
printk(KERN_INFO "Running on medusa with %s PROM\n",
(sn_prom_type == 1) ? "real" : "fake");
}
memset(pda, 0, sizeof(pda));
if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2,
&sn_hub_info->nasid_bitmask,
&sn_hub_info->nasid_shift,
&sn_system_size, &sn_sharing_domain_size,
&sn_partition_id, &sn_coherency_id,
&sn_region_size))
BUG();
sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
/*
* Don't check status. The SAL call is not supported on all PROMs
* but a failure is harmless.
* Architechtuallly, cpu_init is always called twice on cpu 0. We
* should set cpu_number on cpu 0 once.
*/
if (cpuid == 0) {
if (!set_cpu0_number) {
(void) ia64_sn_set_cpu_number(cpuid);
set_cpu0_number = 1;
}
} else
(void) ia64_sn_set_cpu_number(cpuid);
/*
* The boot cpu makes this call again after platform initialization is
* complete.
*/
if (nodepdaindr[0] == NULL)
return;
for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
break;
cpuphyid = get_sapicid();
if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
BUG();
for (i=0; i < MAX_NUMNODES; i++) {
if (nodepdaindr[i]) {
nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
}
}
cnode = nasid_to_cnodeid(nasid);
sn_nodepda = nodepdaindr[cnode];
pda->led_address =
(typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
pda->led_state = LED_ALWAYS_SET;
pda->hb_count = HZ / 2;
pda->hb_state = 0;
pda->idle_flag = 0;
if (cpuid != 0) {
/* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
memcpy(sn_cnodeid_to_nasid,
(&per_cpu(__sn_cnodeid_to_nasid, 0)),
sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
}
/*
* Check for WARs.
* Only needs to be done once, on BSP.
* Has to be done after loop above, because it uses this cpu's
* sn_cnodeid_to_nasid table which was just initialized if this
* isn't cpu 0.
* Has to be done before assignment below.
*/
if (!wars_have_been_checked) {
sn_check_for_wars();
wars_have_been_checked = 1;
}
sn_hub_info->shub_1_1_found = shub_1_1_found;
/*
* Set up addresses of PIO/MEM write status registers.
*/
{
u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
u64 *pio;
pio = is_shub1() ? pio1 : pio2;
pda->pio_write_status_addr =
(volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]);
pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
}
/*
* WAR addresses for SHUB 1.x.
*/
if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
int buddy_nasid;
buddy_nasid =
cnodeid_to_nasid(numa_node_id() ==
num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
pda->pio_shub_war_cam_addr =
(volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
SH1_PI_CAM_CONTROL);
}
}
/*
* Build tables for converting between NASIDs and cnodes.
*/
static inline int __init board_needs_cnode(int type)
{
return (type == KLTYPE_SNIA || type == KLTYPE_TIO);
}
void __init build_cnode_tables(void)
{
int nasid;
int node;
lboard_t *brd;
memset(physical_node_map, -1, sizeof(physical_node_map));
memset(sn_cnodeid_to_nasid, -1,
sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
/*
* First populate the tables with C/M bricks. This ensures that
* cnode == node for all C & M bricks.
*/
for_each_online_node(node) {
nasid = pxm_to_nasid(node_to_pxm(node));
sn_cnodeid_to_nasid[node] = nasid;
physical_node_map[nasid] = node;
}
/*
* num_cnodes is total number of C/M/TIO bricks. Because of the 256 node
* limit on the number of nodes, we can't use the generic node numbers
* for this. Note that num_cnodes is incremented below as TIOs or
* headless/memoryless nodes are discovered.
*/
num_cnodes = num_online_nodes();
/* fakeprom does not support klgraph */
if (IS_RUNNING_ON_FAKE_PROM())
return;
/* Find TIOs & headless/memoryless nodes and add them to the tables */
for_each_online_node(node) {
kl_config_hdr_t *klgraph_header;
nasid = cnodeid_to_nasid(node);
klgraph_header = ia64_sn_get_klconfig_addr(nasid);
if (klgraph_header == NULL)
BUG();
brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info);
while (brd) {
if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) {
sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid;
physical_node_map[brd->brd_nasid] = num_cnodes++;
}
brd = find_lboard_next(brd);
}
}
}
int
nasid_slice_to_cpuid(int nasid, int slice)
{
long cpu;
for (cpu = 0; cpu < NR_CPUS; cpu++)
if (cpuid_to_nasid(cpu) == nasid &&
cpuid_to_slice(cpu) == slice)
return cpu;
return -1;
}
int sn_prom_feature_available(int id)
{
if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS)
return 0;
return test_bit(id, sn_prom_features);
}
void
sn_kernel_launch_event(void)
{
/* ignore status until we understand possible failure, if any*/
if (ia64_sn_kernel_launch_event())
printk(KERN_ERR "KEXEC is not supported in this PROM, Please update the PROM.\n");
}
EXPORT_SYMBOL(sn_prom_feature_available);