android_kernel_xiaomi_sm8350/sound/oss/hal2.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

1560 lines
40 KiB
C

/*
* Driver for A2 audio system used in SGI machines
* Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
*
* Based on Ulf Carlsson's code.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Supported devices:
* /dev/dsp standard dsp device, (mostly) OSS compatible
* /dev/mixer standard mixer device, (mostly) OSS compatible
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/sound.h>
#include <linux/soundcard.h>
#include <linux/mutex.h>
#include <asm/io.h>
#include <asm/sgi/hpc3.h>
#include <asm/sgi/ip22.h>
#include "hal2.h"
#if 0
#define DEBUG(args...) printk(args)
#else
#define DEBUG(args...)
#endif
#if 0
#define DEBUG_MIX(args...) printk(args)
#else
#define DEBUG_MIX(args...)
#endif
/*
* Before touching these look how it works. It is a bit unusual I know,
* but it helps to keep things simple. This driver is considered complete
* and I won't add any new features although hardware has many cool
* capabilities.
* (Historical note: HAL2 driver was first written by Ulf Carlsson - ALSA
* 0.3 running with 2.2.x kernel. Then ALSA changed completely and it
* seemed easier to me to write OSS driver from scratch - this one. Now
* when ALSA is official part of 2.6 kernel it's time to write ALSA driver
* using (hopefully) final version of ALSA interface)
*/
#define H2_BLOCK_SIZE 1024
#define H2_ADC_BUFSIZE 8192
#define H2_DAC_BUFSIZE 16834
struct hal2_pbus {
struct hpc3_pbus_dmacregs *pbus;
int pbusnr;
unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
};
struct hal2_desc {
struct hpc_dma_desc desc;
u32 cnt; /* don't touch, it is also padding */
};
struct hal2_codec {
unsigned char *buffer;
struct hal2_desc *desc;
int desc_count;
int tail, head; /* tail index, head index */
struct hal2_pbus pbus;
unsigned int format; /* Audio data format */
int voices; /* mono/stereo */
unsigned int sample_rate;
unsigned int master; /* Master frequency */
unsigned short mod; /* MOD value */
unsigned short inc; /* INC value */
wait_queue_head_t dma_wait;
spinlock_t lock;
struct mutex sem;
int usecount; /* recording and playback are
* independent */
};
#define H2_MIX_OUTPUT_ATT 0
#define H2_MIX_INPUT_GAIN 1
#define H2_MIXERS 2
struct hal2_mixer {
int modcnt;
unsigned int master;
unsigned int volume[H2_MIXERS];
};
struct hal2_card {
int dev_dsp; /* audio device */
int dev_mixer; /* mixer device */
int dev_midi; /* midi device */
struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
struct hal2_codec dac;
struct hal2_codec adc;
struct hal2_mixer mixer;
};
#define H2_INDIRECT_WAIT(regs) while (regs->isr & H2_ISR_TSTATUS);
#define H2_READ_ADDR(addr) (addr | (1<<7))
#define H2_WRITE_ADDR(addr) (addr)
static char *hal2str = "HAL2";
/*
* I doubt anyone has a machine with two HAL2 cards. It's possible to
* have two HPC's, so it is probably possible to have two HAL2 cards.
* Try to deal with it, but note that it is not tested.
*/
#define MAXCARDS 2
static struct hal2_card* hal2_card[MAXCARDS];
static const struct {
unsigned char idx:4, avail:1;
} mixtable[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_PCM] = { H2_MIX_OUTPUT_ATT, 1 }, /* voice */
[SOUND_MIXER_MIC] = { H2_MIX_INPUT_GAIN, 1 }, /* mic */
};
#define H2_SUPPORTED_FORMATS (AFMT_S16_LE | AFMT_S16_BE)
static inline void hal2_isr_write(struct hal2_card *hal2, u16 val)
{
hal2->ctl_regs->isr = val;
}
static inline u16 hal2_isr_look(struct hal2_card *hal2)
{
return hal2->ctl_regs->isr;
}
static inline u16 hal2_rev_look(struct hal2_card *hal2)
{
return hal2->ctl_regs->rev;
}
#ifdef HAL2_DUMP_REGS
static u16 hal2_i_look16(struct hal2_card *hal2, u16 addr)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
return regs->idr0;
}
#endif
static u32 hal2_i_look32(struct hal2_card *hal2, u16 addr)
{
u32 ret;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
ret = regs->idr0 & 0xffff;
regs->iar = H2_READ_ADDR(addr | 0x1);
H2_INDIRECT_WAIT(regs);
ret |= (regs->idr0 & 0xffff) << 16;
return ret;
}
static void hal2_i_write16(struct hal2_card *hal2, u16 addr, u16 val)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->idr0 = val;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_write32(struct hal2_card *hal2, u16 addr, u32 val)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->idr0 = val & 0xffff;
regs->idr1 = val >> 16;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_setbit16(struct hal2_card *hal2, u16 addr, u16 bit)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
regs->idr0 = (regs->idr0 & 0xffff) | bit;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_setbit32(struct hal2_card *hal2, u16 addr, u32 bit)
{
u32 tmp;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
tmp = (regs->idr0 & 0xffff) | (regs->idr1 << 16) | bit;
regs->idr0 = tmp & 0xffff;
regs->idr1 = tmp >> 16;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_clearbit16(struct hal2_card *hal2, u16 addr, u16 bit)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
regs->idr0 = (regs->idr0 & 0xffff) & ~bit;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
