android_kernel_xiaomi_sm8350/drivers/net/atl1/atl1_main.c
Dan Aloni 5c15bdec5c [VLAN]: Avoid a 4-order allocation.
This patch splits the vlan_group struct into a multi-allocated struct. On
x86_64, the size of the original struct is a little more than 32KB, causing
a 4-order allocation, which is prune to problems caused by buddy-system
external fragmentation conditions.

I couldn't just use vmalloc() because vfree() cannot be called in the
softirq context of the RCU callback.

Signed-off-by: Dan Aloni <da-x@monatomic.org>
Acked-by: Jeff Garzik <jeff@garzik.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-02 20:44:51 -08:00

2467 lines
69 KiB
C

/*
* Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
* Copyright(c) 2006 Chris Snook <csnook@redhat.com>
* Copyright(c) 2006 Jay Cliburn <jcliburn@gmail.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
*
* Contact Information:
* Xiong Huang <xiong_huang@attansic.com>
* Attansic Technology Corp. 3F 147, Xianzheng 9th Road, Zhubei,
* Xinzhu 302, TAIWAN, REPUBLIC OF CHINA
*
* Chris Snook <csnook@redhat.com>
* Jay Cliburn <jcliburn@gmail.com>
*
* This version is adapted from the Attansic reference driver for
* inclusion in the Linux kernel. It is currently under heavy development.
* A very incomplete list of things that need to be dealt with:
*
* TODO:
* Fix TSO; tx performance is horrible with TSO enabled.
* Wake on LAN.
* Add more ethtool functions, including set ring parameters.
* Fix abstruse irq enable/disable condition described here:
* http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
*
* NEEDS TESTING:
* VLAN
* multicast
* promiscuous mode
* interrupt coalescing
* SMP torture testing
*/
#include <linux/types.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/irqreturn.h>
#include <linux/workqueue.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/hardirq.h>
#include <linux/interrupt.h>
#include <linux/irqflags.h>
#include <linux/dma-mapping.h>
#include <linux/net.h>
#include <linux/pm.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <net/checksum.h>
#include <asm/atomic.h>
#include <asm/byteorder.h>
#include "atl1.h"
#define DRIVER_VERSION "2.0.7"
char atl1_driver_name[] = "atl1";
static const char atl1_driver_string[] = "Attansic L1 Ethernet Network Driver";
static const char atl1_copyright[] = "Copyright(c) 2005-2006 Attansic Corporation.";
char atl1_driver_version[] = DRIVER_VERSION;
MODULE_AUTHOR
("Attansic Corporation <xiong_huang@attansic.com>, Chris Snook <csnook@redhat.com>, Jay Cliburn <jcliburn@gmail.com>");
MODULE_DESCRIPTION("Attansic 1000M Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRIVER_VERSION);
/*
* atl1_pci_tbl - PCI Device ID Table
*/
static const struct pci_device_id atl1_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
/*
* atl1_sw_init - Initialize general software structures (struct atl1_adapter)
* @adapter: board private structure to initialize
*
* atl1_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
{
struct atl1_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
/* PCI config space info */
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
hw->max_frame_size = netdev->mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
adapter->wol = 0;
adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
adapter->ict = 50000; /* 100ms */
adapter->link_speed = SPEED_0; /* hardware init */
adapter->link_duplex = FULL_DUPLEX;
hw->phy_configured = false;
hw->preamble_len = 7;
hw->ipgt = 0x60;
hw->min_ifg = 0x50;
hw->ipgr1 = 0x40;
hw->ipgr2 = 0x60;
hw->max_retry = 0xf;
hw->lcol = 0x37;
hw->jam_ipg = 7;
hw->rfd_burst = 8;
hw->rrd_burst = 8;
hw->rfd_fetch_gap = 1;
hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
hw->rx_jumbo_lkah = 1;
hw->rrd_ret_timer = 16;
hw->tpd_burst = 4;
hw->tpd_fetch_th = 16;
hw->txf_burst = 0x100;
hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
hw->tpd_fetch_gap = 1;
hw->rcb_value = atl1_rcb_64;
hw->dma_ord = atl1_dma_ord_enh;
hw->dmar_block = atl1_dma_req_256;
hw->dmaw_block = atl1_dma_req_256;
hw->cmb_rrd = 4;
hw->cmb_tpd = 4;
hw->cmb_rx_timer = 1; /* about 2us */
hw->cmb_tx_timer = 1; /* about 2us */
hw->smb_timer = 100000; /* about 200ms */
atomic_set(&adapter->irq_sem, 0);
spin_lock_init(&adapter->lock);
spin_lock_init(&adapter->mb_lock);
return 0;
}
/*
* atl1_setup_mem_resources - allocate Tx / RX descriptor resources
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
{
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
struct atl1_ring_header *ring_header = &adapter->ring_header;
struct pci_dev *pdev = adapter->pdev;
int size;
u8 offset = 0;
size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
if (unlikely(!tpd_ring->buffer_info)) {
printk(KERN_WARNING "%s: kzalloc failed , size = D%d\n",
atl1_driver_name, size);
goto err_nomem;
}
rfd_ring->buffer_info =
(struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
/* real ring DMA buffer */
ring_header->size = size = sizeof(struct tx_packet_desc) *
tpd_ring->count
+ sizeof(struct rx_free_desc) * rfd_ring->count
+ sizeof(struct rx_return_desc) * rrd_ring->count
+ sizeof(struct coals_msg_block)
+ sizeof(struct stats_msg_block)
+ 40; /* "40: for 8 bytes align" huh? -- CHS */
ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
&ring_header->dma);
if (unlikely(!ring_header->desc)) {
printk(KERN_WARNING
