android_kernel_xiaomi_sm8350/drivers/i2c/busses/i2c-rpx.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

102 lines
2.3 KiB
C

/*
* Embedded Planet RPX Lite MPC8xx CPM I2C interface.
* Copyright (c) 1999 Dan Malek (dmalek@jlc.net).
*
* moved into proper i2c interface;
* Brad Parker (brad@heeltoe.com)
*
* RPX lite specific parts of the i2c interface
* Update: There actually isn't anything RPXLite-specific about this module.
* This should work for most any 8xx board. The console messages have been
* changed to eliminate RPXLite references.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/stddef.h>
#include <linux/i2c.h>
#include <linux/i2c-algo-8xx.h>
#include <asm/mpc8xx.h>
#include <asm/commproc.h>
static void
rpx_iic_init(struct i2c_algo_8xx_data *data)
{
volatile cpm8xx_t *cp;
volatile immap_t *immap;
cp = cpmp; /* Get pointer to Communication Processor */
immap = (immap_t *)IMAP_ADDR; /* and to internal registers */
data->iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
/* Check for and use a microcode relocation patch.
*/
if ((data->reloc = data->iip->iic_rpbase))
data->iip = (iic_t *)&cp->cp_dpmem[data->iip->iic_rpbase];
data->i2c = (i2c8xx_t *)&(immap->im_i2c);
data->cp = cp;
/* Initialize Port B IIC pins.
*/
cp->cp_pbpar |= 0x00000030;
cp->cp_pbdir |= 0x00000030;
cp->cp_pbodr |= 0x00000030;
/* Allocate space for two transmit and two receive buffer
* descriptors in the DP ram.
*/
data->dp_addr = cpm_dpalloc(sizeof(cbd_t) * 4, 8);
/* ptr to i2c area */
data->i2c = (i2c8xx_t *)&(((immap_t *)IMAP_ADDR)->im_i2c);
}
static int rpx_install_isr(int irq, void (*func)(void *), void *data)
{
/* install interrupt handler */
cpm_install_handler(irq, func, data);
return 0;
}
static struct i2c_algo_8xx_data rpx_data = {
.setisr = rpx_install_isr
};
static struct i2c_adapter rpx_ops = {
.owner = THIS_MODULE,
.name = "m8xx",
.id = I2C_HW_MPC8XX_EPON,
.algo_data = &rpx_data,
};
int __init i2c_rpx_init(void)
{
printk(KERN_INFO "i2c-rpx: i2c MPC8xx driver\n");
/* reset hardware to sane state */
rpx_iic_init(&rpx_data);
if (i2c_8xx_add_bus(&rpx_ops) < 0) {
printk(KERN_ERR "i2c-rpx: Unable to register with I2C\n");
return -ENODEV;
}
return 0;
}
void __exit i2c_rpx_exit(void)
{
i2c_8xx_del_bus(&rpx_ops);
}
MODULE_AUTHOR("Dan Malek <dmalek@jlc.net>");
MODULE_DESCRIPTION("I2C-Bus adapter routines for MPC8xx boards");
module_init(i2c_rpx_init);
module_exit(i2c_rpx_exit);