#if 0
static void hal2_i_clearbit32(struct hal2_card *hal2, u16 addr, u32 bit)
{
u32 tmp;
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
tmp = ((regs->idr0 & 0xffff) | (regs->idr1 << 16)) & ~bit;
regs->idr0 = tmp & 0xffff;
regs->idr1 = tmp >> 16;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
#endif
#ifdef HAL2_DUMP_REGS
static void hal2_dump_regs(struct hal2_card *hal2)
{
DEBUG("isr: %08hx ", hal2_isr_look(hal2));
DEBUG("rev: %08hx\n", hal2_rev_look(hal2));
DEBUG("relay: %04hx\n", hal2_i_look16(hal2, H2I_RELAY_C));
DEBUG("port en: %04hx ", hal2_i_look16(hal2, H2I_DMA_PORT_EN));
DEBUG("dma end: %04hx ", hal2_i_look16(hal2, H2I_DMA_END));
DEBUG("dma drv: %04hx\n", hal2_i_look16(hal2, H2I_DMA_DRV));
DEBUG("syn ctl: %04hx ", hal2_i_look16(hal2, H2I_SYNTH_C));
DEBUG("aesrx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESRX_C));
DEBUG("aestx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESTX_C));
DEBUG("dac ctl1: %04hx ", hal2_i_look16(hal2, H2I_ADC_C1));
DEBUG("dac ctl2: %08x ", hal2_i_look32(hal2, H2I_ADC_C2));
DEBUG("adc ctl1: %04hx ", hal2_i_look16(hal2, H2I_DAC_C1));
DEBUG("adc ctl2: %08x ", hal2_i_look32(hal2, H2I_DAC_C2));
DEBUG("syn map: %04hx\n", hal2_i_look16(hal2, H2I_SYNTH_MAP_C));
DEBUG("bres1 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES1_C1));
DEBUG("bres1 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES1_C2));
DEBUG("bres2 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES2_C1));
DEBUG("bres2 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES2_C2));
DEBUG("bres3 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES3_C1));
DEBUG("bres3 ctl2: %04x\n", hal2_i_look32(hal2, H2I_BRES3_C2));
}
#endif
static struct hal2_card* hal2_dsp_find_card(int minor)
{
int i;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i] != NULL && hal2_card[i]->dev_dsp == minor)
return hal2_card[i];
return NULL;
}
static struct hal2_card* hal2_mixer_find_card(int minor)
{
int i;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i] != NULL && hal2_card[i]->dev_mixer == minor)
return hal2_card[i];
return NULL;
}
static void hal2_inc_head(struct hal2_codec *codec)
{
codec->head++;
if (codec->head == codec->desc_count)
codec->head = 0;
}
static void hal2_inc_tail(struct hal2_codec *codec)
{
codec->tail++;
if (codec->tail == codec->desc_count)
codec->tail = 0;
}
static void hal2_dac_interrupt(struct hal2_codec *dac)
{
int running;
spin_lock(&dac->lock);
/* if tail buffer contains zero samples DMA stream was already
* stopped */
running = dac->desc[dac->tail].cnt;
dac->desc[dac->tail].cnt = 0;
dac->desc[dac->tail].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX;
/* we just proccessed empty buffer, don't update tail pointer */
if (running)
hal2_inc_tail(dac);
spin_unlock(&dac->lock);
wake_up(&dac->dma_wait);
}
static void hal2_adc_interrupt(struct hal2_codec *adc)
{
int running;
spin_lock(&adc->lock);
/* if head buffer contains nonzero samples DMA stream was already
* stopped */
running = !adc->desc[adc->head].cnt;
adc->desc[adc->head].cnt = H2_BLOCK_SIZE;
adc->desc[adc->head].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOR;
/* we just proccessed empty buffer, don't update head pointer */
if (running)
hal2_inc_head(adc);
spin_unlock(&adc->lock);
wake_up(&adc->dma_wait);
}
static irqreturn_t hal2_interrupt(int irq, void *dev_id)
{
struct hal2_card *hal2 = (struct hal2_card*)dev_id;
irqreturn_t ret = IRQ_NONE;
/* decide what caused this interrupt */
if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
hal2_dac_interrupt(&hal2->dac);
ret = IRQ_HANDLED;
}
if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
hal2_adc_interrupt(&hal2->adc);
ret = IRQ_HANDLED;
}
return ret;
}
static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
{
unsigned short mod;
DEBUG("rate: %d\n", rate);
if (rate < 4000) rate = 4000;
else if (rate > 48000) rate = 48000;
if (44100 % rate < 48000 % rate) {
mod = 4 * 44100 / rate;
codec->master = 44100;
} else {
mod = 4 * 48000 / rate;
codec->master = 48000;
}
codec->inc = 4;
codec->mod = mod;
rate = 4 * codec->master / mod;
DEBUG("real_rate: %d\n", rate);
return rate;
}
static void hal2_set_dac_rate(struct hal2_card *hal2)
{
unsigned int master = hal2->dac.master;
int inc = hal2->dac.inc;
int mod = hal2->dac.mod;
DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (inc - mod - 1)) << 16) | inc);
}
static void hal2_set_adc_rate(struct hal2_card *hal2)
{
unsigned int master = hal2->adc.master;
int inc = hal2->adc.inc;
int mod = hal2->adc.mod;
DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (inc - mod - 1)) << 16) | inc);
}
static void hal2_setup_dac(struct hal2_card *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
struct hal2_pbus *pbus = &hal2->dac.pbus;
DEBUG("hal2_setup_dac\n");
/* Now we set up some PBUS information. The PBUS needs information about
* what portion of the fifo it will use. If it's receiving or
* transmitting, and finally whether the stream is little endian or big
* endian. The information is written later, on the start call.
