android_kernel_xiaomi_sm8350/fs/btrfs/extent-tree.c
Chris Mason 8d7be552a7 Btrfs: fix check_node and check_leaf to use less cpu
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2007-05-10 11:24:42 -04:00

1496 lines
38 KiB
C

#include <linux/module.h>
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "transaction.h"
static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*orig_root, u64 num_blocks, u64 search_start, u64
search_end, struct btrfs_key *ins, int data);
static int finish_current_insert(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root);
static int del_pending_extents(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root);
static int cache_block_group(struct btrfs_root *root,
struct btrfs_block_group_cache *block_group)
{
struct btrfs_path *path;
int ret;
struct btrfs_key key;
struct btrfs_leaf *leaf;
struct radix_tree_root *extent_radix;
int slot;
u64 i;
u64 last = 0;
u64 hole_size;
int found = 0;
root = root->fs_info->extent_root;
extent_radix = &root->fs_info->extent_map_radix;
if (block_group->cached)
return 0;
if (block_group->data)
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
printk("cache block group %Lu\n", block_group->key.objectid);
key.objectid = block_group->key.objectid;
key.flags = 0;
key.offset = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
return ret;
if (ret && path->slots[0] > 0)
path->slots[0]--;
while(1) {
leaf = btrfs_buffer_leaf(path->nodes[0]);
slot = path->slots[0];
if (slot >= btrfs_header_nritems(&leaf->header)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
else {
if (found) {
hole_size = block_group->key.objectid +
block_group->key.offset - last;
} else {
last = block_group->key.objectid;
hole_size = block_group->key.offset;
}
for (i = 0; i < hole_size; i++) {
set_radix_bit(extent_radix,
last + i);
}
break;
}
}
btrfs_disk_key_to_cpu(&key, &leaf->items[slot].key);
if (key.objectid >= block_group->key.objectid +
block_group->key.offset) {
if (found) {
hole_size = block_group->key.objectid +
block_group->key.offset - last;
} else {
last = block_group->key.objectid;
hole_size = block_group->key.offset;
}
for (i = 0; i < hole_size; i++) {
set_radix_bit(extent_radix, last + i);
}
break;
}
if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) {
if (!found) {
last = key.objectid + key.offset;
found = 1;
} else {
hole_size = key.objectid - last;
for (i = 0; i < hole_size; i++) {
set_radix_bit(extent_radix, last + i);
}
last = key.objectid + key.offset;
}
}
path->slots[0]++;
}
block_group->cached = 1;
btrfs_free_path(path);
return 0;
}
static struct btrfs_block_group_cache *lookup_block_group(struct
btrfs_fs_info *info,
u64 blocknr)
{
struct btrfs_block_group_cache *block_group;
int ret;
ret = radix_tree_gang_lookup(&info->block_group_radix,
(void **)&block_group,
blocknr, 1);
if (ret) {
if (block_group->key.objectid <= blocknr && blocknr <=
block_group->key.objectid + block_group->key.offset)
return block_group;
}
ret = radix_tree_gang_lookup(&info->block_group_data_radix,
(void **)&block_group,
blocknr, 1);
if (ret) {
if (block_group->key.objectid <= blocknr && blocknr <=
block_group->key.objectid + block_group->key.offset)
return block_group;
}
WARN_ON(1);
printk("lookup_block_group fails for blocknr %Lu\n", blocknr);
printk("last ret was %d\n", ret);
if (ret) {
printk("last block group was %Lu %Lu\n", block_group->key.objectid, block_group->key.offset);
}
return NULL;
}
static u64 leaf_range(struct btrfs_root *root)
{
u64 size = BTRFS_LEAF_DATA_SIZE(root);
size = size / (sizeof(struct btrfs_extent_item) +
sizeof(struct btrfs_item));
return size;
}
static u64 find_search_start(struct btrfs_root *root,
struct btrfs_block_group_cache **cache_ret,
u64 search_start, int num)
{
unsigned long gang[8];
int ret;
struct btrfs_block_group_cache *cache = *cache_ret;
u64 last = max(search_start, cache->key.objectid);
if (cache->data)
goto out;
if (num > 1) {
last = max(last, cache->last_prealloc);
}
again:
cache_block_group(root, cache);
while(1) {
ret = find_first_radix_bit(&root->fs_info->extent_map_radix,
gang, last, ARRAY_SIZE(gang));
if (!ret)
goto out;
last = gang[ret-1] + 1;
if (num > 1) {
if (ret != ARRAY_SIZE(gang)) {
goto new_group;
}
if (gang[ret-1] - gang[0] > leaf_range(root)) {
continue;
}
}
if (gang[0] >= cache->key.objectid + cache->key.offset) {
goto new_group;
}
return gang[0];
}
out:
return max(cache->last_alloc, search_start);
new_group:
cache = lookup_block_group(root->fs_info, last + cache->key.offset - 1);
if (!cache) {
return max((*cache_ret)->last_alloc, search_start);
}
cache = btrfs_find_block_group(root, cache,
last + cache->key.offset - 1, 0);
*cache_ret = cache;
goto again;
}
struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root,
struct btrfs_block_group_cache
*hint, u64 search_start,
int data)
{
struct btrfs_block_group_cache *cache[8];
struct btrfs_block_group_cache *found_group = NULL;
struct btrfs_fs_info *info = root->fs_info;
struct radix_tree_root *radix;
u64 used;
u64 last = 0;
u64 hint_last;
int i;
int ret;
int full_search = 0;
if (data)
radix = &info->block_group_data_radix;
else
radix = &info->block_group_radix;
if (search_start) {
struct btrfs_block_group_cache *shint;
shint = lookup_block_group(info, search_start);
if (shint->data == data) {
used = btrfs_block_group_used(&shint->item);
if (used + shint->pinned <
(shint->key.offset * 8) / 10) {
return shint;
}
}
}
if (hint && hint->data == data) {
used = btrfs_block_group_used(&hint->item);
if (used + hint->pinned < (hint->key.offset * 8) / 10) {
return hint;
}
if (used >= (hint->key.offset * 8) / 10) {
radix_tree_tag_clear(radix,
hint->key.objectid +
hint->key.offset - 1,
BTRFS_BLOCK_GROUP_AVAIL);
}
last = hint->key.offset * 3;
if (hint->key.objectid >= last)
last = max(search_start + hint->key.offset - 1,
hint->key.objectid - last);
else
last = hint->key.objectid + hint->key.offset;
hint_last = last;
} else {
if (hint)
hint_last = max(hint->key.objectid, search_start);
else
hint_last = search_start;
last = hint_last;
}
while(1) {
ret = radix_tree_gang_lookup_tag(radix, (void **)cache,
last, ARRAY_SIZE(cache),
BTRFS_BLOCK_GROUP_AVAIL);
if (!ret)
break;
for (i = 0; i < ret; i++) {
last = cache[i]->key.objectid +
cache[i]->key.offset;
used = btrfs_block_group_used(&cache[i]->item);
if (used + cache[i]->pinned <
(cache[i]->key.offset * 8) / 10) {
found_group = cache[i];
goto found;
}
if (used >= (cache[i]->key.offset * 8) / 10) {
radix_tree_tag_clear(radix,
cache[i]->key.objectid +
cache[i]->key.offset - 1,
BTRFS_BLOCK_GROUP_AVAIL);
}
}
}
last = hint_last;
again:
while(1) {
ret = radix_tree_gang_lookup(radix, (void **)cache,
last, ARRAY_SIZE(cache));
if (!ret)
break;
for (i = 0; i < ret; i++) {
last = cache[i]->key.objectid +
cache[i]->key.offset;
used = btrfs_block_group_used(&cache[i]->item);
if (used + cache[i]->pinned < cache[i]->key.offset) {
found_group = cache[i];
goto found;
}
if (used >= cache[i]->key.offset) {
radix_tree_tag_clear(radix,
cache[i]->key.objectid +
cache[i]->key.offset - 1,
BTRFS_BLOCK_GROUP_AVAIL);
}
}
}
if (!full_search) {
last = search_start;
full_search = 1;
goto again;
}
if (!found_group) {
ret = radix_tree_gang_lookup(radix,
(void **)&found_group, 0, 1);
BUG_ON(ret != 1);
}
found:
return found_group;
}
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 blocknr, u64 num_blocks)
{
struct btrfs_path *path;
int ret;
struct btrfs_key key;
struct btrfs_leaf *l;
struct btrfs_extent_item *item;
struct btrfs_key ins;
u32 refs;
find_free_extent(trans, root->fs_info->extent_root, 0, 0, (u64)-1,
&ins, 0);
path = btrfs_alloc_path();
BUG_ON(!path);
btrfs_init_path(path);
key.objectid = blocknr;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
key.offset = num_blocks;
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path,
0, 1);
if (ret != 0) {
printk("can't find block %Lu %Lu\n", blocknr, num_blocks);
BUG();
}
BUG_ON(ret != 0);
l = btrfs_buffer_leaf(path->nodes[0]);
item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(item);
btrfs_set_extent_refs(item, refs + 1);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(root->fs_info->extent_root, path);
btrfs_free_path(path);
finish_current_insert(trans, root->fs_info->extent_root);
del_pending_extents(trans, root->fs_info->extent_root);
return 0;
}
static int lookup_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 blocknr,
u64 num_blocks, u32 *refs)
{
struct btrfs_path *path;
int ret;
struct btrfs_key key;
struct btrfs_leaf *l;
struct btrfs_extent_item *item;
path = btrfs_alloc_path();
btrfs_init_path(path);
key.objectid = blocknr;
key.offset = num_blocks;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path,
0, 0);
if (ret != 0)
BUG();
l = btrfs_buffer_leaf(path->nodes[0]);