"%s: pci_alloc_consistent failed, size = D%d\n",
atl1_driver_name, size);
goto err_nomem;
}
memset(ring_header->desc, 0, ring_header->size);
/* init TPD ring */
tpd_ring->dma = ring_header->dma;
offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
tpd_ring->dma += offset;
tpd_ring->desc = (u8 *) ring_header->desc + offset;
tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
atomic_set(&tpd_ring->next_to_use, 0);
atomic_set(&tpd_ring->next_to_clean, 0);
/* init RFD ring */
rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
rfd_ring->dma += offset;
rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
rfd_ring->next_to_clean = 0;
/* rfd_ring->next_to_use = rfd_ring->count - 1; */
atomic_set(&rfd_ring->next_to_use, 0);
/* init RRD ring */
rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
rrd_ring->dma += offset;
rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
rrd_ring->next_to_use = 0;
atomic_set(&rrd_ring->next_to_clean, 0);
/* init CMB */
adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
adapter->cmb.dma += offset;
adapter->cmb.cmb =
(struct coals_msg_block *) ((u8 *) rrd_ring->desc +
(rrd_ring->size + offset));
/* init SMB */
adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
adapter->smb.dma += offset;
adapter->smb.smb = (struct stats_msg_block *)
((u8 *) adapter->cmb.cmb + (sizeof(struct coals_msg_block) + offset));
return ATL1_SUCCESS;
err_nomem:
kfree(tpd_ring->buffer_info);
return -ENOMEM;
}
/*
* atl1_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
*/
static void atl1_irq_enable(struct atl1_adapter *adapter)
{
if (likely(!atomic_dec_and_test(&adapter->irq_sem)))
iowrite32(IMR_NORMAL_MASK, adapter->hw.hw_addr + REG_IMR);
}
static void atl1_clear_phy_int(struct atl1_adapter *adapter)
{
u16 phy_data;
unsigned long flags;
spin_lock_irqsave(&adapter->lock, flags);
atl1_read_phy_reg(&adapter->hw, 19, &phy_data);
spin_unlock_irqrestore(&adapter->lock, flags);
}
static void atl1_inc_smb(struct atl1_adapter *adapter)
{
struct stats_msg_block *smb = adapter->smb.smb;
/* Fill out the OS statistics structure */
adapter->soft_stats.rx_packets += smb->rx_ok;
adapter->soft_stats.tx_packets += smb->tx_ok;
adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
adapter->soft_stats.multicast += smb->rx_mcast;
adapter->soft_stats.collisions += (smb->tx_1_col +
smb->tx_2_col * 2 +
smb->tx_late_col +
smb->tx_abort_col *
adapter->hw.max_retry);
/* Rx Errors */
adapter->soft_stats.rx_errors += (smb->rx_frag +
smb->rx_fcs_err +
smb->rx_len_err +
smb->rx_sz_ov +
smb->rx_rxf_ov +
smb->rx_rrd_ov + smb->rx_align_err);
adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
adapter->soft_stats.rx_length_errors += smb->rx_len_err;
adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
smb->rx_rxf_ov);
adapter->soft_stats.rx_pause += smb->rx_pause;
adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
/* Tx Errors */
adapter->soft_stats.tx_errors += (smb->tx_late_col +
smb->tx_abort_col +
smb->tx_underrun + smb->tx_trunc);
adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
adapter->soft_stats.tx_window_errors += smb->tx_late_col;
adapter->soft_stats.excecol += smb->tx_abort_col;
adapter->soft_stats.deffer += smb->tx_defer;
adapter->soft_stats.scc += smb->tx_1_col;
adapter->soft_stats.mcc += smb->tx_2_col;
adapter->soft_stats.latecol += smb->tx_late_col;
adapter->soft_stats.tx_underun += smb->tx_underrun;
adapter->soft_stats.tx_trunc += smb->tx_trunc;
adapter->soft_stats.tx_pause += smb->tx_pause;
adapter->net_stats.rx_packets = adapter->soft_stats.rx_packets;
adapter->net_stats.tx_packets = adapter->soft_stats.tx_packets;
adapter->net_stats.rx_bytes = adapter->soft_stats.rx_bytes;
adapter->net_stats.tx_bytes = adapter->soft_stats.tx_bytes;
adapter->net_stats.multicast = adapter->soft_stats.multicast;
adapter->net_stats.collisions = adapter->soft_stats.collisions;
adapter->net_stats.rx_errors = adapter->soft_stats.rx_errors;
adapter->net_stats.rx_over_errors =
adapter->soft_stats.rx_missed_errors;
adapter->net_stats.rx_length_errors =
adapter->soft_stats.rx_length_errors;
adapter->net_stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
adapter->net_stats.rx_frame_errors =
adapter->soft_stats.rx_frame_errors;
adapter->net_stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
adapter->net_stats.rx_missed_errors =
adapter->soft_stats.rx_missed_errors;
adapter->net_stats.tx_errors = adapter->soft_stats.tx_errors;
adapter->net_stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
adapter->net_stats.tx_aborted_errors =
adapter->soft_stats.tx_aborted_errors;
adapter->net_stats.tx_window_errors =
adapter->soft_stats.tx_window_errors;
adapter->net_stats.tx_carrier_errors =
adapter->soft_stats.tx_carrier_errors;
}
static void atl1_rx_checksum(struct atl1_adapter *adapter,
struct rx_return_desc *rrd,
struct sk_buff *skb)
{
skb->ip_summed = CHECKSUM_NONE;
if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
ERR_FLAG_CODE | ERR_FLAG_OV)) {
adapter->hw_csum_err++;
printk(KERN_DEBUG "%s: rx checksum error\n",
atl1_driver_name);
return;
}
}
/* not IPv4 */
if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
/* checksum is invalid, but it's not an IPv4 pkt, so ok */
return;
/* IPv4 packet */
if (likely(!(rrd->err_flg &
(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
adapter->hw_csum_good++;
return;
}
/* IPv4, but hardware thinks its checksum is wrong */