*/
sample_size = 2 * hal2->dac.voices;
/* Fifo should be set to hold exactly four samples. Highwater mark
* should be set to two samples. */
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = 0; /* playback is first */
fifoend = (sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24) |
(hal2->dac.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0);
/* We disable everything before we do anything at all */
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
/* Setup the HAL2 for playback */
hal2_set_dac_rate(hal2);
/* Set endianess */
if (hal2->dac.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
/* Set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* We are using 1st Bresenham clock generator for playback */
hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (1 << H2I_C1_CLKID_SHIFT)
| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
}
static void hal2_setup_adc(struct hal2_card *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
struct hal2_pbus *pbus = &hal2->adc.pbus;
DEBUG("hal2_setup_adc\n");
sample_size = 2 * hal2->adc.voices;
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = (4 * 4) >> 3; /* record is second */
fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24) |
(hal2->adc.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0);
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
/* Setup the HAL2 for record */
hal2_set_adc_rate(hal2);
/* Set endianess */
if (hal2->adc.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
/* Set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* We are using 2nd Bresenham clock generator for record */
hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (2 << H2I_C1_CLKID_SHIFT)
| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
}
static dma_addr_t hal2_desc_addr(struct hal2_codec *codec, int i)
{
if (--i < 0)
i = codec->desc_count - 1;
return codec->desc[i].desc.pnext;
}
static void hal2_start_dac(struct hal2_card *hal2)
{
struct hal2_codec *dac = &hal2->dac;
struct hal2_pbus *pbus = &dac->pbus;
pbus->pbus->pbdma_dptr = hal2_desc_addr(dac, dac->tail);
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* enable DAC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
}
static void hal2_start_adc(struct hal2_card *hal2)
{
struct hal2_codec *adc = &hal2->adc;
struct hal2_pbus *pbus = &adc->pbus;
pbus->pbus->pbdma_dptr = hal2_desc_addr(adc, adc->head);
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* enable ADC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
}
static inline void hal2_stop_dac(struct hal2_card *hal2)
{
hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
/* The HAL2 itself may remain enabled safely */
}
static inline void hal2_stop_adc(struct hal2_card *hal2)
{
hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
}
static int hal2_alloc_dmabuf(struct hal2_codec *codec, int size,
int count, int cntinfo, int dir)
{
struct hal2_desc *desc, *dma_addr;
int i;
DEBUG("allocating %dk DMA buffer.\n", size / 1024);
codec->buffer = (unsigned char *)__get_free_pages(GFP_KERNEL | GFP_DMA,
get_order(size));
if (!codec->buffer)
return -ENOMEM;
desc = dma_alloc_coherent(NULL, count * sizeof(struct hal2_desc),
(dma_addr_t *)&dma_addr, GFP_KERNEL);
if (!desc) {
free_pages((unsigned long)codec->buffer, get_order(size));
return -ENOMEM;
}
codec->desc = desc;
for (i = 0; i < count; i++) {
desc->desc.pbuf = dma_map_single(NULL,
(void *)(codec->buffer + i * H2_BLOCK_SIZE),
H2_BLOCK_SIZE, dir);
desc->desc.cntinfo = cntinfo;
desc->desc.pnext = (i == count - 1) ?