item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
*refs = btrfs_extent_refs(item);
btrfs_release_path(root->fs_info->extent_root, path);
btrfs_free_path(path);
return 0;
}
int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
return btrfs_inc_extent_ref(trans, root, bh_blocknr(root->node), 1);
}
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct buffer_head *buf)
{
u64 blocknr;
struct btrfs_node *buf_node;
struct btrfs_leaf *buf_leaf;
struct btrfs_disk_key *key;
struct btrfs_file_extent_item *fi;
int i;
int leaf;
int ret;
if (!root->ref_cows)
return 0;
buf_node = btrfs_buffer_node(buf);
leaf = btrfs_is_leaf(buf_node);
buf_leaf = btrfs_buffer_leaf(buf);
for (i = 0; i < btrfs_header_nritems(&buf_node->header); i++) {
if (leaf) {
key = &buf_leaf->items[i].key;
if (btrfs_disk_key_type(key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(buf_leaf, i,
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
ret = btrfs_inc_extent_ref(trans, root,
btrfs_file_extent_disk_blocknr(fi),
btrfs_file_extent_disk_num_blocks(fi));
BUG_ON(ret);
} else {
blocknr = btrfs_node_blockptr(buf_node, i);
ret = btrfs_inc_extent_ref(trans, root, blocknr, 1);
BUG_ON(ret);
}
}
return 0;
}
static int write_one_cache_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_block_group_cache *cache)
{
int ret;
int pending_ret;
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct btrfs_block_group_item *bi;
struct btrfs_key ins;
find_free_extent(trans, extent_root, 0, 0, (u64)-1, &ins, 0);
ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
BUG_ON(ret);
bi = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0],
struct btrfs_block_group_item);
memcpy(bi, &cache->item, sizeof(*bi));
mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(extent_root, path);
finish_current_insert(trans, extent_root);
pending_ret = del_pending_extents(trans, extent_root);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
if (cache->data)
cache->last_alloc = cache->first_free;
return 0;
}
static int write_dirty_block_radix(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct radix_tree_root *radix)
{
struct btrfs_block_group_cache *cache[8];
int ret;
int err = 0;
int werr = 0;
int i;
struct btrfs_path *path;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while(1) {
ret = radix_tree_gang_lookup_tag(radix, (void **)cache,
0, ARRAY_SIZE(cache),
BTRFS_BLOCK_GROUP_DIRTY);
if (!ret)
break;
for (i = 0; i < ret; i++) {
radix_tree_tag_clear(radix, cache[i]->key.objectid +
cache[i]->key.offset - 1,
BTRFS_BLOCK_GROUP_DIRTY);
err = write_one_cache_group(trans, root,
path, cache[i]);
if (err)
werr = err;
}
}
btrfs_free_path(path);
return werr;
}
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int ret;
int ret2;
ret = write_dirty_block_radix(trans, root,
&root->fs_info->block_group_radix);
ret2 = write_dirty_block_radix(trans, root,
&root->fs_info->block_group_data_radix);
if (ret)
return ret;
if (ret2)
return ret2;
return 0;
}
static int update_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 blocknr, u64 num, int alloc, int mark_free)
{
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info = root->fs_info;
u64 total = num;
u64 old_val;
u64 block_in_group;
u64 i;
while(total) {
cache = lookup_block_group(info, blocknr);
if (!cache) {
printk(KERN_CRIT "blocknr %Lu lookup failed\n",
blocknr);
return -1;
}
block_in_group = blocknr - cache->key.objectid;
WARN_ON(block_in_group > cache->key.offset);
radix_tree_tag_set(cache->radix, cache->key.objectid +
cache->key.offset - 1,
BTRFS_BLOCK_GROUP_DIRTY);
old_val = btrfs_block_group_used(&cache->item);
num = min(total, cache->key.offset - block_in_group);
if (alloc) {
old_val += num;
if (blocknr > cache->last_alloc)
cache->last_alloc = blocknr;
if (!cache->data) {
for (i = 0; i < num; i++) {
clear_radix_bit(&info->extent_map_radix,
blocknr + i);
}
}
} else {
old_val -= num;
if (blocknr < cache->first_free)
cache->first_free = blocknr;
if (!cache->data && mark_free) {
for (i = 0; i < num; i++) {
set_radix_bit(&info->extent_map_radix,
blocknr + i);
}
}
if (old_val < (cache->key.offset * 6) / 10 &&
old_val + num >= (cache->key.offset * 6) / 10) {
printk("group %Lu now available\n", cache->key.objectid);
radix_tree_tag_set(cache->radix,
cache->key.objectid +
cache->key.offset - 1,
BTRFS_BLOCK_GROUP_AVAIL);
}
}
btrfs_set_block_group_used(&cache->item, old_val);
total -= num;
