6ab3d5624e
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
456 lines
12 KiB
C
456 lines
12 KiB
C
/*
|
|
* Physical mapping layer for MTD using the Axis partitiontable format
|
|
*
|
|
* Copyright (c) 2001, 2002, 2003 Axis Communications AB
|
|
*
|
|
* This file is under the GPL.
|
|
*
|
|
* First partition is always sector 0 regardless of if we find a partitiontable
|
|
* or not. In the start of the next sector, there can be a partitiontable that
|
|
* tells us what other partitions to define. If there isn't, we use a default
|
|
* partition split defined below.
|
|
*
|
|
* Copy of os/lx25/arch/cris/arch-v10/drivers/axisflashmap.c 1.5
|
|
* with minor changes.
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/mtd/concat.h>
|
|
#include <linux/mtd/map.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/mtdram.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <asm/arch/hwregs/config_defs.h>
|
|
#include <asm/axisflashmap.h>
|
|
#include <asm/mmu.h>
|
|
|
|
#define MEM_CSE0_SIZE (0x04000000)
|
|
#define MEM_CSE1_SIZE (0x04000000)
|
|
|
|
#define FLASH_UNCACHED_ADDR KSEG_E
|
|
#define FLASH_CACHED_ADDR KSEG_F
|
|
|
|
#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
|
|
#define flash_data __u8
|
|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
|
|
#define flash_data __u16
|
|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
|
|
#define flash_data __u16
|
|
#endif
|
|
|
|
/* From head.S */
|
|
extern unsigned long romfs_start, romfs_length, romfs_in_flash;
|
|
|
|
/* The master mtd for the entire flash. */
|
|
struct mtd_info* axisflash_mtd = NULL;
|
|
|
|
/* Map driver functions. */
|
|
|
|
static map_word flash_read(struct map_info *map, unsigned long ofs)
|
|
{
|
|
map_word tmp;
|
|
tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
|
|
return tmp;
|
|
}
|
|
|
|
static void flash_copy_from(struct map_info *map, void *to,
|
|
unsigned long from, ssize_t len)
|
|
{
|
|
memcpy(to, (void *)(map->map_priv_1 + from), len);
|
|
}
|
|
|
|
static void flash_write(struct map_info *map, map_word d, unsigned long adr)
|
|
{
|
|
*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
|
|
}
|
|
|
|
/*
|
|
* The map for chip select e0.
|
|
*
|
|
* We run into tricky coherence situations if we mix cached with uncached
|
|
* accesses to we only use the uncached version here.
|
|
*
|
|
* The size field is the total size where the flash chips may be mapped on the
|
|
* chip select. MTD probes should find all devices there and it does not matter
|
|
* if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
|
|
* probes will ignore them.
|
|
*
|
|
* The start address in map_priv_1 is in virtual memory so we cannot use
|
|
* MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
|
|
* address of cse0.
|
|
*/
|
|
static struct map_info map_cse0 = {
|
|
.name = "cse0",
|
|
.size = MEM_CSE0_SIZE,
|
|
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
|
|
.read = flash_read,
|
|
.copy_from = flash_copy_from,
|
|
.write = flash_write,
|
|
.map_priv_1 = FLASH_UNCACHED_ADDR
|
|
};
|
|
|
|
/*
|
|
* The map for chip select e1.
|
|
*
|
|
* If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
|
|
* address, but there isn't.
|
|
*/
|
|
static struct map_info map_cse1 = {
|
|
.name = "cse1",
|
|
.size = MEM_CSE1_SIZE,
|
|
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
|
|
.read = flash_read,
|
|
.copy_from = flash_copy_from,
|
|
.write = flash_write,
|
|
.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
|
|
};
|
|
|
|
/* If no partition-table was found, we use this default-set. */
|
|
#define MAX_PARTITIONS 7
|
|
#define NUM_DEFAULT_PARTITIONS 3
|
|
|
|
/*
|
|
* Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
|
|
* size of one flash block and "filesystem"-partition needs 5 blocks to be able
|
|
* to use JFFS.