(u32)dma_addr : (u32)(dma_addr + i + 1);
desc->cnt = 0;
desc++;
}
codec->desc_count = count;
codec->head = codec->tail = 0;
return 0;
}
static int hal2_alloc_dac_dmabuf(struct hal2_codec *codec)
{
return hal2_alloc_dmabuf(codec, H2_DAC_BUFSIZE,
H2_DAC_BUFSIZE / H2_BLOCK_SIZE,
HPCDMA_XIE | HPCDMA_EOX,
DMA_TO_DEVICE);
}
static int hal2_alloc_adc_dmabuf(struct hal2_codec *codec)
{
return hal2_alloc_dmabuf(codec, H2_ADC_BUFSIZE,
H2_ADC_BUFSIZE / H2_BLOCK_SIZE,
HPCDMA_XIE | H2_BLOCK_SIZE,
DMA_TO_DEVICE);
}
static void hal2_free_dmabuf(struct hal2_codec *codec, int size, int dir)
{
dma_addr_t dma_addr;
int i;
dma_addr = codec->desc[codec->desc_count - 1].desc.pnext;
for (i = 0; i < codec->desc_count; i++)
dma_unmap_single(NULL, codec->desc[i].desc.pbuf,
H2_BLOCK_SIZE, dir);
dma_free_coherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
(void *)codec->desc, dma_addr);
free_pages((unsigned long)codec->buffer, get_order(size));
}
static void hal2_free_dac_dmabuf(struct hal2_codec *codec)
{
return hal2_free_dmabuf(codec, H2_DAC_BUFSIZE, DMA_TO_DEVICE);
}
static void hal2_free_adc_dmabuf(struct hal2_codec *codec)
{
return hal2_free_dmabuf(codec, H2_ADC_BUFSIZE, DMA_FROM_DEVICE);
}
/*
* Add 'count' bytes to 'buffer' from DMA ring buffers. Return number of
* bytes added or -EFAULT if copy_from_user failed.
*/
static int hal2_get_buffer(struct hal2_card *hal2, char *buffer, int count)
{
unsigned long flags;
int size, ret = 0;
unsigned char *buf;
struct hal2_desc *tail;
struct hal2_codec *adc = &hal2->adc;
DEBUG("getting %d bytes ", count);
spin_lock_irqsave(&adc->lock, flags);
tail = &adc->desc[adc->tail];
/* enable DMA stream if there are no data */
if (!tail->cnt && !(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT))
hal2_start_adc(hal2);
while (tail->cnt > 0 && count > 0) {
size = min((int)tail->cnt, count);
buf = &adc->buffer[(adc->tail + 1) * H2_BLOCK_SIZE - tail->cnt];
spin_unlock_irqrestore(&adc->lock, flags);
dma_sync_single(NULL, tail->desc.pbuf, size, DMA_FROM_DEVICE);
if (copy_to_user(buffer, buf, size)) {
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&adc->lock, flags);
tail->cnt -= size;
/* buffer is empty, update tail pointer */
if (tail->cnt == 0) {
tail->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
hal2_inc_tail(adc);
tail = &adc->desc[adc->tail];
/* enable DMA stream again if needed */
if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT))
hal2_start_adc(hal2);
}
buffer += size;
ret += size;
count -= size;
DEBUG("(%d) ", size);
}
spin_unlock_irqrestore(&adc->lock, flags);
out:
DEBUG("\n");
return ret;
}
/*
* Add 'count' bytes from 'buffer' to DMA ring buffers. Return number of
* bytes added or -EFAULT if copy_from_user failed.
*/
static int hal2_add_buffer(struct hal2_card *hal2, char *buffer, int count)
{
unsigned long flags;
unsigned char *buf;
int size, ret = 0;
struct hal2_desc *head;
struct hal2_codec *dac = &hal2->dac;
DEBUG("adding %d bytes ", count);
spin_lock_irqsave(&dac->lock, flags);
head = &dac->desc[dac->head];
while (head->cnt == 0 && count > 0) {
size = min((int)H2_BLOCK_SIZE, count);
buf = &dac->buffer[dac->head * H2_BLOCK_SIZE];
spin_unlock_irqrestore(&dac->lock, flags);
if (copy_from_user(buf, buffer, size)) {
ret = -EFAULT;
goto out;
}
dma_sync_single(NULL, head->desc.pbuf, size, DMA_TO_DEVICE);
spin_lock_irqsave(&dac->lock, flags);
head->desc.cntinfo = size | HPCDMA_XIE;
head->cnt = size;
buffer += size;
ret += size;
count -= size;
hal2_inc_head(dac);
head = &dac->desc[dac->head];
DEBUG("(%d) ", size);
}
if (!(dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) && ret > 0)
hal2_start_dac(hal2);
spin_unlock_irqrestore(&dac->lock, flags);
out:
DEBUG("\n");
return ret;
}
#define hal2_reset_dac_pointer(hal2) hal2_reset_pointer(hal2, 1)
#define hal2_reset_adc_pointer(hal2) hal2_reset_pointer(hal2, 0)
static void hal2_reset_pointer(struct hal2_card *hal2, int is_dac)
{
int i;
struct hal2_codec *codec = (is_dac) ? &hal2->dac : &hal2->adc;
DEBUG("hal2_reset_pointer\n");
for (i = 0; i < codec->desc_count; i++) {
codec->desc[i].cnt = 0;
codec->desc[i].desc.cntinfo = HPCDMA_XIE | (is_dac) ?
