ea34f43a07
It turns out that 'smp_call_function_many()' doesn't work at all like 'smp_call_function_single()', and my change to Andrew's patch to use it rather than a loop over all CPU's acpi-cpufreq doesn't work. My bad. 'smp_call_function_many()' has two "features" (aka "documented bugs"): (a) it needs to be called with preemption disabled, because it uses smp_processor_id() without guarding the CPU lookup with 'get_cpu()' and 'put_cpu()' like the 'single' variant does. (b) even if the current CPU is part of the CPU mask, it won't do the call on that CPU. Still, we're better off trying to use 'smp_call_function_many()' than looping over CPU's, since it at least in theory allows us to use a broadcast IPI and do it all in parallel. So let's just work around the silly semantic bugs in that function. Reported-and-tested-by: Ali Gholami Rudi <ali@rudi.ir> Cc: Ingo Molnar <mingo@elte.hu> Cc: Andrew Morton <akpm@linux-foundation.org>, Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Dave Jones <davej@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
854 lines
21 KiB
C
854 lines
21 KiB
C
/*
|
|
* acpi-cpufreq.c - ACPI Processor P-States Driver
|
|
*
|
|
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
|
|
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
|
|
* Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
|
|
* Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/dmi.h>
|
|
#include <trace/power.h>
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <acpi/processor.h>
|
|
|
|
#include <asm/msr.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cpufeature.h>
|
|
|
|
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
|
|
"acpi-cpufreq", msg)
|
|
|
|
MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
|
|
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
enum {
|
|
UNDEFINED_CAPABLE = 0,
|
|
SYSTEM_INTEL_MSR_CAPABLE,
|
|
SYSTEM_IO_CAPABLE,
|
|
};
|
|
|
|
#define INTEL_MSR_RANGE (0xffff)
|
|
#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
|
|
|
|
struct acpi_cpufreq_data {
|
|
struct acpi_processor_performance *acpi_data;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned int max_freq;
|
|
unsigned int resume;
|
|
unsigned int cpu_feature;
|
|
u64 saved_aperf, saved_mperf;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
|
|
|
|
DEFINE_TRACE(power_mark);
|
|
|
|
/* acpi_perf_data is a pointer to percpu data. */
|
|
static struct acpi_processor_performance *acpi_perf_data;
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver;
|
|
|
|
static unsigned int acpi_pstate_strict;
|
|
|
|
static int check_est_cpu(unsigned int cpuid)
|
|
{
|
|
struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
|
|
|
|
if (cpu->x86_vendor != X86_VENDOR_INTEL ||
|
|
!cpu_has(cpu, X86_FEATURE_EST))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
|
|
{
|
|
struct acpi_processor_performance *perf;
|
|
int i;
|
|
|
|
perf = data->acpi_data;
|
|
|
|
for (i = 0; i < perf->state_count; i++) {
|
|
if (value == perf->states[i].status)
|
|
return data->freq_table[i].frequency;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
|
|
{
|
|
int i;
|
|
struct acpi_processor_performance *perf;
|
|
|
|
msr &= INTEL_MSR_RANGE;
|
|
perf = data->acpi_data;
|
|
|
|
for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
|
|
if (msr == perf->states[data->freq_table[i].index].status)
|
|
return data->freq_table[i].frequency;
|
|
}
|
|
return data->freq_table[0].frequency;
|
|
}
|
|
|
|
static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
|
|
{
|
|
switch (data->cpu_feature) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
return extract_msr(val, data);
|
|
case SYSTEM_IO_CAPABLE:
|
|
return extract_io(val, data);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
struct msr_addr {
|
|
u32 reg;
|
|
};
|
|
|
|
struct io_addr {
|
|
u16 port;
|
|
u8 bit_width;
|
|
};
|
|
|
|
struct drv_cmd {
|
|
unsigned int type;
|
|
const struct cpumask *mask;