|
|
*/
|
|
static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
|
|
{
|
|
.name = "boot firmware",
|
|
.size = CONFIG_ETRAX_PTABLE_SECTOR,
|
|
.offset = 0
|
|
},
|
|
{
|
|
.name = "kernel",
|
|
.size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
|
|
.offset = CONFIG_ETRAX_PTABLE_SECTOR
|
|
},
|
|
{
|
|
.name = "filesystem",
|
|
.size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
|
|
.offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
|
|
}
|
|
};
|
|
|
|
/* Initialize the ones normally used. */
|
|
static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
|
|
{
|
|
.name = "part0",
|
|
.size = CONFIG_ETRAX_PTABLE_SECTOR,
|
|
.offset = 0
|
|
},
|
|
{
|
|
.name = "part1",
|
|
.size = 0,
|
|
.offset = 0
|
|
},
|
|
{
|
|
.name = "part2",
|
|
.size = 0,
|
|
.offset = 0
|
|
},
|
|
{
|
|
.name = "part3",
|
|
.size = 0,
|
|
.offset = 0
|
|
},
|
|
{
|
|
.name = "part4",
|
|
.size = 0,
|
|
.offset = 0
|
|
},
|
|
{
|
|
.name = "part5",
|
|
.size = 0,
|
|
.offset = 0
|
|
},
|
|
{
|
|
.name = "part6",
|
|
.size = 0,
|
|
.offset = 0
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
|
|
* chips in that order (because the amd_flash-driver is faster).
|
|
*/
|
|
static struct mtd_info *probe_cs(struct map_info *map_cs)
|
|
{
|
|
struct mtd_info *mtd_cs = NULL;
|
|
|
|
printk(KERN_INFO
|
|
"%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
|
|
map_cs->name, map_cs->size, map_cs->map_priv_1);
|
|
|
|
#ifdef CONFIG_MTD_AMDSTD
|
|
mtd_cs = do_map_probe("amd_flash", map_cs);
|
|
#endif
|
|
#ifdef CONFIG_MTD_CFI
|
|
if (!mtd_cs) {
|
|
mtd_cs = do_map_probe("cfi_probe", map_cs);
|
|
}
|
|
#endif
|
|
|
|
return mtd_cs;
|
|
}
|
|
|
|
/*
|
|
* Probe each chip select individually for flash chips. If there are chips on
|
|
* both cse0 and cse1, the mtd_info structs will be concatenated to one struct
|
|
* so that MTD partitions can cross chip boundries.
|
|
*
|
|
* The only known restriction to how you can mount your chips is that each
|
|
* chip select must hold similar flash chips. But you need external hardware
|
|
* to do that anyway and you can put totally different chips on cse0 and cse1
|
|
* so it isn't really much of a restriction.
|
|
*/
|
|
extern struct mtd_info* __init crisv32_nand_flash_probe (void);
|
|
static struct mtd_info *flash_probe(void)
|
|
{
|
|
struct mtd_info *mtd_cse0;
|
|
struct mtd_info *mtd_cse1;
|
|
struct mtd_info *mtd_nand = NULL;
|
|
struct mtd_info *mtd_total;
|
|
struct mtd_info *mtds[3];
|
|
int count = 0;
|
|
|
|
if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
|
|
mtds[count++] = mtd_cse0;
|
|
if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
|
|
mtds[count++] = mtd_cse1;
|
|
|
|
#ifdef CONFIG_ETRAX_NANDFLASH
|
|
if ((mtd_nand = crisv32_nand_flash_probe()) != NULL)
|
|
mtds[count++] = mtd_nand;
|
|
#endif
|
|
|
|
if (!mtd_cse0 && !mtd_cse1 && !mtd_nand) {
|
|
/* No chip found. */
|
|
return NULL;
|
|
}
|
|
|
|
if (count > 1) {
|
|
#ifdef CONFIG_MTD_CONCAT
|
|
/* Since the concatenation layer adds a small overhead we
|
|
* could try to figure out if the chips in cse0 and cse1 are
|
|
* identical and reprobe the whole cse0+cse1 window. But since
|
|
* flash chips are slow, the overhead is relatively small.
