4de2730a1d
- AGC gain set to 3 - The tuning sequence has been changed to match the DibCom driver ( from I2C spy captures ) - For LITE-ON adapters : The IF1 frequency is now tuned according to the calibration values stored in EEPROM. Signed-off-by: Patrick Boettcher <pb@linuxtv.org> Signed-off-by: Olivier DANET <odanet@caramail.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
313 lines
8.0 KiB
C
313 lines
8.0 KiB
C
/*
|
|
* Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
|
|
*
|
|
* Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
*
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
|
|
*/
|
|
|
|
/* See mt2060_priv.h for details */
|
|
|
|
/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dvb/frontend.h>
|
|
#include "mt2060.h"
|
|
#include "mt2060_priv.h"
|
|
|
|
static int debug=0;
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
|
|
|
|
#define dprintk(args...) do { if (debug) printk(KERN_DEBUG "MT2060: " args); printk("\n"); } while (0)
|
|
|
|
// Reads a single register
|
|
static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
|
|
{
|
|
struct i2c_msg msg[2] = {
|
|
{ .addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1 },
|
|
{ .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
|
|
};
|
|
|
|
if (i2c_transfer(state->i2c, msg, 2) != 2) {
|
|
printk(KERN_WARNING "mt2060 I2C read failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Writes a single register
|
|
static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
|
|
{
|
|
u8 buf[2];
|
|
struct i2c_msg msg = {
|
|
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2
|
|
};
|
|
buf[0]=reg;
|
|
buf[1]=val;
|
|
|
|
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
|
|
printk(KERN_WARNING "mt2060 I2C write failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Writes a set of consecutive registers
|
|
static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len)
|
|
{
|
|
struct i2c_msg msg = {
|
|
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len
|
|
};
|
|
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
|
|
printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
|
|
return -EREMOTEIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Initialisation sequences
|
|
// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
|
|
static u8 mt2060_config1[] = {
|
|
REG_LO1C1,
|
|
0x3F, 0x74, 0x00, 0x08, 0x93
|
|
};
|
|
|
|
// FMCG=2, GP2=0, GP1=0
|
|
static u8 mt2060_config2[] = {
|
|
REG_MISC_CTRL,
|
|
0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
|
|
};
|
|
|
|
// VGAG=3, V1CSE=1
|
|
static u8 mt2060_config3[] = {
|
|
REG_VGAG,
|
|
0x33
|
|
};
|
|
|
|
int mt2060_init(struct mt2060_state *state)
|
|
{
|
|
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
|
|
return -EREMOTEIO;
|
|
if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
|
|
return -EREMOTEIO;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mt2060_init);
|
|
|
|
#ifdef MT2060_SPURCHECK
|
|
/* The function below calculates the frequency offset between the output frequency if2
|
|
and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
|
|
static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
|
|
{
|
|
int I,J;
|
|
int dia,diamin,diff;
|
|
diamin=1000000;
|
|
for (I = 1; I < 10; I++) {
|
|
J = ((2*I*lo1)/lo2+1)/2;
|
|
diff = I*(int)lo1-J*(int)lo2;
|
|
if (diff < 0) diff=-diff;
|
|
dia = (diff-(int)if2);
|
|
if (dia < 0) dia=-dia;
|
|
if (diamin > dia) diamin=dia;
|
|
}
|
|
return diamin;
|
|
}
|
|
|
|
#define BANDWIDTH 4000 // kHz
|
|
|
|
/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
|
|
static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
|
|
{
|
|
u32 Spur,Sp1,Sp2;
|
|
int I,J;
|
|
I=0;
|
|
J=1000;
|
|
|
|
Spur=mt2060_spurcalc(lo1,lo2,if2);
|
|
if (Spur < BANDWIDTH) {
|
|
/* Potential spurs detected */
|
|
dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
|
|
(int)lo1,(int)lo2);
|
|
I=1000;
|
|
Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
|
|
Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
|
|
|
|
if (Sp1 < Sp2) {
|
|
J=-J; I=-I; Spur=Sp2;
|
|
} else
|
|
Spur=Sp1;
|
|
|
|