|
|
union {
|
|
struct msr_addr msr;
|
|
struct io_addr io;
|
|
} addr;
|
|
u32 val;
|
|
};
|
|
|
|
/* Called via smp_call_function_single(), on the target CPU */
|
|
static void do_drv_read(void *_cmd)
|
|
{
|
|
struct drv_cmd *cmd = _cmd;
|
|
u32 h;
|
|
|
|
switch (cmd->type) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
rdmsr(cmd->addr.msr.reg, cmd->val, h);
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
|
|
&cmd->val,
|
|
(u32)cmd->addr.io.bit_width);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Called via smp_call_function_many(), on the target CPUs */
|
|
static void do_drv_write(void *_cmd)
|
|
{
|
|
struct drv_cmd *cmd = _cmd;
|
|
u32 lo, hi;
|
|
|
|
switch (cmd->type) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
rdmsr(cmd->addr.msr.reg, lo, hi);
|
|
lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
|
|
wrmsr(cmd->addr.msr.reg, lo, hi);
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
|
|
cmd->val,
|
|
(u32)cmd->addr.io.bit_width);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void drv_read(struct drv_cmd *cmd)
|
|
{
|
|
cmd->val = 0;
|
|
|
|
smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
|
|
}
|
|
|
|
static void drv_write(struct drv_cmd *cmd)
|
|
{
|
|
int this_cpu;
|
|
|
|
this_cpu = get_cpu();
|
|
if (cpumask_test_cpu(this_cpu, cmd->mask))
|
|
do_drv_write(cmd);
|
|
smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
|
|
put_cpu();
|
|
}
|
|
|
|
static u32 get_cur_val(const struct cpumask *mask)
|
|
{
|
|
struct acpi_processor_performance *perf;
|
|
struct drv_cmd cmd;
|
|
|
|
if (unlikely(cpumask_empty(mask)))
|
|
return 0;
|
|
|
|
switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
|
|
cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
cmd.type = SYSTEM_IO_CAPABLE;
|
|
perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
|
|
cmd.addr.io.port = perf->control_register.address;
|
|
cmd.addr.io.bit_width = perf->control_register.bit_width;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
cmd.mask = mask;
|
|
drv_read(&cmd);
|
|
|
|
dprintk("get_cur_val = %u\n", cmd.val);
|
|
|
|
return cmd.val;
|
|
}
|
|
|
|
struct perf_pair {
|
|
union {
|
|
struct {
|
|
u32 lo;
|
|
u32 hi;
|
|
} split;
|
|
u64 whole;
|
|
} aperf, mperf;
|
|
};
|
|
|
|
/* Called via smp_call_function_single(), on the target CPU */
|
|
static void read_measured_perf_ctrs(void *_cur)
|
|
{
|
|
struct perf_pair *cur = _cur;
|
|
|
|
rdmsr(MSR_IA32_APERF, cur->aperf.split.lo, cur->aperf.split.hi);
|
|
rdmsr(MSR_IA32_MPERF, cur->mperf.split.lo, cur->mperf.split.hi);
|
|
}
|
|
|
|
/*
|
|
* Return the measured active (C0) frequency on this CPU since last call
|
|
* to this function.
|
|
* Input: cpu number
|
|
* Return: Average CPU frequency in terms of max frequency (zero on error)
|
|
*
|
|
* We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
|
|
* over a period of time, while CPU is in C0 state.
|
|
* IA32_MPERF counts at the rate of max advertised frequency
|
|
* IA32_APERF counts at the rate of actual CPU frequency
|
|
* Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
|
|
* no meaning should be associated with absolute values of these MSRs.
|
|
*/
|
|
static unsigned int get_measured_perf(struct cpufreq_policy *policy,
|
|
unsigned int cpu)
|
|
{
|
|
struct perf_pair readin, cur;
|
|
unsigned int perf_percent;
|
|
unsigned int retval;
|
|
|
|
if (smp_call_function_single(cpu, read_measured_perf_ctrs, &readin, 1))
|
|
return 0;
|
|
|
|
cur.aperf.whole = readin.aperf.whole -
|
|
per_cpu(drv_data, cpu)->saved_aperf;
|
|
cur.mperf.whole = readin.mperf.whole -
|
|
per_cpu(drv_data, cpu)->saved_mperf;
|
|
per_cpu(drv_data, cpu)->saved_aperf = readin.aperf.whole;
|
|
per_cpu(drv_data, cpu)->saved_mperf = readin.mperf.whole;
|
|
|
|
#ifdef __i386__
|
|
/*
|
|
* We dont want to do 64 bit divide with 32 bit kernel
|
|
* Get an approximate value. Return failure in case we cannot get
|
|
* an approximate value.