printk(KERN_DEBUG "%s: hw csum wrong pkt_flag:%x, err_flag:%x\n",
atl1_driver_name, rrd->pkt_flg, rrd->err_flg);
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = htons(rrd->xsz.xsum_sz.rx_chksum);
adapter->hw_csum_err++;
return;
}
/*
* atl1_alloc_rx_buffers - Replace used receive buffers
* @adapter: address of board private structure
*/
static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
{
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct page *page;
unsigned long offset;
struct atl1_buffer *buffer_info, *next_info;
struct sk_buff *skb;
u16 num_alloc = 0;
u16 rfd_next_to_use, next_next;
struct rx_free_desc *rfd_desc;
next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
if (++next_next == rfd_ring->count)
next_next = 0;
buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
next_info = &rfd_ring->buffer_info[next_next];
while (!buffer_info->alloced && !next_info->alloced) {
if (buffer_info->skb) {
buffer_info->alloced = 1;
goto next;
}
rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN);
if (unlikely(!skb)) { /* Better luck next round */
adapter->net_stats.rx_dropped++;
break;
}
/*
* Make buffer alignment 2 beyond a 16 byte boundary
* this will result in a 16 byte aligned IP header after
* the 14 byte MAC header is removed
*/
skb_reserve(skb, NET_IP_ALIGN);
skb->dev = netdev;
buffer_info->alloced = 1;
buffer_info->skb = skb;
buffer_info->length = (u16) adapter->rx_buffer_len;
page = virt_to_page(skb->data);
offset = (unsigned long)skb->data & ~PAGE_MASK;
buffer_info->dma = pci_map_page(pdev, page, offset,
adapter->rx_buffer_len,
PCI_DMA_FROMDEVICE);
rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
rfd_desc->coalese = 0;
next:
rfd_next_to_use = next_next;
if (unlikely(++next_next == rfd_ring->count))
next_next = 0;
buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
next_info = &rfd_ring->buffer_info[next_next];
num_alloc++;
}
if (num_alloc) {
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
}
return num_alloc;
}
static void atl1_intr_rx(struct atl1_adapter *adapter)
{
int i, count;
u16 length;
u16 rrd_next_to_clean;
u32 value;
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
struct atl1_buffer *buffer_info;
struct rx_return_desc *rrd;
struct sk_buff *skb;
count = 0;
rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
while (1) {
rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
i = 1;
if (likely(rrd->xsz.valid)) { /* packet valid */
chk_rrd:
/* check rrd status */
if (likely(rrd->num_buf == 1))
goto rrd_ok;
/* rrd seems to be bad */
if (unlikely(i-- > 0)) {
/* rrd may not be DMAed completely */
printk(KERN_DEBUG
"%s: RRD may not be DMAed completely\n",
atl1_driver_name);
udelay(1);
goto chk_rrd;
}
/* bad rrd */
printk(KERN_DEBUG "%s: bad RRD\n", atl1_driver_name);
/* see if update RFD index */
if (rrd->num_buf > 1) {
u16 num_buf;
num_buf =
(rrd->xsz.xsum_sz.pkt_size +
adapter->rx_buffer_len -
1) / adapter->rx_buffer_len;
if (rrd->num_buf == num_buf) {
/* clean alloc flag for bad rrd */
while (rfd_ring->next_to_clean !=
(rrd->buf_indx + num_buf)) {
rfd_ring->buffer_info[rfd_ring->
next_to_clean].alloced = 0;
if (++rfd_ring->next_to_clean ==
rfd_ring->count) {
rfd_ring->
next_to_clean = 0;
}
}
}
}
/* update rrd */
rrd->xsz.valid = 0;
if (++rrd_next_to_clean == rrd_ring->count)
rrd_next_to_clean = 0;
count++;
continue;
} else { /* current rrd still not be updated */
break;
}
rrd_ok:
/* clean alloc flag for bad rrd */
while (rfd_ring->next_to_clean != rrd->buf_indx) {
rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced =
0;
if (++rfd_ring->next_to_clean == rfd_ring->count)
rfd_ring->next_to_clean = 0;
}
buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
if (++rfd_ring->next_to_clean == rfd_ring->count)
rfd_ring->next_to_clean = 0;
/* update rrd next to clean */
if (++rrd_next_to_clean == rrd_ring->count)
rrd_next_to_clean = 0;
count++;
if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
if (!(rrd->err_flg &
(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
| ERR_FLAG_LEN))) {
/* packet error, don't need upstream */
buffer_info->alloced = 0;
rrd->xsz.valid = 0;
continue;
}
}
/* Good Receive */
pci_unmap_page(adapter->pdev, buffer_info->dma,
buffer_info->length, PCI_DMA_FROMDEVICE);
skb = buffer_info->skb;
length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
skb_put(skb, length - ETHERNET_FCS_SIZE);
/* Receive Checksum Offload */
atl1_rx_checksum(adapter, rrd, skb);
skb->protocol = eth_type_trans(skb, adapter->netdev);
if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
u16 vlan_tag = (rrd->vlan_tag >> 4) |
((rrd->vlan_tag & 7) << 13) |
((rrd->vlan_tag & 8) << 9);
vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
} else
netif_rx(skb);
/* let protocol layer free skb */
buffer_info->skb = NULL;
buffer_info->alloced = 0;
rrd->xsz.valid = 0;
adapter->netdev->last_rx = jiffies;
}
atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
atl1_alloc_rx_buffers(adapter);
/* update mailbox ? */
if (count) {
u32 tpd_next_to_use;
u32 rfd_next_to_use;
u32 rrd_next_to_clean;
spin_lock(&adapter->mb_lock);
tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
rfd_next_to_use =
atomic_read(&adapter->rfd_ring.next_to_use);
rrd_next_to_clean =
atomic_read(&adapter->rrd_ring.next_to_clean);
value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