HPCDMA_EOX : H2_BLOCK_SIZE;
}
codec->head = codec->tail = 0;
}
static int hal2_sync_dac(struct hal2_card *hal2)
{
DECLARE_WAITQUEUE(wait, current);
struct hal2_codec *dac = &hal2->dac;
int ret = 0;
unsigned long flags;
signed long timeout = 1000 * H2_BLOCK_SIZE * 2 * dac->voices *
HZ / dac->sample_rate / 900;
while (dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) {
add_wait_queue(&dac->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(timeout);
spin_lock_irqsave(&dac->lock, flags);
if (dac->desc[dac->tail].cnt)
ret = -ETIME;
spin_unlock_irqrestore(&dac->lock, flags);
if (signal_pending(current))
ret = -ERESTARTSYS;
if (ret) {
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
}
remove_wait_queue(&dac->dma_wait, &wait);
}
return ret;
}
static int hal2_write_mixer(struct hal2_card *hal2, int index, int vol)
{
unsigned int l, r, tmp;
DEBUG_MIX("mixer %d write\n", index);
if (index >= SOUND_MIXER_NRDEVICES || !mixtable[index].avail)
return -EINVAL;
r = (vol >> 8) & 0xff;
if (r > 100)
r = 100;
l = vol & 0xff;
if (l > 100)
l = 100;
hal2->mixer.volume[mixtable[index].idx] = l | (r << 8);
switch (mixtable[index].idx) {
case H2_MIX_OUTPUT_ATT:
DEBUG_MIX("output attenuator %d,%d\n", l, r);
if (r | l) {
tmp = hal2_i_look32(hal2, H2I_DAC_C2);
tmp &= ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
/* Attenuator has five bits */
l = 31 * (100 - l) / 99;
r = 31 * (100 - r) / 99;
DEBUG_MIX("left: %d, right %d\n", l, r);
tmp |= (l << H2I_C2_L_ATT_SHIFT) & H2I_C2_L_ATT_M;
tmp |= (r << H2I_C2_R_ATT_SHIFT) & H2I_C2_R_ATT_M;
hal2_i_write32(hal2, H2I_DAC_C2, tmp);
} else
hal2_i_setbit32(hal2, H2I_DAC_C2, H2I_C2_MUTE);
break;
case H2_MIX_INPUT_GAIN:
DEBUG_MIX("input gain %d,%d\n", l, r);
tmp = hal2_i_look32(hal2, H2I_ADC_C2);
tmp &= ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
/* Gain control has four bits */
l = 16 * l / 100;
r = 16 * r / 100;
DEBUG_MIX("left: %d, right %d\n", l, r);
tmp |= (l << H2I_C2_L_GAIN_SHIFT) & H2I_C2_L_GAIN_M;
tmp |= (r << H2I_C2_R_GAIN_SHIFT) & H2I_C2_R_GAIN_M;
hal2_i_write32(hal2, H2I_ADC_C2, tmp);
break;
}
return 0;
}
static void hal2_init_mixer(struct hal2_card *hal2)
{
int i;
for (i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].avail)
hal2->mixer.volume[mixtable[i].idx] = 100 | (100 << 8);
/* disable attenuator */
hal2_i_write32(hal2, H2I_DAC_C2, 0);
/* set max input gain */
hal2_i_write32(hal2, H2I_ADC_C2, H2I_C2_MUTE |
(H2I_C2_L_GAIN_M << H2I_C2_L_GAIN_SHIFT) |
(H2I_C2_R_GAIN_M << H2I_C2_R_GAIN_SHIFT));
/* set max volume */
hal2->mixer.master = 0xff;
hal2->vol_regs->left = 0xff;
hal2->vol_regs->right = 0xff;
}
/*
* XXX: later i'll implement mixer for main volume which will be disabled
* by default. enabling it users will be allowed to have master volume level
* control on panel in their favourite X desktop
*/
static void hal2_volume_control(int direction)
{
unsigned int master = hal2_card[0]->mixer.master;
struct hal2_vol_regs *vol = hal2_card[0]->vol_regs;
/* volume up */
if (direction > 0 && master < 0xff)
master++;
/* volume down */
else if (direction < 0 && master > 0)
master--;
/* TODO: mute/unmute */
vol->left = master;
vol->right = master;
hal2_card[0]->mixer.master = master;
}
static int hal2_mixer_ioctl(struct hal2_card *hal2, unsigned int cmd,
unsigned long arg)
{
int val;
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, hal2str, sizeof(info.id));
strlcpy(info.name, hal2str, sizeof(info.name));
info.modify_counter = hal2->mixer.modcnt;
if (copy_to_user((void *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, hal2str, sizeof(info.id));
strlcpy(info.name, hal2str, sizeof(info.name));
if (copy_to_user((void *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, (int *)arg);
if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int))
return -EINVAL;
if (_IOC_DIR(cmd) == _IOC_READ) {
switch (_IOC_NR(cmd)) {
/* Give the current record source */
case SOUND_MIXER_RECSRC:
val = 0; /* FIXME */
break;
/* Give the supported mixers, all of them support stereo */
case SOUND_MIXER_DEVMASK:
case SOUND_MIXER_STEREODEVS: {
int i;
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].avail)
val |= 1 << i;
break;
}
/* Arg contains a bit for each supported recording source */
case SOUND_MIXER_RECMASK:
val = 0;
break;
case SOUND_MIXER_CAPS:
val = 0;
break;
/* Read a specific mixer */
default: {
int i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].avail)
return -EINVAL;
val = hal2->mixer.volume[mixtable[i].idx];