|
|
*/
|
|
if (unlikely(cur.aperf.split.hi || cur.mperf.split.hi)) {
|
|
int shift_count;
|
|
u32 h;
|
|
|
|
h = max_t(u32, cur.aperf.split.hi, cur.mperf.split.hi);
|
|
shift_count = fls(h);
|
|
|
|
cur.aperf.whole >>= shift_count;
|
|
cur.mperf.whole >>= shift_count;
|
|
}
|
|
|
|
if (((unsigned long)(-1) / 100) < cur.aperf.split.lo) {
|
|
int shift_count = 7;
|
|
cur.aperf.split.lo >>= shift_count;
|
|
cur.mperf.split.lo >>= shift_count;
|
|
}
|
|
|
|
if (cur.aperf.split.lo && cur.mperf.split.lo)
|
|
perf_percent = (cur.aperf.split.lo * 100) / cur.mperf.split.lo;
|
|
else
|
|
perf_percent = 0;
|
|
|
|
#else
|
|
if (unlikely(((unsigned long)(-1) / 100) < cur.aperf.whole)) {
|
|
int shift_count = 7;
|
|
cur.aperf.whole >>= shift_count;
|
|
cur.mperf.whole >>= shift_count;
|
|
}
|
|
|
|
if (cur.aperf.whole && cur.mperf.whole)
|
|
perf_percent = (cur.aperf.whole * 100) / cur.mperf.whole;
|
|
else
|
|
perf_percent = 0;
|
|
|
|
#endif
|
|
|
|
retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
|
|
unsigned int freq;
|
|
unsigned int cached_freq;
|
|
|
|
dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
|
|
|
|
if (unlikely(data == NULL ||
|
|
data->acpi_data == NULL || data->freq_table == NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
cached_freq = data->freq_table[data->acpi_data->state].frequency;
|
|
freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
|
|
if (freq != cached_freq) {
|
|
/*
|
|
* The dreaded BIOS frequency change behind our back.
|
|
* Force set the frequency on next target call.
|
|
*/
|
|
data->resume = 1;
|
|
}
|
|
|
|
dprintk("cur freq = %u\n", freq);
|
|
|
|
return freq;
|
|
}
|
|
|
|
static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
|
|
struct acpi_cpufreq_data *data)
|
|
{
|
|
unsigned int cur_freq;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
cur_freq = extract_freq(get_cur_val(mask), data);
|
|
if (cur_freq == freq)
|
|
return 1;
|
|
udelay(10);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_cpufreq_target(struct cpufreq_policy *policy,
|
|
unsigned int target_freq, unsigned int relation)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
|
|
struct acpi_processor_performance *perf;
|
|
struct cpufreq_freqs freqs;
|
|
struct drv_cmd cmd;
|
|
unsigned int next_state = 0; /* Index into freq_table */
|
|
unsigned int next_perf_state = 0; /* Index into perf table */
|
|
unsigned int i;
|
|
int result = 0;
|
|
struct power_trace it;
|
|
|
|
dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
|
|
|
|
if (unlikely(data == NULL ||
|
|
data->acpi_data == NULL || data->freq_table == NULL)) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
perf = data->acpi_data;
|
|
result = cpufreq_frequency_table_target(policy,
|
|
data->freq_table,
|
|
target_freq,
|
|
relation, &next_state);
|
|
if (unlikely(result)) {
|
|
result = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
next_perf_state = data->freq_table[next_state].index;
|
|
if (perf->state == next_perf_state) {
|
|
if (unlikely(data->resume)) {
|
|
dprintk("Called after resume, resetting to P%d\n",
|
|
next_perf_state);
|
|
data->resume = 0;
|
|
} else {
|
|
dprintk("Already at target state (P%d)\n",
|
|
next_perf_state);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
trace_power_mark(&it, POWER_PSTATE, next_perf_state);
|
|
|
|
switch (data->cpu_feature) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
|
|
cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
|
|
cmd.val = (u32) perf->states[next_perf_state].control;
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
cmd.type = SYSTEM_IO_CAPABLE;
|
|