blocknr += num;
}
return 0;
}
static int try_remove_page(struct address_space *mapping, unsigned long index)
{
int ret;
ret = invalidate_mapping_pages(mapping, index, index);
return ret;
}
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
btrfs_root *root)
{
unsigned long gang[8];
struct inode *btree_inode = root->fs_info->btree_inode;
struct btrfs_block_group_cache *block_group;
u64 first = 0;
int ret;
int i;
struct radix_tree_root *pinned_radix = &root->fs_info->pinned_radix;
struct radix_tree_root *extent_radix = &root->fs_info->extent_map_radix;
while(1) {
ret = find_first_radix_bit(pinned_radix, gang, 0,
ARRAY_SIZE(gang));
if (!ret)
break;
if (!first)
first = gang[0];
for (i = 0; i < ret; i++) {
clear_radix_bit(pinned_radix, gang[i]);
block_group = lookup_block_group(root->fs_info,
gang[i]);
if (block_group) {
WARN_ON(block_group->pinned == 0);
block_group->pinned--;
if (gang[i] < block_group->last_alloc)
block_group->last_alloc = gang[i];
if (gang[i] < block_group->last_prealloc)
block_group->last_prealloc = gang[i];
if (!block_group->data)
set_radix_bit(extent_radix, gang[i]);
}
try_remove_page(btree_inode->i_mapping,
gang[i] << (PAGE_CACHE_SHIFT -
btree_inode->i_blkbits));
}
}
return 0;
}
static int finish_current_insert(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root)
{
struct btrfs_key ins;
struct btrfs_extent_item extent_item;
int i;
int ret;
u64 super_blocks_used;
struct btrfs_fs_info *info = extent_root->fs_info;
btrfs_set_extent_refs(&extent_item, 1);
ins.offset = 1;
ins.flags = 0;
btrfs_set_key_type(&ins, BTRFS_EXTENT_ITEM_KEY);
btrfs_set_extent_owner(&extent_item, extent_root->root_key.objectid);
for (i = 0; i < extent_root->fs_info->extent_tree_insert_nr; i++) {
ins.objectid = extent_root->fs_info->extent_tree_insert[i];
super_blocks_used = btrfs_super_blocks_used(info->disk_super);
btrfs_set_super_blocks_used(info->disk_super,
super_blocks_used + 1);
ret = btrfs_insert_item(trans, extent_root, &ins, &extent_item,
sizeof(extent_item));
BUG_ON(ret);
}
extent_root->fs_info->extent_tree_insert_nr = 0;
extent_root->fs_info->extent_tree_prealloc_nr = 0;
return 0;
}
static int pin_down_block(struct btrfs_root *root, u64 blocknr, int pending)
{
int err;
struct btrfs_header *header;
struct buffer_head *bh;
if (!pending) {
bh = btrfs_find_tree_block(root, blocknr);
if (bh) {
if (buffer_uptodate(bh)) {
u64 transid =
root->fs_info->running_transaction->transid;
header = btrfs_buffer_header(bh);
if (btrfs_header_generation(header) ==
transid) {
btrfs_block_release(root, bh);
return 0;
}
}
btrfs_block_release(root, bh);
}
err = set_radix_bit(&root->fs_info->pinned_radix, blocknr);
if (!err) {
struct btrfs_block_group_cache *cache;
cache = lookup_block_group(root->fs_info, blocknr);
if (cache)
cache->pinned++;
}
} else {
err = set_radix_bit(&root->fs_info->pending_del_radix, blocknr);
}
BUG_ON(err < 0);
return 0;
}
/*
* remove an extent from the root, returns 0 on success
*/
static int __free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 blocknr, u64 num_blocks, int pin,
int mark_free)
{
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
int ret;
struct btrfs_extent_item *ei;
struct btrfs_key ins;
u32 refs;
key.objectid = blocknr;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
key.offset = num_blocks;
find_free_extent(trans, root, 0, 0, (u64)-1, &ins, 0);
path = btrfs_alloc_path();
BUG_ON(!path);
btrfs_init_path(path);
ret = btrfs_search_slot(trans, extent_root, &key, path, -1, 1);
if (ret) {
printk("failed to find %Lu\n", key.objectid);
btrfs_print_tree(extent_root, extent_root->node);
printk("failed to find %Lu\n", key.objectid);
BUG();
}
ei = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0],
struct btrfs_extent_item);
BUG_ON(ei->refs == 0);
refs = btrfs_extent_refs(ei) - 1;
btrfs_set_extent_refs(ei, refs);
btrfs_mark_buffer_dirty(path->nodes[0]);
if (refs == 0) {
u64 super_blocks_used;
if (pin) {
ret = pin_down_block(root, blocknr, 0);
BUG_ON(ret);
}
super_blocks_used = btrfs_super_blocks_used(info->disk_super);
btrfs_set_super_blocks_used(info->disk_super,
super_blocks_used - num_blocks);
ret = btrfs_del_item(trans, extent_root, path);
if (ret)
BUG();
ret = update_block_group(trans, root, blocknr, num_blocks, 0,
mark_free);
BUG_ON(ret);
}
btrfs_free_path(path);
finish_current_insert(trans, extent_root);
return ret;
}
/*
