android_kernel_xiaomi_sm8350/drivers/net/fs_enet/mac-fcc.c
Jochen Friedrich 362f9b6fa8 [POWERPC] Move CPM command handling into the cpm drivers
This patch moves the CPM command handling into commproc.c
for CPM1 and cpm2_common.c. This is yet another preparation
to get rid of drivers accessing the CPM via the global cpmp.

Signed-off-by: Jochen Friedrich <jochen@scram.de>
Acked-by: Scott Wood <scottwood@freescale.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Vitaly Bordug <vitb@kernel.crashing.org>
2007-12-13 22:47:16 -06:00

621 lines
16 KiB
C

/*
* FCC driver for Motorola MPC82xx (PQ2).
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <asm/immap_cpm2.h>
#include <asm/mpc8260.h>
#include <asm/cpm2.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#ifdef CONFIG_PPC_CPM_NEW_BINDING
#include <asm/of_device.h>
#endif
#include "fs_enet.h"
/*************************************************/
/* FCC access macros */
/* write, read, set bits, clear bits */
#define W32(_p, _m, _v) out_be32(&(_p)->_m, (_v))
#define R32(_p, _m) in_be32(&(_p)->_m)
#define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
#define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
#define W16(_p, _m, _v) out_be16(&(_p)->_m, (_v))
#define R16(_p, _m) in_be16(&(_p)->_m)
#define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
#define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
#define W8(_p, _m, _v) out_8(&(_p)->_m, (_v))
#define R8(_p, _m) in_8(&(_p)->_m)
#define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
#define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
/*************************************************/
#define FCC_MAX_MULTICAST_ADDRS 64
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
#define mk_mii_end 0
#define MAX_CR_CMD_LOOPS 10000
static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
{
const struct fs_platform_info *fpi = fep->fpi;
return cpm_command(fpi->cp_command, op);
}
static int do_pd_setup(struct fs_enet_private *fep)
{
#ifdef CONFIG_PPC_CPM_NEW_BINDING
struct of_device *ofdev = to_of_device(fep->dev);
struct fs_platform_info *fpi = fep->fpi;
int ret = -EINVAL;
fep->interrupt = of_irq_to_resource(ofdev->node, 0, NULL);
if (fep->interrupt == NO_IRQ)
goto out;
fep->fcc.fccp = of_iomap(ofdev->node, 0);
if (!fep->fcc.fccp)
goto out;
fep->fcc.ep = of_iomap(ofdev->node, 1);
if (!fep->fcc.ep)
goto out_fccp;
fep->fcc.fcccp = of_iomap(ofdev->node, 2);
if (!fep->fcc.fcccp)
goto out_ep;
fep->fcc.mem = (void __iomem *)cpm2_immr;
fpi->dpram_offset = cpm_dpalloc(128, 8);
if (IS_ERR_VALUE(fpi->dpram_offset)) {
ret = fpi->dpram_offset;
goto out_fcccp;
}
return 0;
out_fcccp:
iounmap(fep->fcc.fcccp);
out_ep:
iounmap(fep->fcc.ep);
out_fccp:
iounmap(fep->fcc.fccp);
out:
return ret;
#else
struct platform_device *pdev = to_platform_device(fep->dev);
struct resource *r;
/* Fill out IRQ field */
fep->interrupt = platform_get_irq(pdev, 0);
if (fep->interrupt < 0)
return -EINVAL;
/* Attach the memory for the FCC Parameter RAM */
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_pram");
fep->fcc.ep = ioremap(r->start, r->end - r->start + 1);
if (fep->fcc.ep == NULL)
return -EINVAL;
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_regs");
fep->fcc.fccp = ioremap(r->start, r->end - r->start + 1);
if (fep->fcc.fccp == NULL)
return -EINVAL;
if (fep->fpi->fcc_regs_c) {
fep->fcc.fcccp = (void __iomem *)fep->fpi->fcc_regs_c;
} else {
r = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"fcc_regs_c");
fep->fcc.fcccp = ioremap(r->start,
r->end - r->start + 1);
}
if (fep->fcc.fcccp == NULL)
return -EINVAL;
fep->fcc.mem = (void __iomem *)fep->fpi->mem_offset;
if (fep->fcc.mem == NULL)
return -EINVAL;
return 0;
#endif
}
#define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB)
#define FCC_RX_EVENT (FCC_ENET_RXF)
#define FCC_TX_EVENT (FCC_ENET_TXB)
#define FCC_ERR_EVENT_MSK (FCC_ENET_TXE | FCC_ENET_BSY)
static int setup_data(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
#ifndef CONFIG_PPC_CPM_NEW_BINDING
struct fs_platform_info *fpi = fep->fpi;
fpi->cp_command = (fpi->cp_page << 26) |
(fpi->cp_block << 21) |
(12 << 6);
fep->fcc.idx = fs_get_fcc_index(fpi->fs_no);
if ((unsigned int)fep->fcc.idx >= 3) /* max 3 FCCs */
return -EINVAL;
#endif
if (do_pd_setup(fep) != 0)
return -EINVAL;
fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
fep->ev_rx = FCC_RX_EVENT;
fep->ev_tx = FCC_TX_EVENT;
fep->ev_err = FCC_ERR_EVENT_MSK;
return 0;
}