cmd.addr.io.port = perf->control_register.address;
|
|
cmd.addr.io.bit_width = perf->control_register.bit_width;
|
|
cmd.val = (u32) perf->states[next_perf_state].control;
|
|
break;
|
|
default:
|
|
result = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
/* cpufreq holds the hotplug lock, so we are safe from here on */
|
|
if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
|
|
cmd.mask = policy->cpus;
|
|
else
|
|
cmd.mask = cpumask_of(policy->cpu);
|
|
|
|
freqs.old = perf->states[perf->state].core_frequency * 1000;
|
|
freqs.new = data->freq_table[next_state].frequency;
|
|
for_each_cpu(i, cmd.mask) {
|
|
freqs.cpu = i;
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
|
|
}
|
|
|
|
drv_write(&cmd);
|
|
|
|
if (acpi_pstate_strict) {
|
|
if (!check_freqs(cmd.mask, freqs.new, data)) {
|
|
dprintk("acpi_cpufreq_target failed (%d)\n",
|
|
policy->cpu);
|
|
result = -EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for_each_cpu(i, cmd.mask) {
|
|
freqs.cpu = i;
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
|
|
}
|
|
perf->state = next_perf_state;
|
|
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
|
|
|
|
dprintk("acpi_cpufreq_verify\n");
|
|
|
|
return cpufreq_frequency_table_verify(policy, data->freq_table);
|
|
}
|
|
|
|
static unsigned long
|
|
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
|
|
{
|
|
struct acpi_processor_performance *perf = data->acpi_data;
|
|
|
|
if (cpu_khz) {
|
|
/* search the closest match to cpu_khz */
|
|
unsigned int i;
|
|
unsigned long freq;
|
|
unsigned long freqn = perf->states[0].core_frequency * 1000;
|
|
|
|
for (i = 0; i < (perf->state_count-1); i++) {
|
|
freq = freqn;
|
|
freqn = perf->states[i+1].core_frequency * 1000;
|
|
if ((2 * cpu_khz) > (freqn + freq)) {
|
|
perf->state = i;
|
|
return freq;
|
|
}
|
|
}
|
|
perf->state = perf->state_count-1;
|
|
return freqn;
|
|
} else {
|
|
/* assume CPU is at P0... */
|
|
perf->state = 0;
|
|
return perf->states[0].core_frequency * 1000;
|
|
}
|
|
}
|
|
|
|
static void free_acpi_perf_data(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
|
|
for_each_possible_cpu(i)
|
|
free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
|
|
->shared_cpu_map);
|
|
free_percpu(acpi_perf_data);
|
|
}
|
|
|
|
/*
|
|
* acpi_cpufreq_early_init - initialize ACPI P-States library
|
|
*
|
|
* Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
|
|
* in order to determine correct frequency and voltage pairings. We can
|
|
* do _PDC and _PSD and find out the processor dependency for the
|
|
* actual init that will happen later...
|
|
*/
|
|
static int __init acpi_cpufreq_early_init(void)
|
|
{
|
|
unsigned int i;
|
|
dprintk("acpi_cpufreq_early_init\n");
|
|
|
|
acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
|
|
if (!acpi_perf_data) {
|
|
dprintk("Memory allocation error for acpi_perf_data.\n");
|
|
return -ENOMEM;
|
|
}
|
|
for_each_possible_cpu(i) {
|
|
if (!alloc_cpumask_var_node(
|
|
&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
|
|
GFP_KERNEL, cpu_to_node(i))) {
|
|
|
|
/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
|
|
free_acpi_perf_data();
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* Do initialization in ACPI core */
|
|
acpi_processor_preregister_performance(acpi_perf_data);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Some BIOSes do SW_ANY coordination internally, either set it up in hw
|
|
* or do it in BIOS firmware and won't inform about it to OS. If not
|
|
* detected, this has a side effect of making CPU run at a different speed
|
|
* than OS intended it to run at. Detect it and handle it cleanly.