* find all the blocks marked as pending in the radix tree and remove
* them from the extent map
*/
static int del_pending_extents(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root)
{
int ret;
int wret;
int err = 0;
unsigned long gang[4];
int i;
struct radix_tree_root *pending_radix;
struct radix_tree_root *pinned_radix;
struct btrfs_block_group_cache *cache;
pending_radix = &extent_root->fs_info->pending_del_radix;
pinned_radix = &extent_root->fs_info->pinned_radix;
while(1) {
ret = find_first_radix_bit(pending_radix, gang, 0,
ARRAY_SIZE(gang));
if (!ret)
break;
for (i = 0; i < ret; i++) {
wret = set_radix_bit(pinned_radix, gang[i]);
if (wret == 0) {
cache = lookup_block_group(extent_root->fs_info,
gang[i]);
if (cache)
cache->pinned++;
}
if (wret < 0) {
printk(KERN_CRIT "set_radix_bit, err %d\n",
wret);
BUG_ON(wret < 0);
}
wret = clear_radix_bit(pending_radix, gang[i]);
BUG_ON(wret);
wret = __free_extent(trans, extent_root,
gang[i], 1, 0, 0);
if (wret)
err = wret;
}
}
return err;
}
/*
* remove an extent from the root, returns 0 on success
*/
int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 blocknr, u64 num_blocks, int pin)
{
struct btrfs_root *extent_root = root->fs_info->extent_root;
int pending_ret;
int ret;
if (root == extent_root) {
pin_down_block(root, blocknr, 1);
return 0;
}
ret = __free_extent(trans, root, blocknr, num_blocks, pin, pin == 0);
pending_ret = del_pending_extents(trans, root->fs_info->extent_root);
return ret ? ret : pending_ret;
}
/*
* walks the btree of allocated extents and find a hole of a given size.
* The key ins is changed to record the hole:
* ins->objectid == block start
* ins->flags = BTRFS_EXTENT_ITEM_KEY
* ins->offset == number of blocks
* Any available blocks before search_start are skipped.
*/
static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*orig_root, u64 num_blocks, u64 search_start, u64
search_end, struct btrfs_key *ins, int data)
{
struct btrfs_path *path;
struct btrfs_key key;
int ret;
u64 hole_size = 0;
int slot = 0;
u64 last_block = 0;
u64 test_block;
u64 orig_search_start = search_start;
int start_found;
struct btrfs_leaf *l;
struct btrfs_root * root = orig_root->fs_info->extent_root;
struct btrfs_fs_info *info = root->fs_info;
int total_needed = num_blocks;
int total_found = 0;
int fill_prealloc = 0;
int level;
struct btrfs_block_group_cache *block_group;
int full_scan = 0;
path = btrfs_alloc_path();
ins->flags = 0;
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
level = btrfs_header_level(btrfs_buffer_header(root->node));
if (num_blocks == 0) {
fill_prealloc = 1;
num_blocks = 1;
total_needed = (min(level + 1, BTRFS_MAX_LEVEL) + 2) * 3;
}
if (search_end == (u64)-1)
search_end = btrfs_super_total_blocks(info->disk_super);
if (search_start) {
block_group = lookup_block_group(info, search_start);
block_group = btrfs_find_block_group(root, block_group,
search_start, data);
} else {
block_group = btrfs_find_block_group(root,
trans->block_group, 0,
data);
}
check_failed:
if (!full_scan && block_group->data != data)
WARN_ON(1);
if (!data)
search_start = find_search_start(root, &block_group,
search_start, total_needed);
else
search_start = max(block_group->last_alloc, search_start);
btrfs_init_path(path);
ins->objectid = search_start;
ins->offset = 0;
start_found = 0;
ret = btrfs_search_slot(trans, root, ins, path, 0, 0);
if (ret < 0)
goto error;
if (path->slots[0] > 0) {
path->slots[0]--;
}
l = btrfs_buffer_leaf(path->nodes[0]);
btrfs_disk_key_to_cpu(&key, &l->items[path->slots[0]].key);
/*
* a rare case, go back one key if we hit a block group item
* instead of an extent item
*/
if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY &&
key.objectid + key.offset >= search_start) {
ins->objectid = key.objectid;
ins->offset = key.offset - 1;
btrfs_release_path(root, path);
ret = btrfs_search_slot(trans, root, ins, path, 0, 0);
if (ret < 0)
goto error;
if (path->slots[0] > 0) {
path->slots[0]--;
}
}
while (1) {
l = btrfs_buffer_leaf(path->nodes[0]);
slot = path->slots[0];
if (slot >= btrfs_header_nritems(&l->header)) {
if (fill_prealloc) {
info->extent_tree_prealloc_nr = 0;
total_found = 0;
}
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto error;
if (!start_found) {
ins->objectid = search_start;
ins->offset = search_end - search_start;
start_found = 1;
goto check_pending;
}
ins->objectid = last_block > search_start ?