MB_RFD_PROD_INDX_SHIFT) |
((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
MB_RRD_CONS_INDX_SHIFT) |
((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
MB_TPD_PROD_INDX_SHIFT);
iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
spin_unlock(&adapter->mb_lock);
}
}
static void atl1_intr_tx(struct atl1_adapter *adapter)
{
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_buffer *buffer_info;
u16 sw_tpd_next_to_clean;
u16 cmb_tpd_next_to_clean;
u8 update = 0;
sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
struct tx_packet_desc *tpd;
update = 1;
tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
if (buffer_info->dma) {
pci_unmap_page(adapter->pdev, buffer_info->dma,
buffer_info->length, PCI_DMA_TODEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb_irq(buffer_info->skb);
buffer_info->skb = NULL;
}
tpd->buffer_addr = 0;
tpd->desc.data = 0;
if (++sw_tpd_next_to_clean == tpd_ring->count)
sw_tpd_next_to_clean = 0;
}
atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
if (netif_queue_stopped(adapter->netdev)
&& netif_carrier_ok(adapter->netdev))
netif_wake_queue(adapter->netdev);
}
static void atl1_check_for_link(struct atl1_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u16 phy_data = 0;
spin_lock(&adapter->lock);
adapter->phy_timer_pending = false;
atl1_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
atl1_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
spin_unlock(&adapter->lock);
/* notify upper layer link down ASAP */
if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
printk(KERN_INFO "%s: %s link is down\n",
atl1_driver_name, netdev->name);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
}
schedule_work(&adapter->link_chg_task);
}
/*
* atl1_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
* @pt_regs: CPU registers structure
*/
static irqreturn_t atl1_intr(int irq, void *data)
{
/*struct atl1_adapter *adapter = ((struct net_device *)data)->priv;*/
struct atl1_adapter *adapter = netdev_priv(data);
u32 status;
u8 update_rx;
int max_ints = 10;
status = adapter->cmb.cmb->int_stats;
if (!status)
return IRQ_NONE;
update_rx = 0;
do {
/* clear CMB interrupt status at once */
adapter->cmb.cmb->int_stats = 0;
if (status & ISR_GPHY) /* clear phy status */
atl1_clear_phy_int(adapter);
/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
/* check if SMB intr */
if (status & ISR_SMB)
atl1_inc_smb(adapter);
/* check if PCIE PHY Link down */
if (status & ISR_PHY_LINKDOWN) {
printk(KERN_DEBUG "%s: pcie phy link down %x\n",
atl1_driver_name, status);
if (netif_running(adapter->netdev)) { /* reset MAC */
iowrite32(0, adapter->hw.hw_addr + REG_IMR);
schedule_work(&adapter->pcie_dma_to_rst_task);
return IRQ_HANDLED;
}
}
/* check if DMA read/write error ? */
if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
printk(KERN_DEBUG
"%s: pcie DMA r/w error (status = 0x%x)\n",
atl1_driver_name, status);
iowrite32(0, adapter->hw.hw_addr + REG_IMR);
schedule_work(&adapter->pcie_dma_to_rst_task);
return IRQ_HANDLED;
}
/* link event */
if (status & ISR_GPHY) {
adapter->soft_stats.tx_carrier_errors++;
atl1_check_for_link(adapter);
}
/* transmit event */
if (status & ISR_CMB_TX)
atl1_intr_tx(adapter);
/* rx exception */
if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
ISR_HOST_RRD_OV | ISR_CMB_RX))) {
if (status &
(ISR_RXF_OV | ISR_RFD_UNRUN | ISR_RRD_OV |
ISR_HOST_RFD_UNRUN | ISR_HOST_RRD_OV))
printk(KERN_INFO
"%s: rx exception: status = 0x%x\n",
atl1_driver_name, status);
atl1_intr_rx(adapter);
}
if (--max_ints < 0)
break;
} while ((status = adapter->cmb.cmb->int_stats));
/* re-enable Interrupt */
iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
return IRQ_HANDLED;
}
/*
* atl1_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
*/
static void atl1_set_multi(struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_hw *hw = &adapter->hw;
struct dev_mc_list *mc_ptr;
u32 rctl;
u32 hash_value;
/* Check for Promiscuous and All Multicast modes */
rctl = ioread32(hw->hw_addr + REG_MAC_CTRL);
if (netdev->flags & IFF_PROMISC)
rctl |= MAC_CTRL_PROMIS_EN;
else if (netdev->flags & IFF_ALLMULTI) {
rctl |= MAC_CTRL_MC_ALL_EN;
rctl &= ~MAC_CTRL_PROMIS_EN;
} else
rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
iowrite32(rctl, hw->hw_addr + REG_MAC_CTRL);
/* clear the old settings from the multicast hash table */
iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
/* compute mc addresses' hash value ,and put it into hash table */
for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
hash_value = atl1_hash_mc_addr(hw, mc_ptr->dmi_addr);
atl1_hash_set(hw, hash_value);
}
}
static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
{
u32 value;
struct atl1_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
/* Config MAC CTRL Register */
value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
/* duplex */
if (FULL_DUPLEX == adapter->link_duplex)
value |= MAC_CTRL_DUPLX;
/* speed */
value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
MAC_CTRL_SPEED_SHIFT);
/* flow control */
value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
/* PAD & CRC */
value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
/* preamble length */
value |= (((u32) adapter->hw.preamble_len
& MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
/* vlan */
if (adapter->vlgrp)