while (Spur < BANDWIDTH) {
|
|
I += J;
|
|
Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
|
|
}
|
|
dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
|
|
(int)(lo1+I),(int)(lo2+I));
|
|
}
|
|
return I;
|
|
}
|
|
#endif
|
|
|
|
#define IF2 36150 // IF2 frequency = 36.150 MHz
|
|
#define FREF 16000 // Quartz oscillator 16 MHz
|
|
|
|
int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
|
|
{
|
|
int ret=0;
|
|
int i=0;
|
|
u32 freq;
|
|
u8 lnaband;
|
|
u32 f_lo1,f_lo2;
|
|
u32 div1,num1,div2,num2;
|
|
u8 b[8];
|
|
u32 if1;
|
|
|
|
if1 = state->if1_freq;
|
|
b[0] = REG_LO1B1;
|
|
b[1] = 0xFF;
|
|
mt2060_writeregs(state,b,2);
|
|
|
|
freq = fep->frequency / 1000; // Hz -> kHz
|
|
|
|
f_lo1 = freq + if1 * 1000;
|
|
f_lo1 = (f_lo1/250)*250;
|
|
f_lo2 = f_lo1 - freq - IF2;
|
|
f_lo2 = (f_lo2/50)*50;
|
|
|
|
#ifdef MT2060_SPURCHECK
|
|
// LO-related spurs detection and correction
|
|
num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
|
|
f_lo1 += num1;
|
|
f_lo2 += num1;
|
|
#endif
|
|
//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
|
|
div1 = f_lo1 / FREF;
|
|
num1 = (64 * (f_lo1 % FREF) )/FREF;
|
|
|
|
// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
|
|
div2 = f_lo2 / FREF;
|
|
num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2;
|
|
|
|
if (freq <= 95000) lnaband = 0xB0; else
|
|
if (freq <= 180000) lnaband = 0xA0; else
|
|
if (freq <= 260000) lnaband = 0x90; else
|
|
if (freq <= 335000) lnaband = 0x80; else
|
|
if (freq <= 425000) lnaband = 0x70; else
|
|
if (freq <= 480000) lnaband = 0x60; else
|
|
if (freq <= 570000) lnaband = 0x50; else
|
|
if (freq <= 645000) lnaband = 0x40; else
|
|
if (freq <= 730000) lnaband = 0x30; else
|
|
if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
|
|
|
|
b[0] = REG_LO1C1;
|
|
b[1] = lnaband | ((num1 >>2) & 0x0F);
|
|
b[2] = div1;
|
|
b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
|
|
b[4] = num2 >> 4;
|
|
b[5] = ((num2 >>12) & 1) | (div2 << 1);
|
|
|
|
dprintk("IF1: %dMHz",(int)if1);
|
|
dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2);
|
|
dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2);
|
|
dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
|
|
|
|
mt2060_writeregs(state,b,6);
|
|
|
|
//Waits for pll lock or timeout
|
|
i=0;
|
|
do {
|
|
mt2060_readreg(state,REG_LO_STATUS,b);
|
|
if ((b[0] & 0x88)==0x88) break;
|
|
msleep(4);
|
|
i++;
|
|
} while (i<10);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(mt2060_set);
|
|
|
|
/* from usbsnoop.log */
|
|
static void mt2060_calibrate(struct mt2060_state *state)
|
|
{
|
|
u8 b = 0;
|
|
int i = 0;
|
|
|
|
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
|
|
return;
|
|
if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2)))
|
|
return;
|
|
|
|
do {
|
|
b |= (1 << 6); // FM1SS;
|
|
mt2060_writereg(state, REG_LO2C1,b);
|
|
msleep(20);
|
|
|
|
if (i == 0) {
|
|
b |= (1 << 7); // FM1CA;
|
|
mt2060_writereg(state, REG_LO2C1,b);
|
|
b &= ~(1 << 7); // FM1CA;
|
|
msleep(20);
|
|
}
|
|
|
|
b &= ~(1 << 6); // FM1SS
|
|
mt2060_writereg(state, REG_LO2C1,b);
|
|
|
|
msleep(20);
|
|
i++;
|
|
} while (i < 9);
|
|
|
|
i = 0;
|
|
while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
|
|
msleep(20);
|
|
|
|
if (i < 10) {
|
|
mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :)
|
|
dprintk("calibration was successful: %d",state->fmfreq);
|
|
} else
|
|
dprintk("FMCAL timed out");
|
|
}
|
|
|
|
/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
|
|
int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1)
|
|
{
|
|
u8 id = 0;
|
|
memset(state,0,sizeof(struct mt2060_state));
|
|
|
|
state->config = config;
|
|
state->i2c = i2c;
|
|
state->if1_freq = if1;
|
|
|
|
if (mt2060_readreg(state,REG_PART_REV,&id) != 0)
|
|
return -ENODEV;
|
|
|
|
if (id != PART_REV)
|
|
return -ENODEV;
|
|
|
|
printk(KERN_INFO "MT2060: successfully identified\n");
|
|
|
|
mt2060_calibrate(state);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mt2060_attach);
|
|
|
|
MODULE_AUTHOR("Olivier DANET");
|
|
MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
|
|
MODULE_LICENSE("GPL");
|