android_kernel_xiaomi_sm8350/drivers/mtd/nand/cafe.c
David Woodhouse 470b0a90d6 [MTD] NAND: Disable ECC checking on CAFÉ since it's broken for now
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-10-23 14:29:04 +01:00

785 lines
22 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Driver for One Laptop Per Child CAFÉ controller, aka Marvell 88ALP01
*
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
*/
#define DEBUG
#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#define CAFE_NAND_CTRL1 0x00
#define CAFE_NAND_CTRL2 0x04
#define CAFE_NAND_CTRL3 0x08
#define CAFE_NAND_STATUS 0x0c
#define CAFE_NAND_IRQ 0x10
#define CAFE_NAND_IRQ_MASK 0x14
#define CAFE_NAND_DATA_LEN 0x18
#define CAFE_NAND_ADDR1 0x1c
#define CAFE_NAND_ADDR2 0x20
#define CAFE_NAND_TIMING1 0x24
#define CAFE_NAND_TIMING2 0x28
#define CAFE_NAND_TIMING3 0x2c
#define CAFE_NAND_NONMEM 0x30
#define CAFE_NAND_ECC_RESULT 0x3C
#define CAFE_NAND_DMA_CTRL 0x40
#define CAFE_NAND_DMA_ADDR0 0x44
#define CAFE_NAND_DMA_ADDR1 0x48
#define CAFE_NAND_ECC_SYN01 0x50
#define CAFE_NAND_ECC_SYN23 0x54
#define CAFE_NAND_ECC_SYN45 0x58
#define CAFE_NAND_ECC_SYN67 0x5c
#define CAFE_NAND_READ_DATA 0x1000
#define CAFE_NAND_WRITE_DATA 0x2000
int cafe_correct_ecc(unsigned char *buf,
unsigned short *chk_syndrome_list);
struct cafe_priv {
struct nand_chip nand;
struct pci_dev *pdev;
void __iomem *mmio;
uint32_t ctl1;
uint32_t ctl2;
int datalen;
int nr_data;
int data_pos;
int page_addr;
dma_addr_t dmaaddr;
unsigned char *dmabuf;
};
static int usedma = 0;
module_param(usedma, int, 0644);
static int skipbbt = 0;
module_param(skipbbt, int, 0644);
static int debug = 0;
module_param(debug, int, 0644);
static int checkecc = 0;
module_param(checkecc, int, 0644);
/* Hrm. Why isn't this already conditional on something in the struct device? */
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
static int cafe_device_ready(struct mtd_info *mtd)
{
struct cafe_priv *cafe = mtd->priv;
int result = !!(readl(cafe->mmio + CAFE_NAND_STATUS) | 0x40000000);
uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
writel(irqs, cafe->mmio+CAFE_NAND_IRQ);
cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
result?"":" not", irqs, readl(cafe->mmio + CAFE_NAND_IRQ),
readl(cafe->mmio + 0x3008), readl(cafe->mmio + 0x300c));
return result;
}
static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct cafe_priv *cafe = mtd->priv;
if (usedma)
memcpy(cafe->dmabuf + cafe->datalen, buf, len);
else
memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
cafe->datalen += len;
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
len, cafe->datalen);
}
static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct cafe_priv *cafe = mtd->priv;
if (usedma)
memcpy(buf, cafe->dmabuf + cafe->datalen, len);
else
memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
len, cafe->datalen);
cafe->datalen += len;
}
static uint8_t cafe_read_byte(struct mtd_info *mtd)
{
struct cafe_priv *cafe = mtd->priv;
uint8_t d;
cafe_read_buf(mtd, &d, 1);
cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
return d;
}
static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct cafe_priv *cafe = mtd->priv;
int adrbytes = 0;
uint32_t ctl1;
uint32_t doneint = 0x80000000;
cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
command, column, page_addr);
if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
/* Second half of a command we already calculated */
writel(cafe->ctl2 | 0x100 | command, cafe->mmio + CAFE_NAND_CTRL2);
ctl1 = cafe->ctl1;
cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
cafe->ctl1, cafe->nr_data);
goto do_command;
}
/* Reset ECC engine */
writel(0, cafe->mmio + CAFE_NAND_CTRL2);
/* Emulate NAND_CMD_READOOB on large-page chips */
if (mtd->writesize > 512 &&
command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* FIXME: Do we need to send read command before sending data
for small-page chips, to position the buffer correctly? */
if (column != -1) {
writel(column, cafe->mmio + CAFE_NAND_ADDR1);
adrbytes = 2;
if (page_addr != -1)
goto write_adr2;
} else if (page_addr != -1) {
writel(page_addr & 0xffff, cafe->mmio + CAFE_NAND_ADDR1);
page_addr >>= 16;
write_adr2:
writel(page_addr, cafe->mmio+0x20);
adrbytes += 2;
if (mtd->size > mtd->writesize << 16)
adrbytes++;
}
cafe->data_pos = cafe->datalen = 0;
/* Set command valid bit */
ctl1 = 0x80000000 | command;
/* Set RD or WR bits as appropriate */
if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
ctl1 |= (1<<26); /* rd */
/* Always 5 bytes, for now */
cafe->datalen = 4;
/* And one address cycle -- even for STATUS, since the controller doesn't work without */
adrbytes = 1;
} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
ctl1 |= 1<<26; /* rd */
/* For now, assume just read to end of page */
cafe->datalen = mtd->writesize + mtd->oobsize - column;
} else if (command == NAND_CMD_SEQIN)
ctl1 |= 1<<25; /* wr */
/* Set number of address bytes */
if (adrbytes)
ctl1 |= ((adrbytes-1)|8) << 27;
if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
/* Ignore the first command of a pair; the hardware
deals with them both at once, later */
cafe->ctl1 = ctl1;
cafe->ctl2 = 0;
cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
cafe->ctl1, cafe->datalen);
return;
}
/* RNDOUT and READ0 commands need a following byte */
if (command == NAND_CMD_RNDOUT)
writel(cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, cafe->mmio + CAFE_NAND_CTRL2);
else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
writel(cafe->ctl2 | 0x100 | NAND_CMD_READSTART, cafe->mmio + CAFE_NAND_CTRL2);
do_command:
#if 0
/* http://dev.laptop.org/ticket/200
ECC on read only works if we read precisely 0x80e bytes */
if (cafe->datalen == 2112)
cafe->datalen = 2062;
#endif
cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
cafe->datalen, ctl1, readl(cafe->mmio+CAFE_NAND_CTRL2));
/* NB: The datasheet lies -- we really should be subtracting 1 here */
writel(cafe->datalen, cafe->mmio + CAFE_NAND_DATA_LEN);
writel(0x90000000, cafe->mmio + CAFE_NAND_IRQ);
if (usedma && (ctl1 & (3<<25))) {
uint32_t dmactl = 0xc0000000 + cafe->datalen;
/* If WR or RD bits set, set up DMA */
if (ctl1 & (1<<26)) {
/* It's a read */
dmactl |= (1<<29);
/* ... so it's done when the DMA is done, not just
the command. */
doneint = 0x10000000;
}
writel(dmactl, cafe->mmio + CAFE_NAND_DMA_CTRL);
}
cafe->datalen = 0;
#if 0
{ int i;
printk("About to write command %08x\n", ctl1);
for (i=0; i< 0x5c; i+=4)
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
}
#endif
writel(ctl1, cafe->mmio + CAFE_NAND_CTRL1);
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
if (1) {
int c = 500000;
uint32_t irqs;
while (c--) {
irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
if (irqs & doneint)
break;
udelay(1);
if (!(c % 100000))
cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
cpu_relax();
}
writel(doneint, cafe->mmio + CAFE_NAND_IRQ);
cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", command, 50000-c, irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
}
cafe->ctl2 &= ~(1<<8);
cafe->ctl2 &= ~(1<<30);
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_DEPLETE1:
case NAND_CMD_RNDOUT:
case NAND_CMD_STATUS_ERROR:
case NAND_CMD_STATUS_ERROR0:
case NAND_CMD_STATUS_ERROR1:
case NAND_CMD_STATUS_ERROR2:
case NAND_CMD_STATUS_ERROR3:
writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
return;
}
nand_wait_ready(mtd);
writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
}
static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
{
//struct cafe_priv *cafe = mtd->priv;
// cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
}
static int cafe_nand_interrupt(int irq, void *id, struct pt_regs *regs)
{
struct mtd_info *mtd = id;
struct cafe_priv *cafe = mtd->priv;
uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
writel(irqs & ~0x90000000, cafe->mmio + CAFE_NAND_IRQ);
if (!irqs)
return IRQ_NONE;
cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
return IRQ_HANDLED;
}
static void cafe_nand_bug(struct mtd_info *mtd)
{
BUG();
}
static int cafe_nand_write_oob(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
int status = 0;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 1;
}
/**
* cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
*
* The hw generator calculates the error syndrome automatically. Therefor
* we need a special oob layout and handling.