value |= MAC_CTRL_RMV_VLAN;
/* rx checksum
if (adapter->rx_csum)
value |= MAC_CTRL_RX_CHKSUM_EN;
*/
/* filter mode */
value |= MAC_CTRL_BC_EN;
if (netdev->flags & IFF_PROMISC)
value |= MAC_CTRL_PROMIS_EN;
else if (netdev->flags & IFF_ALLMULTI)
value |= MAC_CTRL_MC_ALL_EN;
/* value |= MAC_CTRL_LOOPBACK; */
iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
}
static u32 atl1_check_link(struct atl1_adapter *adapter)
{
struct atl1_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 ret_val;
u16 speed, duplex, phy_data;
int reconfig = 0;
/* MII_BMSR must read twice */
atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
if (!(phy_data & BMSR_LSTATUS)) { /* link down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
printk(KERN_INFO "%s: link is down\n",
atl1_driver_name);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
return ATL1_SUCCESS;
}
/* Link Up */
ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val)
return ret_val;
switch (hw->media_type) {
case MEDIA_TYPE_1000M_FULL:
if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_100M_FULL:
if (speed != SPEED_100 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_100M_HALF:
if (speed != SPEED_100 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_FULL:
if (speed != SPEED_10 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_HALF:
if (speed != SPEED_10 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
}
/* link result is our setting */
if (!reconfig) {
if (adapter->link_speed != speed
|| adapter->link_duplex != duplex) {
adapter->link_speed = speed;
adapter->link_duplex = duplex;
atl1_setup_mac_ctrl(adapter);
printk(KERN_INFO "%s: %s link is up %d Mbps %s\n",
atl1_driver_name, netdev->name,
adapter->link_speed,
adapter->link_duplex ==
FULL_DUPLEX ? "full duplex" : "half duplex");
}
if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
netif_carrier_on(netdev);
netif_wake_queue(netdev);
}
return ATL1_SUCCESS;
}
/* change orignal link status */
if (netif_carrier_ok(netdev)) {
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
hw->media_type != MEDIA_TYPE_1000M_FULL) {
switch (hw->media_type) {
case MEDIA_TYPE_100M_FULL:
phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
MII_CR_RESET;
break;
case MEDIA_TYPE_100M_HALF:
phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
break;
case MEDIA_TYPE_10M_FULL:
phy_data =
MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
break;
default: /* MEDIA_TYPE_10M_HALF: */
phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
break;
}
atl1_write_phy_reg(hw, MII_BMCR, phy_data);
return ATL1_SUCCESS;
}
/* auto-neg, insert timer to re-config phy */
if (!adapter->phy_timer_pending) {
adapter->phy_timer_pending = true;
mod_timer(&adapter->phy_config_timer, jiffies + 3 * HZ);
}
return ATL1_SUCCESS;
}
static void set_flow_ctrl_old(struct atl1_adapter *adapter)
{
u32 hi, lo, value;
/* RFD Flow Control */
value = adapter->rfd_ring.count;
hi = value / 16;
if (hi < 2)
hi = 2;
lo = value * 7 / 8;
value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
/* RRD Flow Control */
value = adapter->rrd_ring.count;
lo = value / 16;
hi = value * 7 / 8;
if (lo < 2)
lo = 2;
value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
}
static void set_flow_ctrl_new(struct atl1_hw *hw)
{
u32 hi, lo, value;
/* RXF Flow Control */
value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
lo = value / 16;
if (lo < 192)
lo = 192;
hi = value * 7 / 8;
if (hi < lo)
hi = lo + 16;
value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
/* RRD Flow Control */
value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
lo = value / 8;
hi = value * 7 / 8;
if (lo < 2)
lo = 2;
if (hi < lo)
hi = lo + 3;
value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
}
/*
* atl1_configure - Configure Transmit&Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Tx /Rx unit of the MAC after a reset.
*/
static u32 atl1_configure(struct atl1_adapter *adapter)
{
struct atl1_hw *hw = &adapter->hw;
u32 value;
/* clear interrupt status */
iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
/* set MAC Address */
value = (((u32) hw->mac_addr[2]) << 24) |
(((u32) hw->mac_addr[3]) << 16) |
(((u32) hw->mac_addr[4]) << 8) |
(((u32) hw->mac_addr[5]));
iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
/* tx / rx ring */
/* HI base address */
iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
hw->hw_addr + REG_DESC_BASE_ADDR_HI);
/* LO base address */
iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_RFD_ADDR_LO);
iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_RRD_ADDR_LO);
iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_TPD_ADDR_LO);
iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_CMB_ADDR_LO);
iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_SMB_ADDR_LO);
/* element count */
value = adapter->rrd_ring.count;
value <<= 16;
value += adapter->rfd_ring.count;
iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
iowrite32(adapter->tpd_ring.count, hw->hw_addr + REG_DESC_TPD_RING_SIZE);
/* Load Ptr */
iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
/* config Mailbox */
value = ((atomic_read(&adapter->tpd_ring.next_to_use)
& MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
((atomic_read(&adapter->rrd_ring.next_to_clean)
& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
((atomic_read(&adapter->rfd_ring.next_to_use)
& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
iowrite32(value, hw->hw_addr + REG_MAILBOX);
/* config IPG/IFG */
value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
<< MAC_IPG_IFG_IPGT_SHIFT) |
(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
<< MAC_IPG_IFG_MIFG_SHIFT) |
(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
<< MAC_IPG_IFG_IPGR1_SHIFT) |
(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
<< MAC_IPG_IFG_IPGR2_SHIFT);
iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
/* config Half-Duplex Control */
value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
/* set Interrupt Moderator Timer */
iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
/* set Interrupt Clear Timer */
iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
/* set MTU, 4 : VLAN */
iowrite32(hw->max_frame_size + 4, hw->hw_addr + REG_MTU);
/* jumbo size & rrd retirement timer */
value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
<< RXQ_JMBOSZ_TH_SHIFT) |
(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
<< RXQ_JMBO_LKAH_SHIFT) |
(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
<< RXQ_RRD_TIMER_SHIFT);
iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
/* Flow Control */
switch (hw->dev_rev) {
case 0x8001:
case 0x9001:
case 0x9002:
case 0x9003:
set_flow_ctrl_old(adapter);
break;
default:
set_flow_ctrl_new(hw);
break;
}
/* config TXQ */
value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
<< TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN;
iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
<< TX_JUMBO_TASK_TH_SHIFT) |
(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
<< TX_TPD_MIN_IPG_SHIFT);
iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
/* config RXQ */
value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) |
RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN;
iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
/* config DMA Engine */
value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
((((u32) hw->dmaw_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
DMA_CTRL_DMAR_EN | DMA_CTRL_DMAW_EN;
value |= (u32) hw->dma_ord;
if (atl1_rcb_128 == hw->rcb_value)
value |= DMA_CTRL_RCB_VALUE;
iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
/* config CMB / SMB */
value = hw->cmb_rrd | ((u32) hw->cmb_tpd << 16);
iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
/* --- enable CMB / SMB */
value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
value = ioread32(adapter->hw.hw_addr + REG_ISR);
if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
value = 1; /* config failed */
else
value = 0;
/* clear all interrupt status */
iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
iowrite32(0, adapter->hw.hw_addr + REG_ISR);
return value;
}
/*
* atl1_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
*/
static void atl1_irq_disable(struct atl1_adapter *adapter)
{
atomic_inc(&adapter->irq_sem);
iowrite32(0, adapter->hw.hw_addr + REG_IMR);
ioread32(adapter->hw.hw_addr + REG_IMR);
synchronize_irq(adapter->pdev->irq);
}
static void atl1_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
unsigned long flags;
u32 ctrl;
spin_lock_irqsave(&adapter->lock, flags);
/* atl1_irq_disable(adapter); */
adapter->vlgrp = grp;
if (grp) {
/* enable VLAN tag insert/strip */
ctrl = ioread32(adapter->hw.hw_addr + REG_MAC_CTRL);
ctrl |= MAC_CTRL_RMV_VLAN;
iowrite32(ctrl, adapter->hw.hw_addr + REG_MAC_CTRL);
} else {
/* disable VLAN tag insert/strip */
ctrl = ioread32(adapter->hw.hw_addr + REG_MAC_CTRL);
ctrl &= ~MAC_CTRL_RMV_VLAN;
iowrite32(ctrl, adapter->hw.hw_addr + REG_MAC_CTRL);
}
/* atl1_irq_enable(adapter); */
spin_unlock_irqrestore(&adapter->lock, flags);
}
/* FIXME: justify or remove -- CHS */
static void atl1_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
/* We don't do Vlan filtering */
return;
}
/* FIXME: this looks wrong too -- CHS */
static void atl1_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
unsigned long flags;
spin_lock_irqsave(&adapter->lock, flags);
/* atl1_irq_disable(adapter); */
vlan_group_set_device(adapter->vlgrp, vid, NULL);
/* atl1_irq_enable(adapter); */
spin_unlock_irqrestore(&adapter->lock, flags);
/* We don't do Vlan filtering */
return;
}
static void atl1_restore_vlan(struct atl1_adapter *adapter)
{
atl1_vlan_rx_register(adapter->netdev, adapter->vlgrp);
if (adapter->vlgrp) {
u16 vid;
for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
if (!vlan_group_get_device(adapter->vlgrp, vid))
continue;
atl1_vlan_rx_add_vid(adapter->netdev, vid);
}
}
}
static u16 tpd_avail(struct atl1_tpd_ring *tpd_ring)
{
u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
return ((next_to_clean >
next_to_use) ? next_to_clean - next_to_use -
1 : tpd_ring->count + next_to_clean - next_to_use - 1);
}
static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
struct tso_param *tso)
{
/* We enter this function holding a spinlock. */
u8 ipofst;
int err;
if (skb_shinfo(skb)->gso_size) {
if (skb_header_cloned(skb)) {
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (unlikely(err))
return err;
}
if (skb->protocol == ntohs(ETH_P_IP)) {
skb->nh.iph->tot_len = 0;
skb->nh.iph->check = 0;
skb->h.th->check =
~csum_tcpudp_magic(skb->nh.iph->saddr,
skb->nh.iph->daddr, 0,
IPPROTO_TCP, 0);
ipofst = skb->nh.raw - skb->data;