static int allocate_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), &fep->ring_mem_addr,
GFP_KERNEL);
if (fep->ring_base == NULL)
return -ENOMEM;
return 0;
}
static void free_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
if (fep->ring_base)
dma_free_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
(void __force *)fep->ring_base, fep->ring_mem_addr);
}
static void cleanup_data(struct net_device *dev)
{
/* nothing */
}
static void set_promiscuous_mode(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
}
static void set_multicast_start(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_enet_t __iomem *ep = fep->fcc.ep;
W32(ep, fen_gaddrh, 0);
W32(ep, fen_gaddrl, 0);
}
static void set_multicast_one(struct net_device *dev, const u8 *mac)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_enet_t __iomem *ep = fep->fcc.ep;
u16 taddrh, taddrm, taddrl;
taddrh = ((u16)mac[5] << 8) | mac[4];
taddrm = ((u16)mac[3] << 8) | mac[2];
taddrl = ((u16)mac[1] << 8) | mac[0];
W16(ep, fen_taddrh, taddrh);
W16(ep, fen_taddrm, taddrm);
W16(ep, fen_taddrl, taddrl);
fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
}
static void set_multicast_finish(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
fcc_enet_t __iomem *ep = fep->fcc.ep;
/* clear promiscuous always */
C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
/* if all multi or too many multicasts; just enable all */
if ((dev->flags & IFF_ALLMULTI) != 0 ||
dev->mc_count > FCC_MAX_MULTICAST_ADDRS) {
W32(ep, fen_gaddrh, 0xffffffff);
W32(ep, fen_gaddrl, 0xffffffff);
}
/* read back */
fep->fcc.gaddrh = R32(ep, fen_gaddrh);
fep->fcc.gaddrl = R32(ep, fen_gaddrl);
}
static void set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *pmc;
if ((dev->flags & IFF_PROMISC) == 0) {
set_multicast_start(dev);
for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next)
set_multicast_one(dev, pmc->dmi_addr);
set_multicast_finish(dev);
} else
set_promiscuous_mode(dev);
}
static void restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fcc_t __iomem *fccp = fep->fcc.fccp;
fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
fcc_enet_t __iomem *ep = fep->fcc.ep;
dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
u16 paddrh, paddrm, paddrl;
#ifndef CONFIG_PPC_CPM_NEW_BINDING
u16 mem_addr;
#endif
const unsigned char *mac;
int i;
C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
/* clear everything (slow & steady does it) */
for (i = 0; i < sizeof(*ep); i++)
out_8((u8 __iomem *)ep + i, 0);
/* get physical address */
rx_bd_base_phys = fep->ring_mem_addr;
tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
/* point to bds */
W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
/* Set maximum bytes per receive buffer.
* It must be a multiple of 32.
*/
W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
/* Allocate space in the reserved FCC area of DPRAM for the
* internal buffers. No one uses this space (yet), so we
* can do this. Later, we will add resource management for
* this area.
*/
#ifdef CONFIG_PPC_CPM_NEW_BINDING
W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
W16(ep, fen_padptr, fpi->dpram_offset + 64);
#else
mem_addr = (u32) fep->fcc.mem; /* de-fixup dpram offset */
W16(ep, fen_genfcc.fcc_riptr, (mem_addr & 0xffff));
W16(ep, fen_genfcc.fcc_tiptr, ((mem_addr + 32) & 0xffff));
W16(ep, fen_padptr, mem_addr + 64);
#endif
/* fill with special symbol... */
memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
W32(ep, fen_genfcc.fcc_rbptr, 0);
W32(ep, fen_genfcc.fcc_tbptr, 0);
W32(ep, fen_genfcc.fcc_rcrc, 0);
W32(ep, fen_genfcc.fcc_tcrc, 0);
W16(ep, fen_genfcc.fcc_res1, 0);
W32(ep, fen_genfcc.fcc_res2, 0);
/* no CAM */
W32(ep, fen_camptr, 0);
/* Set CRC preset and mask */
W32(ep, fen_cmask, 0xdebb20e3);
W32(ep, fen_cpres, 0xffffffff);
W32(ep, fen_crcec, 0); /* CRC Error counter */
W32(ep, fen_alec, 0); /* alignment error counter */
W32(ep, fen_disfc, 0); /* discard frame counter */
W16(ep, fen_retlim, 15); /* Retry limit threshold */
W16(ep, fen_pper, 0); /* Normal persistence */
/* set group address */
W32(ep, fen_gaddrh, fep->fcc.gaddrh);
W32(ep, fen_gaddrl, fep->fcc.gaddrh);
/* Clear hash filter tables */
W32(ep, fen_iaddrh, 0);
W32(ep, fen_iaddrl, 0);
/* Clear the Out-of-sequence TxBD */
W16(ep, fen_tfcstat, 0);
W16(ep, fen_tfclen, 0);
W32(ep, fen_tfcptr, 0);
W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
/* set address */
mac = dev->dev_addr;
paddrh = ((u16)mac[5] << 8) | mac[4];
paddrm = ((u16)mac[3] << 8) | mac[2];
paddrl = ((u16)mac[1] << 8) | mac[0];