|
|
*/
|
|
static int bios_with_sw_any_bug;
|
|
|
|
static int sw_any_bug_found(const struct dmi_system_id *d)
|
|
{
|
|
bios_with_sw_any_bug = 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct dmi_system_id sw_any_bug_dmi_table[] = {
|
|
{
|
|
.callback = sw_any_bug_found,
|
|
.ident = "Supermicro Server X6DLP",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
|
|
DMI_MATCH(DMI_BIOS_VERSION, "080010"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
|
|
},
|
|
},
|
|
{ }
|
|
};
|
|
#endif
|
|
|
|
static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
unsigned int i;
|
|
unsigned int valid_states = 0;
|
|
unsigned int cpu = policy->cpu;
|
|
struct acpi_cpufreq_data *data;
|
|
unsigned int result = 0;
|
|
struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
|
|
struct acpi_processor_performance *perf;
|
|
|
|
dprintk("acpi_cpufreq_cpu_init\n");
|
|
|
|
data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
|
|
per_cpu(drv_data, cpu) = data;
|
|
|
|
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
|
|
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
|
|
|
|
result = acpi_processor_register_performance(data->acpi_data, cpu);
|
|
if (result)
|
|
goto err_free;
|
|
|
|
perf = data->acpi_data;
|
|
policy->shared_type = perf->shared_type;
|
|
|
|
/*
|
|
* Will let policy->cpus know about dependency only when software
|
|
* coordination is required.
|
|
*/
|
|
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
|
|
policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
|
|
cpumask_copy(policy->cpus, perf->shared_cpu_map);
|
|
}
|
|
cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
|
|
|
|
#ifdef CONFIG_SMP
|
|
dmi_check_system(sw_any_bug_dmi_table);
|
|
if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
|
|
policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
|
|
cpumask_copy(policy->cpus, cpu_core_mask(cpu));
|
|
}
|
|
#endif
|
|
|
|
/* capability check */
|
|
if (perf->state_count <= 1) {
|
|
dprintk("No P-States\n");
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
if (perf->control_register.space_id != perf->status_register.space_id) {
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
switch (perf->control_register.space_id) {
|
|
case ACPI_ADR_SPACE_SYSTEM_IO:
|
|
dprintk("SYSTEM IO addr space\n");
|
|
data->cpu_feature = SYSTEM_IO_CAPABLE;
|
|
break;
|
|
case ACPI_ADR_SPACE_FIXED_HARDWARE:
|
|
dprintk("HARDWARE addr space\n");
|
|
if (!check_est_cpu(cpu)) {
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
|
|
break;
|
|
default:
|
|
dprintk("Unknown addr space %d\n",
|
|
(u32) (perf->control_register.space_id));
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
|
|
(perf->state_count+1), GFP_KERNEL);
|
|
if (!data->freq_table) {
|
|
result = -ENOMEM;
|
|
goto err_unreg;
|
|
}
|
|
|
|
/* detect transition latency */
|
|
policy->cpuinfo.transition_latency = 0;
|
|
for (i = 0; i < perf->state_count; i++) {
|
|
if ((perf->states[i].transition_latency * 1000) >
|
|
policy->cpuinfo.transition_latency)
|
|
policy->cpuinfo.transition_latency =
|
|
perf->states[i].transition_latency * 1000;
|
|
}
|
|
|
|
/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
|
|
if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
|
|
policy->cpuinfo.transition_latency > 20 * 1000) {
|
|
static int print_once;
|
|
policy->cpuinfo.transition_latency = 20 * 1000;
|
|
if (!print_once) {
|
|
print_once = 1;
|
|
printk(KERN_INFO "Capping off P-state tranision latency"
|
|
" at 20 uS\n");
|
|
}
|
|
}
|
|
|
|
data->max_freq = perf->states[0].core_frequency * 1000;
|
|
/* table init */
|
|
for (i = 0; i < perf->state_count; i++) {
|
|
if (i > 0 && perf->states[i].core_frequency >=
|
|