if (ipofst != ENET_HEADER_SIZE) /* 802.3 frame */
tso->tsopl |= 1 << TSO_PARAM_ETHTYPE_SHIFT;
tso->tsopl |= (skb->nh.iph->ihl &
CSUM_PARAM_IPHL_MASK) << CSUM_PARAM_IPHL_SHIFT;
tso->tsopl |= ((skb->h.th->doff << 2) &
TSO_PARAM_TCPHDRLEN_MASK) << TSO_PARAM_TCPHDRLEN_SHIFT;
tso->tsopl |= (skb_shinfo(skb)->gso_size &
TSO_PARAM_MSS_MASK) << TSO_PARAM_MSS_SHIFT;
tso->tsopl |= 1 << TSO_PARAM_IPCKSUM_SHIFT;
tso->tsopl |= 1 << TSO_PARAM_TCPCKSUM_SHIFT;
tso->tsopl |= 1 << TSO_PARAM_SEGMENT_SHIFT;
return true;
}
}
return false;
}
static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
struct csum_param *csum)
{
u8 css, cso;
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
cso = skb->h.raw - skb->data;
css = (skb->h.raw + skb->csum) - skb->data;
if (unlikely(cso & 0x1)) {
printk(KERN_DEBUG "%s: payload offset != even number\n",
atl1_driver_name);
return -1;
}
csum->csumpl |= (cso & CSUM_PARAM_PLOADOFFSET_MASK) <<
CSUM_PARAM_PLOADOFFSET_SHIFT;
csum->csumpl |= (css & CSUM_PARAM_XSUMOFFSET_MASK) <<
CSUM_PARAM_XSUMOFFSET_SHIFT;
csum->csumpl |= 1 << CSUM_PARAM_CUSTOMCKSUM_SHIFT;
return true;
}
return true;
}
static void atl1_tx_map(struct atl1_adapter *adapter,
struct sk_buff *skb, bool tcp_seg)
{
/* We enter this function holding a spinlock. */
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_buffer *buffer_info;
struct page *page;
int first_buf_len = skb->len;
unsigned long offset;
unsigned int nr_frags;
unsigned int f;
u16 tpd_next_to_use;
u16 proto_hdr_len;
u16 i, m, len12;
first_buf_len -= skb->data_len;
nr_frags = skb_shinfo(skb)->nr_frags;
tpd_next_to_use = atomic_read(&tpd_ring->next_to_use);
buffer_info = &tpd_ring->buffer_info[tpd_next_to_use];
if (unlikely(buffer_info->skb))
BUG();
buffer_info->skb = NULL; /* put skb in last TPD */
if (tcp_seg) {
/* TSO/GSO */
proto_hdr_len =
((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
buffer_info->length = proto_hdr_len;
page = virt_to_page(skb->data);
offset = (unsigned long)skb->data & ~PAGE_MASK;
buffer_info->dma = pci_map_page(adapter->pdev, page,
offset, proto_hdr_len,
PCI_DMA_TODEVICE);
if (++tpd_next_to_use == tpd_ring->count)
tpd_next_to_use = 0;
if (first_buf_len > proto_hdr_len) {
len12 = first_buf_len - proto_hdr_len;
m = (len12 + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN;
for (i = 0; i < m; i++) {
buffer_info =
&tpd_ring->buffer_info[tpd_next_to_use];
buffer_info->skb = NULL;
buffer_info->length =
(MAX_TX_BUF_LEN >=
len12) ? MAX_TX_BUF_LEN : len12;
len12 -= buffer_info->length;
page = virt_to_page(skb->data +
(proto_hdr_len +
i * MAX_TX_BUF_LEN));
offset = (unsigned long)(skb->data +
(proto_hdr_len +
i * MAX_TX_BUF_LEN)) &
~PAGE_MASK;
buffer_info->dma =
pci_map_page(adapter->pdev, page, offset,
buffer_info->length,
PCI_DMA_TODEVICE);
if (++tpd_next_to_use == tpd_ring->count)
tpd_next_to_use = 0;
}
}
} else {
/* not TSO/GSO */
buffer_info->length = first_buf_len;
page = virt_to_page(skb->data);
offset = (unsigned long)skb->data & ~PAGE_MASK;
buffer_info->dma = pci_map_page(adapter->pdev, page,
offset, first_buf_len,
PCI_DMA_TODEVICE);
if (++tpd_next_to_use == tpd_ring->count)
tpd_next_to_use = 0;
}
for (f = 0; f < nr_frags; f++) {
struct skb_frag_struct *frag;
u16 lenf, i, m;
frag = &skb_shinfo(skb)->frags[f];
lenf = frag->size;
m = (lenf + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN;
for (i = 0; i < m; i++) {
buffer_info = &tpd_ring->buffer_info[tpd_next_to_use];
if (unlikely(buffer_info->skb))
BUG();
buffer_info->skb = NULL;
buffer_info->length =
(lenf > MAX_TX_BUF_LEN) ? MAX_TX_BUF_LEN : lenf;
lenf -= buffer_info->length;
buffer_info->dma =
pci_map_page(adapter->pdev, frag->page,
frag->page_offset + i * MAX_TX_BUF_LEN,
buffer_info->length, PCI_DMA_TODEVICE);
if (++tpd_next_to_use == tpd_ring->count)
tpd_next_to_use = 0;
}
}
/* last tpd's buffer-info */
buffer_info->skb = skb;
}
static void atl1_tx_queue(struct atl1_adapter *adapter, int count,
union tpd_descr *descr)
{
/* We enter this function holding a spinlock. */
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
int j;
u32 val;
struct atl1_buffer *buffer_info;
struct tx_packet_desc *tpd;
u16 tpd_next_to_use = atomic_read(&tpd_ring->next_to_use);
for (j = 0; j < count; j++) {
buffer_info = &tpd_ring->buffer_info[tpd_next_to_use];
tpd = ATL1_TPD_DESC(&adapter->tpd_ring, tpd_next_to_use);
tpd->desc.csum.csumpu = descr->csum.csumpu;
tpd->desc.csum.csumpl = descr->csum.csumpl;
tpd->desc.tso.tsopu = descr->tso.tsopu;
tpd->desc.tso.tsopl = descr->tso.tsopl;
tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
tpd->desc.data = descr->data;
tpd->desc.csum.csumpu |= (cpu_to_le16(buffer_info->length) &
CSUM_PARAM_BUFLEN_MASK) << CSUM_PARAM_BUFLEN_SHIFT;
val = (descr->tso.tsopl >> TSO_PARAM_SEGMENT_SHIFT) &
TSO_PARAM_SEGMENT_MASK;
if (val && !j)
tpd->desc.tso.tsopl |= 1 << TSO_PARAM_HDRFLAG_SHIFT;
if (j == (count - 1))
tpd->desc.csum.csumpl |= 1 << CSUM_PARAM_EOP_SHIFT;
if (++tpd_next_to_use == tpd_ring->count)
tpd_next_to_use = 0;
}
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
atomic_set(&tpd_ring->next_to_use, (int)tpd_next_to_use);
}
static void atl1_update_mailbox(struct atl1_adapter *adapter)
{
unsigned long flags;
u32 tpd_next_to_use;
u32 rfd_next_to_use;
u32 rrd_next_to_clean;
u32 value;
spin_lock_irqsave(&adapter->mb_lock, flags);
tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
MB_RFD_PROD_INDX_SHIFT) |