|
|
* So we use the MTD concatenation layer instead of further
|
|
* complicating the probing procedure.
|
|
*/
|
|
mtd_total = mtd_concat_create(mtds,
|
|
count,
|
|
"cse0+cse1+nand");
|
|
#else
|
|
printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
|
|
"(mis)configuration!\n", map_cse0.name, map_cse1.name);
|
|
mtd_toal = NULL;
|
|
#endif
|
|
if (!mtd_total) {
|
|
printk(KERN_ERR "%s and %s: Concatenation failed!\n",
|
|
map_cse0.name, map_cse1.name);
|
|
|
|
/* The best we can do now is to only use what we found
|
|
* at cse0.
|
|
*/
|
|
mtd_total = mtd_cse0;
|
|
map_destroy(mtd_cse1);
|
|
}
|
|
} else {
|
|
mtd_total = mtd_cse0? mtd_cse0 : mtd_cse1 ? mtd_cse1 : mtd_nand;
|
|
|
|
}
|
|
|
|
return mtd_total;
|
|
}
|
|
|
|
extern unsigned long crisv32_nand_boot;
|
|
extern unsigned long crisv32_nand_cramfs_offset;
|
|
|
|
/*
|
|
* Probe the flash chip(s) and, if it succeeds, read the partition-table
|
|
* and register the partitions with MTD.
|
|
*/
|
|
static int __init init_axis_flash(void)
|
|
{
|
|
struct mtd_info *mymtd;
|
|
int err = 0;
|
|
int pidx = 0;
|
|
struct partitiontable_head *ptable_head = NULL;
|
|
struct partitiontable_entry *ptable;
|
|
int use_default_ptable = 1; /* Until proven otherwise. */
|
|
const char *pmsg = KERN_INFO " /dev/flash%d at 0x%08x, size 0x%08x\n";
|
|
static char page[512];
|
|
size_t len;
|
|
|
|
#ifndef CONFIG_ETRAXFS_SIM
|
|
mymtd = flash_probe();
|
|
mymtd->read(mymtd, CONFIG_ETRAX_PTABLE_SECTOR, 512, &len, page);
|
|
ptable_head = (struct partitiontable_head *)(page + PARTITION_TABLE_OFFSET);
|
|
|
|
if (!mymtd) {
|
|
/* There's no reason to use this module if no flash chip can
|
|
* be identified. Make sure that's understood.
|
|
*/
|
|
printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
|
|
} else {
|
|
printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
|
|
mymtd->name, mymtd->size);
|
|
axisflash_mtd = mymtd;
|
|
}
|
|
|
|
if (mymtd) {
|
|
mymtd->owner = THIS_MODULE;
|
|
}
|
|
pidx++; /* First partition is always set to the default. */
|
|
|
|
if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
|
|
&& (ptable_head->size <
|
|
(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
|
|
PARTITIONTABLE_END_MARKER_SIZE))
|
|
&& (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
|
|
ptable_head->size -
|
|
PARTITIONTABLE_END_MARKER_SIZE)
|
|
== PARTITIONTABLE_END_MARKER)) {
|
|
/* Looks like a start, sane length and end of a
|
|
* partition table, lets check csum etc.
|
|
*/
|
|
int ptable_ok = 0;
|
|
struct partitiontable_entry *max_addr =
|
|
(struct partitiontable_entry *)
|
|
((unsigned long)ptable_head + sizeof(*ptable_head) +
|
|
ptable_head->size);
|
|
unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
|
|
unsigned char *p;
|
|
unsigned long csum = 0;
|
|
|
|
ptable = (struct partitiontable_entry *)
|
|
((unsigned long)ptable_head + sizeof(*ptable_head));
|
|
|
|
/* Lets be PARANOID, and check the checksum. */
|
|
p = (unsigned char*) ptable;
|
|
|
|
while (p <= (unsigned char*)max_addr) {
|
|
csum += *p++;
|
|
csum += *p++;
|
|
csum += *p++;
|
|
csum += *p++;
|
|
}
|
|
ptable_ok = (csum == ptable_head->checksum);
|
|
|
|
/* Read the entries and use/show the info. */
|
|
printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
|
|
(ptable_ok ? " valid" : "n invalid"), ptable_head,
|
|
max_addr);
|
|
|
|
/* We have found a working bootblock. Now read the
|
|
* partition table. Scan the table. It ends when
|
|
* there is 0xffffffff, that is, empty flash.