*/
static unsigned short cafe_empty_syndromes[8] = { 4095, 748, 2629, 2920, 875, 1454, 51, 1456 };
static int is_all_ff(unsigned char *buf, int len)
{
unsigned long *lbuf = (void *)buf;
int i;
for (i=0; i < (len/sizeof(long)); i++) {
if (lbuf[i] != ~0UL)
return 0;
}
i *= sizeof(long);
for (; i< len; i++) {
if (buf[i] != 0xff)
return 0;
}
return 1;
}
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf)
{
struct cafe_priv *cafe = mtd->priv;
cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
readl(cafe->mmio + CAFE_NAND_ECC_RESULT),
readl(cafe->mmio + CAFE_NAND_ECC_SYN01));
chip->read_buf(mtd, buf, mtd->writesize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (checkecc && readl(cafe->mmio + CAFE_NAND_ECC_RESULT) & (1<<18)) {
unsigned short syn[8];
int i;
for (i=0; i<8; i+=2) {
uint32_t tmp = readl(cafe->mmio + CAFE_NAND_ECC_SYN01 + (i*2));
syn[i] = tmp & 0xfff;
syn[i+1] = (tmp >> 16) & 0xfff;
}
/* FIXME: http://dev.laptop.org/ticket/215 */
if (!memcmp(syn, cafe_empty_syndromes, sizeof(syn))
&& is_all_ff(chip->oob_poi, 14)
&& is_all_ff(buf, mtd->writesize)) {
dev_dbg(&cafe->pdev->dev, "ECC error reported on empty block\n");
/* It was an empty block. Nothing to fix here except the hardware */
} else if ((i = cafe_correct_ecc(buf, syn)) < 0) {
dev_dbg(&cafe->pdev->dev, "Failed to correct ECC\n");
mtd->ecc_stats.failed++;
} else {
dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", i);
mtd->ecc_stats.corrected += i;
}
}
return 0;
}
static struct nand_ecclayout cafe_oobinfo_2048 = {
.eccbytes = 14,
.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
.oobfree = {{14, 50}}
};
/* Ick. The BBT code really ought to be able to work this bit out
for itself from the above, at least for the 2KiB case */
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_2048
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_2048
};
static struct nand_ecclayout cafe_oobinfo_512 = {
.eccbytes = 14,
.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
.oobfree = {{14, 2}}
};
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_512
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_512
};
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf)
{
struct cafe_priv *cafe = mtd->priv;
chip->write_buf(mtd, buf, mtd->writesize);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
/* Set up ECC autogeneration */
cafe->ctl2 |= (1<<27) | (1<<30);
if (mtd->writesize == 2048)
cafe->ctl2 |= (1<<29);
}
static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int page, int cached, int raw)
{
int status;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
if (unlikely(raw))
chip->ecc.write_page_raw(mtd, chip, buf);
else
chip->ecc.write_page(mtd, chip, buf);
/*
* Cached progamming disabled for now, Not sure if its worth the
* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
*/
cached = 0;
if (!cached || !(chip->options & NAND_CACHEPRG)) {
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
/*
* See if operation failed and additional status checks are
* available
*/
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_WRITING, status,
page);
if (status & NAND_STATUS_FAIL)
return -EIO;
} else {
chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
}
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/* Send command to read back the data */
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
if (chip->verify_buf(mtd, buf, mtd->writesize))
return -EIO;
#endif
return 0;
}
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
return 0;
}
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct mtd_info *mtd;
struct cafe_priv *cafe;
uint32_t ctrl;
int err = 0;
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
if (!mtd) {
dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
return -ENOMEM;
}
cafe = (void *)(&mtd[1]);
mtd->priv = cafe;
mtd->owner = THIS_MODULE;
cafe->pdev = pdev;
cafe->mmio = pci_iomap(pdev, 0, 0);
if (!cafe->mmio) {
dev_warn(&pdev->dev, "failed to iomap\n");
err = -ENOMEM;
goto out_free_mtd;
}
cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
&cafe->dmaaddr, GFP_KERNEL);
if (!cafe->dmabuf) {
err = -ENOMEM;
goto out_ior;
}
cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
cafe->nand.cmdfunc = cafe_nand_cmdfunc;
cafe->nand.dev_ready = cafe_device_ready;
cafe->nand.read_byte = cafe_read_byte;
cafe->nand.read_buf = cafe_read_buf;
cafe->nand.write_buf = cafe_write_buf;
cafe->nand.select_chip = cafe_select_chip;
cafe->nand.chip_delay = 0;
/* Enable the following for a flash based bad block table */
cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
if (skipbbt) {
cafe->nand.options |= NAND_SKIP_BBTSCAN;
cafe->nand.block_bad = cafe_nand_block_bad;
}
/* Timings from Marvell's test code (not verified or calculated by us) */
writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
#if 1
writel(0x01010a0a, cafe->mmio + CAFE_NAND_TIMING1);