break;
}
}
return put_user(val, (int *)arg);
}
if (_IOC_DIR(cmd) != (_IOC_WRITE|_IOC_READ))
return -EINVAL;
hal2->mixer.modcnt++;
if (get_user(val, (int *)arg))
return -EFAULT;
switch (_IOC_NR(cmd)) {
/* Arg contains a bit for each recording source */
case SOUND_MIXER_RECSRC:
return 0; /* FIXME */
default:
return hal2_write_mixer(hal2, _IOC_NR(cmd), val);
}
return 0;
}
static int hal2_open_mixdev(struct inode *inode, struct file *file)
{
struct hal2_card *hal2 = hal2_mixer_find_card(iminor(inode));
if (hal2) {
file->private_data = hal2;
return nonseekable_open(inode, file);
}
return -ENODEV;
}
static int hal2_release_mixdev(struct inode *inode, struct file *file)
{
return 0;
}
static int hal2_ioctl_mixdev(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
return hal2_mixer_ioctl((struct hal2_card *)file->private_data, cmd, arg);
}
static int hal2_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int val;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, (int *)arg);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return hal2_sync_dac(hal2);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_MULTI, (int *)arg);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2_reset_adc_pointer(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
}
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, (int *)arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
val = hal2_compute_rate(&hal2->adc, val);
hal2->adc.sample_rate = val;
hal2_set_adc_rate(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
val = hal2_compute_rate(&hal2->dac, val);
hal2->dac.sample_rate = val;
hal2_set_dac_rate(hal2);
}
return put_user(val, (int *)arg);
case SNDCTL_DSP_STEREO:
if (get_user(val, (int *)arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2->adc.voices = (val) ? 2 : 1;
hal2_setup_adc(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2->dac.voices = (val) ? 2 : 1;
hal2_setup_dac(hal2);
}
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, (int *)arg))
return -EFAULT;
if (val != 0) {
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2->adc.voices = (val == 1) ? 1 : 2;
hal2_setup_adc(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2->dac.voices = (val == 1) ? 1 : 2;
hal2_setup_dac(hal2);
}
}
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.voices;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.voices;
return put_user(val, (int *)arg);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(H2_SUPPORTED_FORMATS, (int *)arg);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
if (get_user(val, (int *)arg))
return -EFAULT;
if (val != AFMT_QUERY) {
if (!(val & H2_SUPPORTED_FORMATS))
return -EINVAL;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2->adc.format = val;
hal2_setup_adc(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2->dac.format = val;
hal2_setup_dac(hal2);
}
} else {
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.format;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.format;
}
return put_user(val, (int *)arg);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETOSPACE: {
audio_buf_info info;
int i;
unsigned long flags;
struct hal2_codec *dac = &hal2->dac;
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
info.fragments = 0;
spin_lock_irqsave(&dac->lock, flags);
for (i = 0; i < dac->desc_count; i++)
if (dac->desc[i].cnt == 0)
info.fragments++;
spin_unlock_irqrestore(&dac->lock, flags);
info.fragstotal = dac->desc_count;
info.fragsize = H2_BLOCK_SIZE;
info.bytes = info.fragsize * info.fragments;
return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
}
case SNDCTL_DSP_GETISPACE: {
audio_buf_info info;
int i;
unsigned long flags;
struct hal2_codec *adc = &hal2->adc;
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
info.fragments = 0;
info.bytes = 0;
spin_lock_irqsave(&adc->lock, flags);
for (i = 0; i < adc->desc_count; i++)
if (adc->desc[i].cnt > 0) {
info.fragments++;
info.bytes += adc->desc[i].cnt;
}
spin_unlock_irqrestore(&adc->lock, flags);
info.fragstotal = adc->desc_count;
info.fragsize = H2_BLOCK_SIZE;
return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
}
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETBLKSIZE:
return put_user(H2_BLOCK_SIZE, (int *)arg);
case SNDCTL_DSP_SETFRAGMENT:
return 0;
case SOUND_PCM_READ_RATE:
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.sample_rate;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.sample_rate;
