android_kernel_xiaomi_sm8350/arch/mips/sibyte/sb1250/irq.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

353 lines
9.8 KiB
C

/*
* Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/linkage.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <asm/errno.h>
#include <asm/signal.h>
#include <asm/system.h>
#include <asm/time.h>
#include <asm/io.h>
#include <asm/sibyte/sb1250_regs.h>
#include <asm/sibyte/sb1250_int.h>
#include <asm/sibyte/sb1250_uart.h>
#include <asm/sibyte/sb1250_scd.h>
#include <asm/sibyte/sb1250.h>
/*
* These are the routines that handle all the low level interrupt stuff.
* Actions handled here are: initialization of the interrupt map, requesting of
* interrupt lines by handlers, dispatching if interrupts to handlers, probing
* for interrupt lines
*/
static void end_sb1250_irq(unsigned int irq);
static void enable_sb1250_irq(unsigned int irq);
static void disable_sb1250_irq(unsigned int irq);
static void ack_sb1250_irq(unsigned int irq);
#ifdef CONFIG_SMP
static int sb1250_set_affinity(unsigned int irq, const struct cpumask *mask);
#endif
#ifdef CONFIG_SIBYTE_HAS_LDT
extern unsigned long ldt_eoi_space;
#endif
static struct irq_chip sb1250_irq_type = {
.name = "SB1250-IMR",
.ack = ack_sb1250_irq,
.mask = disable_sb1250_irq,
.mask_ack = ack_sb1250_irq,
.unmask = enable_sb1250_irq,
.end = end_sb1250_irq,
#ifdef CONFIG_SMP
.set_affinity = sb1250_set_affinity
#endif
};
/* Store the CPU id (not the logical number) */
int sb1250_irq_owner[SB1250_NR_IRQS];
static DEFINE_RAW_SPINLOCK(sb1250_imr_lock);
void sb1250_mask_irq(int cpu, int irq)
{
unsigned long flags;
u64 cur_ints;
raw_spin_lock_irqsave(&sb1250_imr_lock, flags);
cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
R_IMR_INTERRUPT_MASK));
cur_ints |= (((u64) 1) << irq);
____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
R_IMR_INTERRUPT_MASK));
raw_spin_unlock_irqrestore(&sb1250_imr_lock, flags);
}
void sb1250_unmask_irq(int cpu, int irq)
{
unsigned long flags;
u64 cur_ints;
raw_spin_lock_irqsave(&sb1250_imr_lock, flags);
cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
R_IMR_INTERRUPT_MASK));
cur_ints &= ~(((u64) 1) << irq);
____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
R_IMR_INTERRUPT_MASK));
raw_spin_unlock_irqrestore(&sb1250_imr_lock, flags);
}
#ifdef CONFIG_SMP
static int sb1250_set_affinity(unsigned int irq, const struct cpumask *mask)
{
int i = 0, old_cpu, cpu, int_on;
u64 cur_ints;
unsigned long flags;
i = cpumask_first(mask);
/* Convert logical CPU to physical CPU */
cpu = cpu_logical_map(i);
/* Protect against other affinity changers and IMR manipulation */
raw_spin_lock_irqsave(&sb1250_imr_lock, flags);
/* Swizzle each CPU's IMR (but leave the IP selection alone) */
old_cpu = sb1250_irq_owner[irq];
cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(old_cpu) +
R_IMR_INTERRUPT_MASK));
int_on = !(cur_ints & (((u64) 1) << irq));
if (int_on) {
/* If it was on, mask it */
cur_ints |= (((u64) 1) << irq);
____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(old_cpu) +
R_IMR_INTERRUPT_MASK));
}
sb1250_irq_owner[irq] = cpu;
if (int_on) {
/* unmask for the new CPU */
cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
R_IMR_INTERRUPT_MASK));
cur_ints &= ~(((u64) 1) << irq);
____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
R_IMR_INTERRUPT_MASK));
}
raw_spin_unlock_irqrestore(&sb1250_imr_lock, flags);
return 0;
}
#endif
/*****************************************************************************/
static void disable_sb1250_irq(unsigned int irq)
{
sb1250_mask_irq(sb1250_irq_owner[irq], irq);
}
static void enable_sb1250_irq(unsigned int irq)
{
sb1250_unmask_irq(sb1250_irq_owner[irq], irq);
}
static void ack_sb1250_irq(unsigned int irq)
{
#ifdef CONFIG_SIBYTE_HAS_LDT
u64 pending;
/*
* If the interrupt was an HT interrupt, now is the time to
* clear it. NOTE: we assume the HT bridge was set up to
* deliver the interrupts to all CPUs (which makes affinity
* changing easier for us)
*/
pending = __raw_readq(IOADDR(A_IMR_REGISTER(sb1250_irq_owner[irq],
R_IMR_LDT_INTERRUPT)));
pending &= ((u64)1 << (irq));
if (pending) {
int i;
for (i=0; i<NR_CPUS; i++) {
int cpu;
#ifdef CONFIG_SMP
cpu = cpu_logical_map(i);
#else
cpu = i;
#endif
/*
* Clear for all CPUs so an affinity switch
* doesn't find an old status
*/
__raw_writeq(pending,
IOADDR(A_IMR_REGISTER(cpu,
R_IMR_LDT_INTERRUPT_CLR)));
}
/*
* Generate EOI. For Pass 1 parts, EOI is a nop. For
* Pass 2, the LDT world may be edge-triggered, but
* this EOI shouldn't hurt. If they are
* level-sensitive, the EOI is required.
