android_kernel_xiaomi_sm8350/net/sunrpc/auth_unix.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

245 lines
5.5 KiB
C

/*
* linux/net/sunrpc/auth_unix.c
*
* UNIX-style authentication; no AUTH_SHORT support
*
* Copyright (C) 1996, Olaf Kirch <okir@monad.swb.de>
*/
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/auth.h>
#define NFS_NGROUPS 16
struct unx_cred {
struct rpc_cred uc_base;
gid_t uc_gid;
gid_t uc_gids[NFS_NGROUPS];
};
#define uc_uid uc_base.cr_uid
#define UNX_WRITESLACK (21 + (UNX_MAXNODENAME >> 2))
#ifdef RPC_DEBUG
# define RPCDBG_FACILITY RPCDBG_AUTH
#endif
static struct rpc_auth unix_auth;
static struct rpc_cred_cache unix_cred_cache;
static const struct rpc_credops unix_credops;
static struct rpc_auth *
unx_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
{
dprintk("RPC: creating UNIX authenticator for client %p\n",
clnt);
atomic_inc(&unix_auth.au_count);
return &unix_auth;
}
static void
unx_destroy(struct rpc_auth *auth)
{
dprintk("RPC: destroying UNIX authenticator %p\n", auth);
rpcauth_clear_credcache(auth->au_credcache);
}
/*
* Lookup AUTH_UNIX creds for current process
*/
static struct rpc_cred *
unx_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
{
return rpcauth_lookup_credcache(auth, acred, flags);
}
static struct rpc_cred *
unx_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
{
struct unx_cred *cred;
unsigned int groups = 0;
unsigned int i;
dprintk("RPC: allocating UNIX cred for uid %d gid %d\n",
acred->uid, acred->gid);
if (!(cred = kmalloc(sizeof(*cred), GFP_NOFS)))
return ERR_PTR(-ENOMEM);
rpcauth_init_cred(&cred->uc_base, acred, auth, &unix_credops);
cred->uc_base.cr_flags = 1UL << RPCAUTH_CRED_UPTODATE;
if (acred->group_info != NULL)
groups = acred->group_info->ngroups;
if (groups > NFS_NGROUPS)
groups = NFS_NGROUPS;
cred->uc_gid = acred->gid;
for (i = 0; i < groups; i++)
cred->uc_gids[i] = GROUP_AT(acred->group_info, i);
if (i < NFS_NGROUPS)
cred->uc_gids[i] = NOGROUP;
return &cred->uc_base;
}
static void
unx_free_cred(struct unx_cred *unx_cred)
{
dprintk("RPC: unx_free_cred %p\n", unx_cred);
kfree(unx_cred);
}
static void
unx_free_cred_callback(struct rcu_head *head)
{
struct unx_cred *unx_cred = container_of(head, struct unx_cred, uc_base.cr_rcu);
unx_free_cred(unx_cred);
}
static void
unx_destroy_cred(struct rpc_cred *cred)
{
call_rcu(&cred->cr_rcu, unx_free_cred_callback);
}
/*
* Match credentials against current process creds.
* The root_override argument takes care of cases where the caller may
* request root creds (e.g. for NFS swapping).
*/
static int
unx_match(struct auth_cred *acred, struct rpc_cred *rcred, int flags)
{
struct unx_cred *cred = container_of(rcred, struct unx_cred, uc_base);
unsigned int groups = 0;
unsigned int i;
if (cred->uc_uid != acred->uid || cred->uc_gid != acred->gid)
return 0;
if (acred->group_info != NULL)
groups = acred->group_info->ngroups;
if (groups > NFS_NGROUPS)
groups = NFS_NGROUPS;
for (i = 0; i < groups ; i++)
if (cred->uc_gids[i] != GROUP_AT(acred->group_info, i))
return 0;
return 1;
}
/*
* Marshal credentials.
* Maybe we should keep a cached credential for performance reasons.
*/
static __be32 *
unx_marshal(struct rpc_task *task, __be32 *p)
{
struct rpc_clnt *clnt = task->tk_client;
struct unx_cred *cred = container_of(task->tk_msg.rpc_cred, struct unx_cred, uc_base);
__be32 *base, *hold;
int i;
*p++ = htonl(RPC_AUTH_UNIX);
base = p++;
*p++ = htonl(jiffies/HZ);
/*
* Copy the UTS nodename captured when the client was created.
*/
p = xdr_encode_array(p, clnt->cl_nodename, clnt->cl_nodelen);
*p++ = htonl((u32) cred->uc_uid);
*p++ = htonl((u32) cred->uc_gid);
hold = p++;
for (i = 0; i < 16 && cred->uc_gids[i] != (gid_t) NOGROUP; i++)
*p++ = htonl((u32) cred->uc_gids[i]);
*hold = htonl(p - hold - 1); /* gid array length */
*base = htonl((p - base - 1) << 2); /* cred length */
*p++ = htonl(RPC_AUTH_NULL);
*p++ = htonl(0);
return p;
}
/*
* Refresh credentials. This is a no-op for AUTH_UNIX
*/
static int
unx_refresh(struct rpc_task *task)
{
set_bit(RPCAUTH_CRED_UPTODATE, &task->tk_msg.rpc_cred->cr_flags);
return 0;
}
static __be32 *
unx_validate(struct rpc_task *task, __be32 *p)
{
rpc_authflavor_t flavor;
u32 size;
flavor = ntohl(*p++);
if (flavor != RPC_AUTH_NULL &&
flavor != RPC_AUTH_UNIX &&
flavor != RPC_AUTH_SHORT) {
printk("RPC: bad verf flavor: %u\n", flavor);
return NULL;
}
size = ntohl(*p++);
if (size > RPC_MAX_AUTH_SIZE) {
printk("RPC: giant verf size: %u\n", size);
return NULL;
}
task->tk_msg.rpc_cred->cr_auth->au_rslack = (size >> 2) + 2;
p += (size >> 2);
return p;
}
void __init rpc_init_authunix(void)
{
spin_lock_init(&unix_cred_cache.lock);
}
const struct rpc_authops authunix_ops = {
.owner = THIS_MODULE,
.au_flavor = RPC_AUTH_UNIX,
.au_name = "UNIX",
.create = unx_create,
.destroy = unx_destroy,
.lookup_cred = unx_lookup_cred,
.crcreate = unx_create_cred,
};
static
struct rpc_cred_cache unix_cred_cache = {
};
static
struct rpc_auth unix_auth = {
.au_cslack = UNX_WRITESLACK,
.au_rslack = 2, /* assume AUTH_NULL verf */
.au_ops = &authunix_ops,
.au_flavor = RPC_AUTH_UNIX,
.au_count = ATOMIC_INIT(0),
.au_credcache = &unix_cred_cache,
};
static
const struct rpc_credops unix_credops = {
.cr_name = "AUTH_UNIX",
.crdestroy = unx_destroy_cred,
.crbind = rpcauth_generic_bind_cred,
.crmatch = unx_match,
.crmarshal = unx_marshal,
.crrefresh = unx_refresh,
.crvalidate = unx_validate,
};