return put_user(val, (int *)arg);
case SOUND_PCM_READ_CHANNELS:
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.voices;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.voices;
return put_user(val, (int *)arg);
case SOUND_PCM_READ_BITS:
return put_user(16, (int *)arg);
}
return hal2_mixer_ioctl(hal2, cmd, arg);
}
static ssize_t hal2_read(struct file *file, char *buffer,
size_t count, loff_t *ppos)
{
ssize_t err;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
struct hal2_codec *adc = &hal2->adc;
if (!count)
return 0;
if (mutex_lock_interruptible(&adc->sem))
return -EINTR;
if (file->f_flags & O_NONBLOCK) {
err = hal2_get_buffer(hal2, buffer, count);
err = err == 0 ? -EAGAIN : err;
} else {
do {
/* ~10% longer */
signed long timeout = 1000 * H2_BLOCK_SIZE *
2 * adc->voices * HZ / adc->sample_rate / 900;
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
ssize_t cnt = 0;
err = hal2_get_buffer(hal2, buffer, count);
if (err > 0) {
count -= err;
cnt += err;
buffer += err;
err = cnt;
}
if (count > 0 && err >= 0) {
add_wait_queue(&adc->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(timeout);
spin_lock_irqsave(&adc->lock, flags);
if (!adc->desc[adc->tail].cnt)
err = -EAGAIN;
spin_unlock_irqrestore(&adc->lock, flags);
if (signal_pending(current))
err = -ERESTARTSYS;
remove_wait_queue(&adc->dma_wait, &wait);
if (err < 0) {
hal2_stop_adc(hal2);
hal2_reset_adc_pointer(hal2);
}
}
} while (count > 0 && err >= 0);
}
mutex_unlock(&adc->sem);
return err;
}
static ssize_t hal2_write(struct file *file, const char *buffer,
size_t count, loff_t *ppos)
{
ssize_t err;
char *buf = (char*) buffer;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
struct hal2_codec *dac = &hal2->dac;
if (!count)
return 0;
if (mutex_lock_interruptible(&dac->sem))
return -EINTR;
if (file->f_flags & O_NONBLOCK) {
err = hal2_add_buffer(hal2, buf, count);
err = err == 0 ? -EAGAIN : err;
} else {
do {
/* ~10% longer */
signed long timeout = 1000 * H2_BLOCK_SIZE *
2 * dac->voices * HZ / dac->sample_rate / 900;
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
ssize_t cnt = 0;
err = hal2_add_buffer(hal2, buf, count);
if (err > 0) {
count -= err;
cnt += err;
buf += err;
err = cnt;
}
if (count > 0 && err >= 0) {
add_wait_queue(&dac->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(timeout);
spin_lock_irqsave(&dac->lock, flags);
if (dac->desc[dac->head].cnt)
err = -EAGAIN;
spin_unlock_irqrestore(&dac->lock, flags);
if (signal_pending(current))
err = -ERESTARTSYS;
remove_wait_queue(&dac->dma_wait, &wait);
if (err < 0) {
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
}
}
} while (count > 0 && err >= 0);
}
mutex_unlock(&dac->sem);
return err;
}
static unsigned int hal2_poll(struct file *file, struct poll_table_struct *wait)
{
unsigned long flags;
unsigned int mask = 0;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
if (file->f_mode & FMODE_READ) {
struct hal2_codec *adc = &hal2->adc;
poll_wait(file, &adc->dma_wait, wait);
spin_lock_irqsave(&adc->lock, flags);
if (adc->desc[adc->tail].cnt > 0)
mask |= POLLIN;
spin_unlock_irqrestore(&adc->lock, flags);
}
if (file->f_mode & FMODE_WRITE) {
struct hal2_codec *dac = &hal2->dac;
poll_wait(file, &dac->dma_wait, wait);
spin_lock_irqsave(&dac->lock, flags);
if (dac->desc[dac->head].cnt == 0)
mask |= POLLOUT;
spin_unlock_irqrestore(&dac->lock, flags);
}
return mask;
}
static int hal2_open(struct inode *inode, struct file *file)
{
int err;
struct hal2_card *hal2 = hal2_dsp_find_card(iminor(inode));
if (!hal2)
return -ENODEV;
file->private_data = hal2;
if (file->f_mode & FMODE_READ) {
struct hal2_codec *adc = &hal2->adc;
if (adc->usecount)
return -EBUSY;
/* OSS spec wanted us to use 8 bit, 8 kHz mono by default,
* but HAL2 can't do 8bit audio */
adc->format = AFMT_S16_BE;
adc->voices = 1;
adc->sample_rate = hal2_compute_rate(adc, 8000);
hal2_set_adc_rate(hal2);
err = hal2_alloc_adc_dmabuf(adc);
if (err)
return err;
hal2_setup_adc(hal2);
adc->usecount++;
}
if (file->f_mode & FMODE_WRITE) {
struct hal2_codec *dac = &hal2->dac;
if (dac->usecount)
return -EBUSY;
dac->format = AFMT_S16_BE;
dac->voices = 1;
dac->sample_rate = hal2_compute_rate(dac, 8000);
hal2_set_dac_rate(hal2);
err = hal2_alloc_dac_dmabuf(dac);
if (err)
return err;
hal2_setup_dac(hal2);
dac->usecount++;
}
return nonseekable_open(inode, file);
}
static int hal2_release(struct inode *inode, struct file *file)
{
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