last_block : search_start;
ins->offset = search_end - ins->objectid;
goto check_pending;
}
btrfs_disk_key_to_cpu(&key, &l->items[slot].key);
if (key.objectid >= search_start && key.objectid > last_block &&
start_found) {
if (last_block < search_start)
last_block = search_start;
hole_size = key.objectid - last_block;
if (hole_size >= num_blocks) {
ins->objectid = last_block;
ins->offset = hole_size;
goto check_pending;
}
}
if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
goto next;
start_found = 1;
last_block = key.objectid + key.offset;
if (last_block >= block_group->key.objectid +
block_group->key.offset) {
btrfs_release_path(root, path);
search_start = block_group->key.objectid +
block_group->key.offset * 2;
goto new_group;
}
next:
path->slots[0]++;
}
// FIXME -ENOSPC
check_pending:
/* we have to make sure we didn't find an extent that has already
* been allocated by the map tree or the original allocation
*/
btrfs_release_path(root, path);
BUG_ON(ins->objectid < search_start);
if (ins->objectid + num_blocks >= search_end) {
if (full_scan)
return -ENOSPC;
search_start = orig_search_start;
full_scan = 1;
goto new_group;
}
for (test_block = ins->objectid;
test_block < ins->objectid + num_blocks; test_block++) {
if (test_radix_bit(&info->pinned_radix, test_block)) {
search_start = test_block + 1;
goto new_group;
}
}
if (!fill_prealloc && info->extent_tree_insert_nr) {
u64 last =
info->extent_tree_insert[info->extent_tree_insert_nr - 1];
if (ins->objectid + num_blocks >
info->extent_tree_insert[0] &&
ins->objectid <= last) {
search_start = last + 1;
WARN_ON(!full_scan);
goto new_group;
}
}
if (!fill_prealloc && info->extent_tree_prealloc_nr) {
u64 first =
info->extent_tree_prealloc[info->extent_tree_prealloc_nr - 1];
if (ins->objectid + num_blocks > first &&
ins->objectid <= info->extent_tree_prealloc[0]) {
search_start = info->extent_tree_prealloc[0] + 1;
WARN_ON(!full_scan);
goto new_group;
}
}
if (fill_prealloc) {
int nr;
test_block = ins->objectid;
if (test_block - info->extent_tree_prealloc[total_needed - 1] >=
leaf_range(root)) {
total_found = 0;
info->extent_tree_prealloc_nr = total_found;
}
while(test_block < ins->objectid + ins->offset &&
total_found < total_needed) {
nr = total_needed - total_found - 1;
BUG_ON(nr < 0);
info->extent_tree_prealloc[nr] = test_block;
total_found++;
test_block++;
}
if (total_found < total_needed) {
search_start = test_block;
goto new_group;
}
info->extent_tree_prealloc_nr = total_found;
}
if (!data) {
block_group = lookup_block_group(info, ins->objectid);
if (block_group) {
if (fill_prealloc)
block_group->last_prealloc =
info->extent_tree_prealloc[total_needed-1];
else
trans->block_group = block_group;
}
}
ins->offset = num_blocks;
btrfs_free_path(path);
return 0;
new_group:
if (search_start + num_blocks >= search_end) {
search_start = orig_search_start;
printk("doing full scan!\n");
full_scan = 1;
}
block_group = lookup_block_group(info, search_start);
if (!full_scan)
block_group = btrfs_find_block_group(root, block_group,
search_start, data);
goto check_failed;
error:
btrfs_release_path(root, path);
btrfs_free_path(path);
return ret;
}
/*
* finds a free extent and does all the dirty work required for allocation
* returns the key for the extent through ins, and a tree buffer for
* the first block of the extent through buf.
*
* returns 0 if everything worked, non-zero otherwise.
*/
int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 owner,
u64 num_blocks, u64 search_start,
u64 search_end, struct btrfs_key *ins, int data)
{
int ret;
int pending_ret;
u64 super_blocks_used;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
struct btrfs_extent_item extent_item;
struct btrfs_key prealloc_key;
btrfs_set_extent_refs(&extent_item, 1);
btrfs_set_extent_owner(&extent_item, owner);
if (root == extent_root) {
int nr;
BUG_ON(info->extent_tree_prealloc_nr == 0);
BUG_ON(num_blocks != 1);
ins->offset = 1;
info->extent_tree_prealloc_nr--;
nr = info->extent_tree_prealloc_nr;
ins->objectid = info->extent_tree_prealloc[nr];
info->extent_tree_insert[info->extent_tree_insert_nr++] =
ins->objectid;
ret = update_block_group(trans, root,
ins->objectid, ins->offset, 1, 0);
BUG_ON(ret);
return 0;
}
/*
* if we're doing a data allocation, preallocate room in the
* extent tree first. This way the extent tree blocks end up
* in the correct block group.
