android_kernel_xiaomi_sm8350/include/asm-sh/dma-mapping.h
Paul Mundt 322392646b sh: Add missing dma_sync_single_range_for_*().
The b44 build uses these, caught by allmodconfig:

drivers/net/b44.c: In function `b44_sync_dma_desc_for_cpu':
drivers/net/b44.c:159: error: implicit declaration of function `dma_sync_single_range_for_cpu'

Follow the sparc64 change and stub them in.

Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-08-10 02:37:01 +09:00

211 lines
5.5 KiB
C

#ifndef __ASM_SH_DMA_MAPPING_H
#define __ASM_SH_DMA_MAPPING_H
#include <linux/mm.h>
#include <asm/scatterlist.h>
#include <asm/cacheflush.h>
#include <asm/io.h>
extern struct bus_type pci_bus_type;
/* arch/sh/mm/consistent.c */
extern void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *handle);
extern void consistent_free(void *vaddr, size_t size);
extern void consistent_sync(void *vaddr, size_t size, int direction);
#define dma_supported(dev, mask) (1)
static inline int dma_set_mask(struct device *dev, u64 mask)
{
if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
*dev->dma_mask = mask;
return 0;
}
static inline void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
if (sh_mv.mv_consistent_alloc) {
void *ret;
ret = sh_mv.mv_consistent_alloc(dev, size, dma_handle, flag);
if (ret != NULL)
return ret;
}
return consistent_alloc(flag, size, dma_handle);
}
static inline void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
if (sh_mv.mv_consistent_free) {
int ret;
ret = sh_mv.mv_consistent_free(dev, size, vaddr, dma_handle);
if (ret == 0)
return;
}
consistent_free(vaddr, size);
}
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
#define dma_is_consistent(d, h) (1)
static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction dir)
{
consistent_sync(vaddr, size, (int)dir);
}
static inline dma_addr_t dma_map_single(struct device *dev,
void *ptr, size_t size,
enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
if (dev->bus == &pci_bus_type)
return virt_to_phys(ptr);
#endif
dma_cache_sync(dev, ptr, size, dir);
return virt_to_phys(ptr);
}
#define dma_unmap_single(dev, addr, size, dir) do { } while (0)
static inline int dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir)
{
int i;
for (i = 0; i < nents; i++) {
#if !defined(CONFIG_PCI) || defined(CONFIG_SH_PCIDMA_NONCOHERENT)
dma_cache_sync(dev, page_address(sg[i].page) + sg[i].offset,
sg[i].length, dir);
#endif
sg[i].dma_address = page_to_phys(sg[i].page) + sg[i].offset;
}
return nents;
}
#define dma_unmap_sg(dev, sg, nents, dir) do { } while (0)
static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir)
{
return dma_map_single(dev, page_address(page) + offset, size, dir);
}
static inline void dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size, enum dma_data_direction dir)
{
dma_unmap_single(dev, dma_address, size, dir);
}
static inline void dma_sync_single(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
if (dev->bus == &pci_bus_type)
return;
#endif
dma_cache_sync(dev, phys_to_virt(dma_handle), size, dir);
}
static inline void dma_sync_single_range(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
if (dev->bus == &pci_bus_type)
return;
#endif
dma_cache_sync(dev, phys_to_virt(dma_handle) + offset, size, dir);
}
static inline void dma_sync_sg(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
int i;
for (i = 0; i < nelems; i++) {
#if !defined(CONFIG_PCI) || defined(CONFIG_SH_PCIDMA_NONCOHERENT)
dma_cache_sync(dev, page_address(sg[i].page) + sg[i].offset,
sg[i].length, dir);
#endif
sg[i].dma_address = page_to_phys(sg[i].page) + sg[i].offset;
}
}
static inline void dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
{
dma_sync_single(dev, dma_handle, size, dir);
}
static inline void dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction dir)
{
dma_sync_single(dev, dma_handle, size, dir);
}
static inline void dma_sync_single_range_for_cpu(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset,
size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_cpu(dev, dma_handle+offset, size, direction);
}
static inline void dma_sync_single_range_for_device(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset,
size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_device(dev, dma_handle+offset, size, direction);
}
static inline void dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction dir)
{
dma_sync_sg(dev, sg, nelems, dir);
}
static inline void dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction dir)
{
dma_sync_sg(dev, sg, nelems, dir);
}
static inline int dma_get_cache_alignment(void)
{
/*
* Each processor family will define its own L1_CACHE_SHIFT,
* L1_CACHE_BYTES wraps to this, so this is always safe.
*/
return L1_CACHE_BYTES;
}
static inline int dma_mapping_error(dma_addr_t dma_addr)
{
return dma_addr == 0;
}
#endif /* __ASM_SH_DMA_MAPPING_H */