|
|
*/
|
|
while (ptable_ok
|
|
&& ptable->offset != 0xffffffff
|
|
&& ptable < max_addr
|
|
&& pidx < MAX_PARTITIONS) {
|
|
|
|
axis_partitions[pidx].offset = offset + ptable->offset + (crisv32_nand_boot ? 16384 : 0);
|
|
axis_partitions[pidx].size = ptable->size;
|
|
|
|
printk(pmsg, pidx, axis_partitions[pidx].offset,
|
|
axis_partitions[pidx].size);
|
|
pidx++;
|
|
ptable++;
|
|
}
|
|
use_default_ptable = !ptable_ok;
|
|
}
|
|
|
|
if (romfs_in_flash) {
|
|
/* Add an overlapping device for the root partition (romfs). */
|
|
|
|
axis_partitions[pidx].name = "romfs";
|
|
if (crisv32_nand_boot) {
|
|
char* data = kmalloc(1024, GFP_KERNEL);
|
|
int len;
|
|
int offset = crisv32_nand_cramfs_offset & ~(1024-1);
|
|
char* tmp;
|
|
|
|
mymtd->read(mymtd, offset, 1024, &len, data);
|
|
tmp = &data[crisv32_nand_cramfs_offset % 512];
|
|
axis_partitions[pidx].size = *(unsigned*)(tmp + 4);
|
|
axis_partitions[pidx].offset = crisv32_nand_cramfs_offset;
|
|
kfree(data);
|
|
} else {
|
|
axis_partitions[pidx].size = romfs_length;
|
|
axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
|
|
}
|
|
|
|
axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
|
|
|
|
printk(KERN_INFO
|
|
" Adding readonly flash partition for romfs image:\n");
|
|
printk(pmsg, pidx, axis_partitions[pidx].offset,
|
|
axis_partitions[pidx].size);
|
|
pidx++;
|
|
}
|
|
|
|
if (mymtd) {
|
|
if (use_default_ptable) {
|
|
printk(KERN_INFO " Using default partition table.\n");
|
|
err = add_mtd_partitions(mymtd, axis_default_partitions,
|
|
NUM_DEFAULT_PARTITIONS);
|
|
} else {
|
|
err = add_mtd_partitions(mymtd, axis_partitions, pidx);
|
|
}
|
|
|
|
if (err) {
|
|
panic("axisflashmap could not add MTD partitions!\n");
|
|
}
|
|
}
|
|
/* CONFIG_EXTRAXFS_SIM */
|
|
#endif
|
|
|
|
if (!romfs_in_flash) {
|
|
/* Create an RAM device for the root partition (romfs). */
|
|
|
|
#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
|
|
/* No use trying to boot this kernel from RAM. Panic! */
|
|
printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
|
|
"device due to kernel (mis)configuration!\n");
|
|
panic("This kernel cannot boot from RAM!\n");
|
|
#else
|
|
struct mtd_info *mtd_ram;
|
|
|
|
mtd_ram = (struct mtd_info *)kmalloc(sizeof(struct mtd_info),
|
|
GFP_KERNEL);
|
|
if (!mtd_ram) {
|
|
panic("axisflashmap couldn't allocate memory for "
|
|
"mtd_info!\n");
|
|
}
|
|
|
|
printk(KERN_INFO " Adding RAM partition for romfs image:\n");
|
|
printk(pmsg, pidx, romfs_start, romfs_length);
|
|
|
|
err = mtdram_init_device(mtd_ram, (void*)romfs_start,
|
|
romfs_length, "romfs");
|
|
if (err) {
|
|
panic("axisflashmap could not initialize MTD RAM "
|
|
"device!\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/* This adds the above to the kernels init-call chain. */
|
|
module_init(init_axis_flash);
|
|
|
|
EXPORT_SYMBOL(axisflash_mtd);
|