data->freq_table[valid_states-1].frequency / 1000)
|
|
continue;
|
|
|
|
data->freq_table[valid_states].index = i;
|
|
data->freq_table[valid_states].frequency =
|
|
perf->states[i].core_frequency * 1000;
|
|
valid_states++;
|
|
}
|
|
data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
|
|
perf->state = 0;
|
|
|
|
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
|
|
if (result)
|
|
goto err_freqfree;
|
|
|
|
switch (perf->control_register.space_id) {
|
|
case ACPI_ADR_SPACE_SYSTEM_IO:
|
|
/* Current speed is unknown and not detectable by IO port */
|
|
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
|
|
break;
|
|
case ACPI_ADR_SPACE_FIXED_HARDWARE:
|
|
acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
|
|
policy->cur = get_cur_freq_on_cpu(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* notify BIOS that we exist */
|
|
acpi_processor_notify_smm(THIS_MODULE);
|
|
|
|
/* Check for APERF/MPERF support in hardware */
|
|
if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
|
|
unsigned int ecx;
|
|
ecx = cpuid_ecx(6);
|
|
if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
|
|
acpi_cpufreq_driver.getavg = get_measured_perf;
|
|
}
|
|
|
|
dprintk("CPU%u - ACPI performance management activated.\n", cpu);
|
|
for (i = 0; i < perf->state_count; i++)
|
|
dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
|
|
(i == perf->state ? '*' : ' '), i,
|
|
(u32) perf->states[i].core_frequency,
|
|
(u32) perf->states[i].power,
|
|
(u32) perf->states[i].transition_latency);
|
|
|
|
cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
|
|
|
|
/*
|
|
* the first call to ->target() should result in us actually
|
|
* writing something to the appropriate registers.
|
|
*/
|
|
data->resume = 1;
|
|
|
|
return result;
|
|
|
|
err_freqfree:
|
|
kfree(data->freq_table);
|
|
err_unreg:
|
|
acpi_processor_unregister_performance(perf, cpu);
|
|
err_free:
|
|
kfree(data);
|
|
per_cpu(drv_data, cpu) = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
|
|
|
|
dprintk("acpi_cpufreq_cpu_exit\n");
|
|
|
|
if (data) {
|
|
cpufreq_frequency_table_put_attr(policy->cpu);
|
|
per_cpu(drv_data, policy->cpu) = NULL;
|
|
acpi_processor_unregister_performance(data->acpi_data,
|
|
policy->cpu);
|
|
kfree(data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
|
|
|
|
dprintk("acpi_cpufreq_resume\n");
|
|
|
|
data->resume = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct freq_attr *acpi_cpufreq_attr[] = {
|
|
&cpufreq_freq_attr_scaling_available_freqs,
|
|
NULL,
|
|
};
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver = {
|
|
.verify = acpi_cpufreq_verify,
|
|
.target = acpi_cpufreq_target,
|
|
.init = acpi_cpufreq_cpu_init,
|
|
.exit = acpi_cpufreq_cpu_exit,
|
|
.resume = acpi_cpufreq_resume,
|
|
.name = "acpi-cpufreq",
|
|
.owner = THIS_MODULE,
|
|
.attr = acpi_cpufreq_attr,
|
|
};
|
|
|
|
static int __init acpi_cpufreq_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (acpi_disabled)
|
|
return 0;
|
|
|
|
dprintk("acpi_cpufreq_init\n");
|
|
|
|
ret = acpi_cpufreq_early_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cpufreq_register_driver(&acpi_cpufreq_driver);
|
|
if (ret)
|
|
free_acpi_perf_data();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit acpi_cpufreq_exit(void)
|
|
{
|
|
dprintk("acpi_cpufreq_exit\n");
|
|
|
|
cpufreq_unregister_driver(&acpi_cpufreq_driver);
|
|
|
|
free_percpu(acpi_perf_data);
|
|
}
|
|
|
|
module_param(acpi_pstate_strict, uint, 0644);
|
|
MODULE_PARM_DESC(acpi_pstate_strict,
|
|
"value 0 or non-zero. non-zero -> strict ACPI checks are "
|
|
"performed during frequency changes.");
|
|
|
|
late_initcall(acpi_cpufreq_init);
|
|
module_exit(acpi_cpufreq_exit);
|
|
|
|
MODULE_ALIAS("acpi");
|