if (file->f_mode & FMODE_READ) {
struct hal2_codec *adc = &hal2->adc;
mutex_lock(&adc->sem);
hal2_stop_adc(hal2);
hal2_free_adc_dmabuf(adc);
adc->usecount--;
mutex_unlock(&adc->sem);
}
if (file->f_mode & FMODE_WRITE) {
struct hal2_codec *dac = &hal2->dac;
mutex_lock(&dac->sem);
hal2_sync_dac(hal2);
hal2_free_dac_dmabuf(dac);
dac->usecount--;
mutex_unlock(&dac->sem);
}
return 0;
}
static struct file_operations hal2_audio_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = hal2_read,
.write = hal2_write,
.poll = hal2_poll,
.ioctl = hal2_ioctl,
.open = hal2_open,
.release = hal2_release,
};
static struct file_operations hal2_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = hal2_ioctl_mixdev,
.open = hal2_open_mixdev,
.release = hal2_release_mixdev,
};
static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
int index)
{
codec->pbus.pbusnr = index;
codec->pbus.pbus = &hpc3->pbdma[index];
init_waitqueue_head(&codec->dma_wait);
mutex_init(&codec->sem);
spin_lock_init(&codec->lock);
}
static int hal2_detect(struct hal2_card *hal2)
{
unsigned short board, major, minor;
unsigned short rev;
/* reset HAL2 */
hal2_isr_write(hal2, 0);
/* release reset */
hal2_isr_write(hal2, H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N);
hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
if ((rev = hal2_rev_look(hal2)) & H2_REV_AUDIO_PRESENT)
return -ENODEV;
board = (rev & H2_REV_BOARD_M) >> 12;
major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
minor = (rev & H2_REV_MINOR_CHIP_M);
printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
board, major, minor);
return 0;
}
static int hal2_init_card(struct hal2_card **phal2, struct hpc3_regs *hpc3)
{
int ret = 0;
struct hal2_card *hal2;
hal2 = (struct hal2_card *) kmalloc(sizeof(struct hal2_card), GFP_KERNEL);
if (!hal2)
return -ENOMEM;
memset(hal2, 0, sizeof(struct hal2_card));
hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
if (hal2_detect(hal2) < 0) {
ret = -ENODEV;
goto free_card;
}
hal2_init_codec(&hal2->dac, hpc3, 0);
hal2_init_codec(&hal2->adc, hpc3, 1);
/*
* All DMA channel interfaces in HAL2 are designed to operate with
* PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
* in D5. HAL2 is a 16-bit device which can accept both big and little
* endian format. It assumes that even address bytes are on high
* portion of PBUS (15:8) and assumes that HPC3 is programmed to
* accept a live (unsynchronized) version of P_DREQ_N from HAL2.
*/
#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
(2 << HPC3_DMACFG_D4R_SHIFT) | \
(2 << HPC3_DMACFG_D5R_SHIFT) | \
(0 << HPC3_DMACFG_D3W_SHIFT) | \
(2 << HPC3_DMACFG_D4W_SHIFT) | \
(2 << HPC3_DMACFG_D5W_SHIFT) | \
HPC3_DMACFG_DS16 | \
HPC3_DMACFG_EVENHI | \
HPC3_DMACFG_RTIME | \
(8 << HPC3_DMACFG_BURST_SHIFT) | \
HPC3_DMACFG_DRQLIVE)
/*
* Ignore what's mentioned in the specification and write value which
* works in The Real World (TM)
*/
hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
hal2str, hal2)) {
printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
ret = -EAGAIN;
goto free_card;
}
hal2->dev_dsp = register_sound_dsp(&hal2_audio_fops, -1);
if (hal2->dev_dsp < 0) {
ret = hal2->dev_dsp;
goto free_irq;
}
hal2->dev_mixer = register_sound_mixer(&hal2_mixer_fops, -1);
if (hal2->dev_mixer < 0) {
ret = hal2->dev_mixer;
goto unregister_dsp;
}
hal2_init_mixer(hal2);
*phal2 = hal2;
return 0;
unregister_dsp:
unregister_sound_dsp(hal2->dev_dsp);
free_irq:
free_irq(SGI_HPCDMA_IRQ, hal2);
free_card:
kfree(hal2);
return ret;
}
extern void (*indy_volume_button)(int);
/*
* Assuming only one HAL2 card. Mail me if you ever meet machine with
* more than one.
*/
static int __init init_hal2(void)
{
int i, error;
for (i = 0; i < MAXCARDS; i++)
hal2_card[i] = NULL;
error = hal2_init_card(&hal2_card[0], hpc3c0);
/* let Indy's volume buttons work */
if (!error && !ip22_is_fullhouse())
indy_volume_button = hal2_volume_control;
return error;
}
static void __exit exit_hal2(void)
{
int i;
/* unregister volume butons callback function */
indy_volume_button = NULL;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i]) {
free_irq(SGI_HPCDMA_IRQ, hal2_card[i]);
unregister_sound_dsp(hal2_card[i]->dev_dsp);
unregister_sound_mixer(hal2_card[i]->dev_mixer);
kfree(hal2_card[i]);
}
}
module_init(init_hal2);
module_exit(exit_hal2);
MODULE_DESCRIPTION("OSS compatible driver for SGI HAL2 audio");
MODULE_AUTHOR("Ladislav Michl");
MODULE_LICENSE("GPL");