*/
*(uint32_t *)(ldt_eoi_space+(irq<<16)+(7<<2)) = 0;
}
#endif
sb1250_mask_irq(sb1250_irq_owner[irq], irq);
}
static void end_sb1250_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))) {
sb1250_unmask_irq(sb1250_irq_owner[irq], irq);
}
}
void __init init_sb1250_irqs(void)
{
int i;
for (i = 0; i < SB1250_NR_IRQS; i++) {
set_irq_chip_and_handler(i, &sb1250_irq_type, handle_level_irq);
sb1250_irq_owner[i] = 0;
}
}
/*
* arch_init_irq is called early in the boot sequence from init/main.c via
* init_IRQ. It is responsible for setting up the interrupt mapper and
* installing the handler that will be responsible for dispatching interrupts
* to the "right" place.
*/
/*
* For now, map all interrupts to IP[2]. We could save
* some cycles by parceling out system interrupts to different
* IP lines, but keep it simple for bringup. We'll also direct
* all interrupts to a single CPU; we should probably route
* PCI and LDT to one cpu and everything else to the other
* to balance the load a bit.
*
* On the second cpu, everything is set to IP5, which is
* ignored, EXCEPT the mailbox interrupt. That one is
* set to IP[2] so it is handled. This is needed so we
* can do cross-cpu function calls, as requred by SMP
*/
#define IMR_IP2_VAL K_INT_MAP_I0
#define IMR_IP3_VAL K_INT_MAP_I1
#define IMR_IP4_VAL K_INT_MAP_I2
#define IMR_IP5_VAL K_INT_MAP_I3
#define IMR_IP6_VAL K_INT_MAP_I4
void __init arch_init_irq(void)
{
unsigned int i;
u64 tmp;
unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
STATUSF_IP1 | STATUSF_IP0;
/* Default everything to IP2 */
for (i = 0; i < SB1250_NR_IRQS; i++) { /* was I0 */
__raw_writeq(IMR_IP2_VAL,
IOADDR(A_IMR_REGISTER(0,
R_IMR_INTERRUPT_MAP_BASE) +
(i << 3)));
__raw_writeq(IMR_IP2_VAL,
IOADDR(A_IMR_REGISTER(1,
R_IMR_INTERRUPT_MAP_BASE) +
(i << 3)));
}
init_sb1250_irqs();
/*
* Map the high 16 bits of the mailbox registers to IP[3], for
* inter-cpu messages
*/
/* Was I1 */
__raw_writeq(IMR_IP3_VAL,
IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE) +
(K_INT_MBOX_0 << 3)));
__raw_writeq(IMR_IP3_VAL,
IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MAP_BASE) +
(K_INT_MBOX_0 << 3)));
/* Clear the mailboxes. The firmware may leave them dirty */
__raw_writeq(0xffffffffffffffffULL,
IOADDR(A_IMR_REGISTER(0, R_IMR_MAILBOX_CLR_CPU)));
__raw_writeq(0xffffffffffffffffULL,
IOADDR(A_IMR_REGISTER(1, R_IMR_MAILBOX_CLR_CPU)));
/* Mask everything except the mailbox registers for both cpus */
tmp = ~((u64) 0) ^ (((u64) 1) << K_INT_MBOX_0);
__raw_writeq(tmp, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MASK)));
__raw_writeq(tmp, IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MASK)));
/*
* Note that the timer interrupts are also mapped, but this is
* done in sb1250_time_init(). Also, the profiling driver
* does its own management of IP7.
*/
/* Enable necessary IPs, disable the rest */
change_c0_status(ST0_IM, imask);
}
extern void sb1250_mailbox_interrupt(void);
static inline void dispatch_ip2(void)
{
unsigned int cpu = smp_processor_id();
unsigned long long mask;
/*
* Default...we've hit an IP[2] interrupt, which means we've got to
* check the 1250 interrupt registers to figure out what to do. Need
* to detect which CPU we're on, now that smp_affinity is supported.
*/
mask = __raw_readq(IOADDR(A_IMR_REGISTER(cpu,
R_IMR_INTERRUPT_STATUS_BASE)));
if (mask)
do_IRQ(fls64(mask) - 1);
}
asmlinkage void plat_irq_dispatch(void)
{
unsigned int cpu = smp_processor_id();
unsigned int pending;
/*
* What a pain. We have to be really careful saving the upper 32 bits
* of any * register across function calls if we don't want them
* trashed--since were running in -o32, the calling routing never saves
* the full 64 bits of a register across a function call. Being the
* interrupt handler, we're guaranteed that interrupts are disabled
* during this code so we don't have to worry about random interrupts
* blasting the high 32 bits.
*/
pending = read_c0_cause() & read_c0_status() & ST0_IM;
if (pending & CAUSEF_IP7) /* CPU performance counter interrupt */
do_IRQ(MIPS_CPU_IRQ_BASE + 7);
else if (pending & CAUSEF_IP4)
do_IRQ(K_INT_TIMER_0 + cpu); /* sb1250_timer_interrupt() */
#ifdef CONFIG_SMP
else if (pending & CAUSEF_IP3)
sb1250_mailbox_interrupt();
#endif
else if (pending & CAUSEF_IP2)
dispatch_ip2();
else
spurious_interrupt();
}