W16(ep, fen_paddrh, paddrh);
W16(ep, fen_paddrm, paddrm);
W16(ep, fen_paddrl, paddrl);
W16(ep, fen_taddrh, 0);
W16(ep, fen_taddrm, 0);
W16(ep, fen_taddrl, 0);
W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
/* Clear stat counters, in case we ever enable RMON */
W32(ep, fen_octc, 0);
W32(ep, fen_colc, 0);
W32(ep, fen_broc, 0);
W32(ep, fen_mulc, 0);
W32(ep, fen_uspc, 0);
W32(ep, fen_frgc, 0);
W32(ep, fen_ospc, 0);
W32(ep, fen_jbrc, 0);
W32(ep, fen_p64c, 0);
W32(ep, fen_p65c, 0);
W32(ep, fen_p128c, 0);
W32(ep, fen_p256c, 0);
W32(ep, fen_p512c, 0);
W32(ep, fen_p1024c, 0);
W16(ep, fen_rfthr, 0); /* Suggested by manual */
W16(ep, fen_rfcnt, 0);
W16(ep, fen_cftype, 0);
fs_init_bds(dev);
/* adjust to speed (for RMII mode) */
if (fpi->use_rmii) {
if (fep->phydev->speed == 100)
C8(fcccp, fcc_gfemr, 0x20);
else
S8(fcccp, fcc_gfemr, 0x20);
}
fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
/* clear events */
W16(fccp, fcc_fcce, 0xffff);
/* Enable interrupts we wish to service */
W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
/* Set GFMR to enable Ethernet operating mode */
W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
/* set sync/delimiters */
W16(fccp, fcc_fdsr, 0xd555);
W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
if (fpi->use_rmii)
S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
/* adjust to duplex mode */
if (fep->phydev->duplex)
S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
else
C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
}
static void stop(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
/* stop ethernet */
C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
/* clear events */
W16(fccp, fcc_fcce, 0xffff);
/* clear interrupt mask */
W16(fccp, fcc_fccm, 0);
fs_cleanup_bds(dev);
}
static void pre_request_irq(struct net_device *dev, int irq)
{
/* nothing */
}
static void post_free_irq(struct net_device *dev, int irq)
{
/* nothing */
}
static void napi_clear_rx_event(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
}
static void napi_enable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}
static void napi_disable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}
static void rx_bd_done(struct net_device *dev)
{
/* nothing */
}
static void tx_kickstart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
S16(fccp, fcc_ftodr, 0x8000);
}
static u32 get_int_events(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
return (u32)R16(fccp, fcc_fcce);
}
static void clear_int_events(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
W16(fccp, fcc_fcce, int_events & 0xffff);
}
static void ev_error(struct net_device *dev, u32 int_events)
{
printk(KERN_WARNING DRV_MODULE_NAME
": %s FS_ENET ERROR(s) 0x%x\n", dev->name, int_events);
}
static int get_regs(struct net_device *dev, void *p, int *sizep)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
return -EINVAL;
memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
p = (char *)p + sizeof(fcc_t);
memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
p = (char *)p + sizeof(fcc_enet_t);
memcpy_fromio(p, fep->fcc.fcccp, 1);
return 0;
}
static int get_regs_len(struct net_device *dev)
{
return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
}
/* Some transmit errors cause the transmitter to shut
* down. We now issue a restart transmit. Since the
* errors close the BD and update the pointers, the restart
* _should_ pick up without having to reset any of our
* pointers either. Also, To workaround 8260 device erratum
* CPM37, we must disable and then re-enable the transmitter
* following a Late Collision, Underrun, or Retry Limit error.
*/
static void tx_restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
udelay(10);
S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
}
/*************************************************************************/
const struct fs_ops fs_fcc_ops = {
.setup_data = setup_data,
.cleanup_data = cleanup_data,
.set_multicast_list = set_multicast_list,
.restart = restart,
.stop = stop,
.pre_request_irq = pre_request_irq,
.post_free_irq = post_free_irq,
.napi_clear_rx_event = napi_clear_rx_event,
.napi_enable_rx = napi_enable_rx,
.napi_disable_rx = napi_disable_rx,
.rx_bd_done = rx_bd_done,
.tx_kickstart = tx_kickstart,
.get_int_events = get_int_events,
.clear_int_events = clear_int_events,
.ev_error = ev_error,
.get_regs = get_regs,
.get_regs_len = get_regs_len,
.tx_restart = tx_restart,
.allocate_bd = allocate_bd,
.free_bd = free_bd,
};