*/
if (data) {
ret = find_free_extent(trans, root, 0, search_start,
search_end, &prealloc_key, 0);
if (ret) {
return ret;
}
if (prealloc_key.objectid + prealloc_key.offset >= search_end) {
int nr = info->extent_tree_prealloc_nr;
search_end = info->extent_tree_prealloc[nr - 1] - 1;
} else {
search_start = info->extent_tree_prealloc[0] + 1;
}
}
/* do the real allocation */
ret = find_free_extent(trans, root, num_blocks, search_start,
search_end, ins, data);
if (ret) {
return ret;
}
/*
* if we're doing a metadata allocation, preallocate space in the
* extent tree second. This way, we don't create a tiny hole
* in the allocation map between any unused preallocation blocks
* and the metadata block we're actually allocating. On disk,
* it'll go:
* [block we've allocated], [used prealloc 1], [ unused prealloc ]
* The unused prealloc will get reused the next time around.
*/
if (!data) {
if (ins->objectid + ins->offset >= search_end)
search_end = ins->objectid - 1;
else
search_start = ins->objectid + ins->offset;
ret = find_free_extent(trans, root, 0, search_start,
search_end, &prealloc_key, 0);
if (ret) {
return ret;
}
}
super_blocks_used = btrfs_super_blocks_used(info->disk_super);
btrfs_set_super_blocks_used(info->disk_super, super_blocks_used +
num_blocks);
ret = btrfs_insert_item(trans, extent_root, ins, &extent_item,
sizeof(extent_item));
finish_current_insert(trans, extent_root);
pending_ret = del_pending_extents(trans, extent_root);
if (ret) {
return ret;
}
if (pending_ret) {
return pending_ret;
}
ret = update_block_group(trans, root, ins->objectid, ins->offset, 1, 0);
return 0;
}
/*
* helper function to allocate a block for a given tree
* returns the tree buffer or NULL.
*/
struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 hint)
{
struct btrfs_key ins;
int ret;
struct buffer_head *buf;
ret = btrfs_alloc_extent(trans, root, root->root_key.objectid,
1, 0, (unsigned long)-1, &ins, 0);
if (ret) {
BUG();
return NULL;
}
BUG_ON(ret);
buf = btrfs_find_create_tree_block(root, ins.objectid);
set_buffer_uptodate(buf);
set_buffer_checked(buf);
set_radix_bit(&trans->transaction->dirty_pages, buf->b_page->index);
return buf;
}
static int drop_leaf_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct buffer_head *cur)
{
struct btrfs_disk_key *key;
struct btrfs_leaf *leaf;
struct btrfs_file_extent_item *fi;
int i;
int nritems;
int ret;
BUG_ON(!btrfs_is_leaf(btrfs_buffer_node(cur)));
leaf = btrfs_buffer_leaf(cur);
nritems = btrfs_header_nritems(&leaf->header);
for (i = 0; i < nritems; i++) {
key = &leaf->items[i].key;
if (btrfs_disk_key_type(key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(fi) == BTRFS_FILE_EXTENT_INLINE)
continue;
/*
* FIXME make sure to insert a trans record that
* repeats the snapshot del on crash
*/
ret = btrfs_free_extent(trans, root,
btrfs_file_extent_disk_blocknr(fi),
btrfs_file_extent_disk_num_blocks(fi),
0);
BUG_ON(ret);
}
return 0;
}
/*
* helper function for drop_snapshot, this walks down the tree dropping ref
* counts as it goes.
*/
static int walk_down_tree(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int *level)
{
struct buffer_head *next;
struct buffer_head *cur;
u64 blocknr;
int ret;
u32 refs;
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
ret = lookup_extent_ref(trans, root, bh_blocknr(path->nodes[*level]),
1, &refs);
BUG_ON(ret);
if (refs > 1)
goto out;
/*
* walk down to the last node level and free all the leaves
*/
while(*level >= 0) {
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
cur = path->nodes[*level];
if (btrfs_header_level(btrfs_buffer_header(cur)) != *level)
WARN_ON(1);
if (path->slots[*level] >=
btrfs_header_nritems(btrfs_buffer_header(cur)))
break;
if (*level == 0) {
ret = drop_leaf_ref(trans, root, cur);
BUG_ON(ret);
break;
}
blocknr = btrfs_node_blockptr(btrfs_buffer_node(cur),
path->slots[*level]);
ret = lookup_extent_ref(trans, root, blocknr, 1, &refs);
BUG_ON(ret);
if (refs != 1) {
path->slots[*level]++;
ret = btrfs_free_extent(trans, root, blocknr, 1, 1);
BUG_ON(ret);
continue;
}
next = read_tree_block(root, blocknr);
WARN_ON(*level <= 0);
if (path->nodes[*level-1])
btrfs_block_release(root, path->nodes[*level-1]);
path->nodes[*level-1] = next;
*level = btrfs_header_level(btrfs_buffer_header(next));
path->slots[*level] = 0;
}
out:
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
ret = btrfs_free_extent(trans, root,
bh_blocknr(path->nodes[*level]), 1, 1);
btrfs_block_release(root, path->nodes[*level]);
path->nodes[*level] = NULL;
*level += 1;
BUG_ON(ret);
return 0;
}
/*
* helper for dropping snapshots. This walks back up the tree in the path
* to find the first node higher up where we haven't yet gone through
* all the slots
*/
static int walk_up_tree(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int *level)
{
int i;
int slot;
int ret;
for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
slot = path->slots[i];
if (slot < btrfs_header_nritems(
btrfs_buffer_header(path->nodes[i])) - 1) {
path->slots[i]++;
*level = i;
return 0;
} else {
ret = btrfs_free_extent(trans, root,
bh_blocknr(path->nodes[*level]),
1, 1);
BUG_ON(ret);
btrfs_block_release(root, path->nodes[*level]);
path->nodes[*level] = NULL;
*level = i + 1;
}
}
return 1;
}
/*
* drop the reference count on the tree rooted at 'snap'. This traverses
* the tree freeing any blocks that have a ref count of zero after being
* decremented.