writel(0x24121212, cafe->mmio + CAFE_NAND_TIMING2);
writel(0x11000000, cafe->mmio + CAFE_NAND_TIMING3);
#else
writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING1);
writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING2);
writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING3);
#endif
writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
err = request_irq(pdev->irq, &cafe_nand_interrupt, SA_SHIRQ, "CAFE NAND", mtd);
if (err) {
dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
goto out_free_dma;
}
#if 1
/* Disable master reset, enable NAND clock */
ctrl = readl(cafe->mmio + 0x3004);
ctrl &= 0xffffeff0;
ctrl |= 0x00007000;
writel(ctrl | 0x05, cafe->mmio + 0x3004);
writel(ctrl | 0x0a, cafe->mmio + 0x3004);
writel(0, cafe->mmio + CAFE_NAND_DMA_CTRL);
writel(0x7006, cafe->mmio + 0x3004);
writel(0x700a, cafe->mmio + 0x3004);
/* Set up DMA address */
writel(cafe->dmaaddr & 0xffffffff, cafe->mmio + CAFE_NAND_DMA_ADDR0);
if (sizeof(cafe->dmaaddr) > 4)
/* Shift in two parts to shut the compiler up */
writel((cafe->dmaaddr >> 16) >> 16, cafe->mmio + CAFE_NAND_DMA_ADDR1);
else
writel(0, cafe->mmio + CAFE_NAND_DMA_ADDR1);
cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
readl(cafe->mmio + CAFE_NAND_DMA_ADDR0), cafe->dmabuf);
/* Enable NAND IRQ in global IRQ mask register */
writel(0x80000007, cafe->mmio + 0x300c);
cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
readl(cafe->mmio + 0x3004), readl(cafe->mmio + 0x300c));
#endif
#if 1
mtd->writesize=2048;
mtd->oobsize = 0x40;
memset(cafe->dmabuf, 0x5a, 2112);
cafe->nand.cmdfunc(mtd, NAND_CMD_READID, 0, -1);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
#endif
#if 0
cafe->nand.cmdfunc(mtd, NAND_CMD_READ0, 0, 0);
// nand_wait_ready(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
#endif
#if 0
writel(0x84600070, cafe->mmio);
udelay(10);
cafe_dev_dbg(&cafe->pdev->dev, "Status %x\n", readl(cafe->mmio + 0x30));
#endif
/* Scan to find existance of the device */
if (nand_scan_ident(mtd, 1)) {
err = -ENXIO;
goto out_irq;
}
cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
if (mtd->writesize == 2048)
cafe->ctl2 |= 1<<29; /* 2KiB page size */
/* Set up ECC according to the type of chip we found */
if (mtd->writesize == 2048) {
cafe->nand.ecc.layout = &cafe_oobinfo_2048;
cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
} else if (mtd->writesize == 512) {
cafe->nand.ecc.layout = &cafe_oobinfo_512;
cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
} else {
printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
mtd->writesize);
goto out_irq;
}
cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
cafe->nand.ecc.size = mtd->writesize;
cafe->nand.ecc.bytes = 14;
cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
cafe->nand.ecc.correct = (void *)cafe_nand_bug;
cafe->nand.write_page = cafe_nand_write_page;
cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
cafe->nand.ecc.write_oob = cafe_nand_write_oob;
cafe->nand.ecc.read_page = cafe_nand_read_page;
cafe->nand.ecc.read_oob = cafe_nand_read_oob;
err = nand_scan_tail(mtd);
if (err)
goto out_irq;
pci_set_drvdata(pdev, mtd);
add_mtd_device(mtd);
goto out;
out_irq:
/* Disable NAND IRQ in global IRQ mask register */
writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
free_irq(pdev->irq, mtd);
out_free_dma:
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
out_ior:
pci_iounmap(pdev, cafe->mmio);
out_free_mtd:
kfree(mtd);
out:
return err;
}
static void __devexit cafe_nand_remove(struct pci_dev *pdev)
{
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct cafe_priv *cafe = mtd->priv;
del_mtd_device(mtd);
/* Disable NAND IRQ in global IRQ mask register */
writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
free_irq(pdev->irq, mtd);
nand_release(mtd);
pci_iounmap(pdev, cafe->mmio);
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
kfree(mtd);
}
static struct pci_device_id cafe_nand_tbl[] = {
{ 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
};
MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
static struct pci_driver cafe_nand_pci_driver = {
.name = "CAFÉ NAND",
.id_table = cafe_nand_tbl,
.probe = cafe_nand_probe,
.remove = __devexit_p(cafe_nand_remove),
#ifdef CONFIG_PMx
.suspend = cafe_nand_suspend,
.resume = cafe_nand_resume,
#endif
};
static int cafe_nand_init(void)
{
return pci_register_driver(&cafe_nand_pci_driver);
}
static void cafe_nand_exit(void)
{
pci_unregister_driver(&cafe_nand_pci_driver);
}
module_init(cafe_nand_init);
module_exit(cafe_nand_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");
/* Correct ECC for 2048 bytes of 0xff:
41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */
/* dwmw2's B-test board, in case of completely screwing it:
Bad eraseblock 2394 at 0x12b40000
Bad eraseblock 2627 at 0x14860000
Bad eraseblock 3349 at 0x1a2a0000
*/