*/
int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct buffer_head *snap)
{
int ret = 0;
int wret;
int level;
struct btrfs_path *path;
int i;
int orig_level;
path = btrfs_alloc_path();
BUG_ON(!path);
btrfs_init_path(path);
level = btrfs_header_level(btrfs_buffer_header(snap));
orig_level = level;
path->nodes[level] = snap;
path->slots[level] = 0;
while(1) {
wret = walk_down_tree(trans, root, path, &level);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
wret = walk_up_tree(trans, root, path, &level);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
btrfs_btree_balance_dirty(root);
}
for (i = 0; i <= orig_level; i++) {
if (path->nodes[i]) {
btrfs_block_release(root, path->nodes[i]);
}
}
btrfs_free_path(path);
return ret;
}
static int free_block_group_radix(struct radix_tree_root *radix)
{
int ret;
struct btrfs_block_group_cache *cache[8];
int i;
while(1) {
ret = radix_tree_gang_lookup(radix, (void **)cache, 0,
ARRAY_SIZE(cache));
if (!ret)
break;
for (i = 0; i < ret; i++) {
radix_tree_delete(radix, cache[i]->key.objectid +
cache[i]->key.offset - 1);
kfree(cache[i]);
}
}
return 0;
}
int btrfs_free_block_groups(struct btrfs_fs_info *info)
{
int ret;
int ret2;
unsigned long gang[16];
int i;
ret = free_block_group_radix(&info->block_group_radix);
ret2 = free_block_group_radix(&info->block_group_data_radix);
if (ret)
return ret;
if (ret2)
return ret2;
while(1) {
ret = find_first_radix_bit(&info->extent_map_radix,
gang, 0, ARRAY_SIZE(gang));
if (!ret)
break;
for (i = 0; i < ret; i++) {
clear_radix_bit(&info->extent_map_radix, gang[i]);
}
}
return 0;
}
int btrfs_read_block_groups(struct btrfs_root *root)
{
struct btrfs_path *path;
int ret;
int err = 0;
struct btrfs_block_group_item *bi;
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info = root->fs_info;
struct radix_tree_root *radix;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_leaf *leaf;
u64 group_size_blocks = BTRFS_BLOCK_GROUP_SIZE / root->blocksize;
u64 used;
u64 nr = 0;
root = info->extent_root;
key.objectid = 0;
key.offset = group_size_blocks;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while(1) {
ret = btrfs_search_slot(NULL, info->extent_root,
&key, path, 0, 0);
if (ret != 0) {
err = ret;
break;
}
leaf = btrfs_buffer_leaf(path->nodes[0]);
btrfs_disk_key_to_cpu(&found_key,
&leaf->items[path->slots[0]].key);
cache = kmalloc(sizeof(*cache), GFP_NOFS);
if (!cache) {
err = -1;
break;
}
if (nr % 3)
radix = &info->block_group_data_radix;
else
radix = &info->block_group_radix;
bi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_block_group_item);
memcpy(&cache->item, bi, sizeof(*bi));
memcpy(&cache->key, &found_key, sizeof(found_key));
cache->last_alloc = cache->key.objectid;
cache->first_free = cache->key.objectid;
cache->last_prealloc = cache->key.objectid;
cache->pinned = 0;
cache->cached = 0;
if (nr % 3)
cache->data = 1;
else
cache->data = 0;
cache->radix = radix;
key.objectid = found_key.objectid + found_key.offset;
btrfs_release_path(root, path);
ret = radix_tree_insert(radix, found_key.objectid +
found_key.offset - 1,
(void *)cache);
BUG_ON(ret);
used = btrfs_block_group_used(bi);
if (used < (key.offset * 8) / 10) {
radix_tree_tag_set(radix, found_key.objectid +
found_key.offset - 1,
BTRFS_BLOCK_GROUP_AVAIL);
}
if (key.objectid >=
btrfs_super_total_blocks(info->disk_super))
break;
nr++;
}
btrfs_free_path(path);
return 0;
}