((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
MB_RRD_CONS_INDX_SHIFT) |
((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
MB_TPD_PROD_INDX_SHIFT);
iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
spin_unlock_irqrestore(&adapter->mb_lock, flags);
}
static int atl1_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
int len = skb->len;
int tso;
int count = 1;
int ret_val;
u32 val;
union tpd_descr param;
u16 frag_size;
u16 vlan_tag;
unsigned long flags;
unsigned int nr_frags = 0;
unsigned int mss = 0;
unsigned int f;
unsigned int proto_hdr_len;
len -= skb->data_len;
if (unlikely(skb->len == 0)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
param.data = 0;
param.tso.tsopu = 0;
param.tso.tsopl = 0;
param.csum.csumpu = 0;
param.csum.csumpl = 0;
/* nr_frags will be nonzero if we're doing scatter/gather (SG) */
nr_frags = skb_shinfo(skb)->nr_frags;
for (f = 0; f < nr_frags; f++) {
frag_size = skb_shinfo(skb)->frags[f].size;
if (frag_size)
count +=
(frag_size + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN;
}
/* mss will be nonzero if we're doing segment offload (TSO/GSO) */
mss = skb_shinfo(skb)->gso_size;
if (mss) {
if (skb->protocol == ntohs(ETH_P_IP)) {
proto_hdr_len = ((skb->h.raw - skb->data) +
(skb->h.th->doff << 2));
if (unlikely(proto_hdr_len > len)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* need additional TPD ? */
if (proto_hdr_len != len)
count += (len - proto_hdr_len +
MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN;
}
}
local_irq_save(flags);
if (!spin_trylock(&adapter->lock)) {
/* Can't get lock - tell upper layer to requeue */
local_irq_restore(flags);
printk(KERN_DEBUG "%s: TX locked\n", atl1_driver_name);
return NETDEV_TX_LOCKED;
}
if (tpd_avail(&adapter->tpd_ring) < count) {
/* not enough descriptors */
netif_stop_queue(netdev);
spin_unlock_irqrestore(&adapter->lock, flags);
printk(KERN_DEBUG "%s: TX busy\n", atl1_driver_name);
return NETDEV_TX_BUSY;
}
param.data = 0;
if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
vlan_tag = vlan_tx_tag_get(skb);
vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
((vlan_tag >> 9) & 0x8);
param.csum.csumpl |= 1 << CSUM_PARAM_INSVLAG_SHIFT;
param.csum.csumpu |= (vlan_tag & CSUM_PARAM_VALANTAG_MASK) <<
CSUM_PARAM_VALAN_SHIFT;
}
tso = atl1_tso(adapter, skb, &param.tso);
if (tso < 0) {
spin_unlock_irqrestore(&adapter->lock, flags);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (!tso) {
ret_val = atl1_tx_csum(adapter, skb, &param.csum);
if (ret_val < 0) {
spin_unlock_irqrestore(&adapter->lock, flags);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
}
val = (param.csum.csumpl >> CSUM_PARAM_SEGMENT_SHIFT) &
CSUM_PARAM_SEGMENT_MASK;
atl1_tx_map(adapter, skb, 1 == val);
atl1_tx_queue(adapter, count, &param);
netdev->trans_start = jiffies;
spin_unlock_irqrestore(&adapter->lock, flags);
atl1_update_mailbox(adapter);
return NETDEV_TX_OK;
}
/*
* atl1_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are actually updated from the timer callback.
*/
static struct net_device_stats *atl1_get_stats(struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
return &adapter->net_stats;
}
/*
* atl1_clean_rx_ring - Free RFD Buffers
* @adapter: board private structure
*/
static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
{
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
struct atl1_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
unsigned int i;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rfd_ring->count; i++) {
buffer_info = &rfd_ring->buffer_info[i];
if (buffer_info->dma) {
pci_unmap_page(pdev,
buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
}
size = sizeof(struct atl1_buffer) * rfd_ring->count;
memset(rfd_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(rfd_ring->desc, 0, rfd_ring->size);
rfd_ring->next_to_clean = 0;
atomic_set(&rfd_ring->next_to_use, 0);
rrd_ring->next_to_use = 0;
atomic_set(&rrd_ring->next_to_clean, 0);
}
/*
* atl1_clean_tx_ring - Free Tx Buffers
* @adapter: board private structure
*/
static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
{
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
unsigned int i;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tpd_ring->count; i++) {
buffer_info = &tpd_ring->buffer_info[i];
if (buffer_info->dma) {
pci_unmap_page(pdev, buffer_info->dma,
buffer_info->length, PCI_DMA_TODEVICE);
buffer_info->dma = 0;
}
}
for (i = 0; i < tpd_ring->count; i++) {
buffer_info = &tpd_ring->buffer_info[i];
if (buffer_info->skb) {
dev_kfree_skb_any(buffer_info->skb);
buffer_info->skb = NULL;
}
}
size = sizeof(struct atl1_buffer) * tpd_ring->count;
memset(tpd_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(tpd_ring->desc, 0, tpd_ring->size);
atomic_set(&tpd_ring->next_to_use, 0);
atomic_set(&tpd_ring->next_to_clean, 0);
}
/*
* atl1_free_ring_resources - Free Tx / RX descriptor Resources
* @adapter: board private structure
*
* Free all transmit software resources
*/
void atl1_free_ring_resources(struct atl1_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
struct atl1_ring_header *ring_header = &adapter->ring_header;
atl1_clean_tx_ring(adapter);
atl1_clean_rx_ring(adapter);
kfree(tpd_ring->buffer_info);
pci_free_consistent(pdev, ring_header->size, ring_header->desc,
ring_header->dma);
tpd_ring->buffer_info = NULL;
tpd_ring->desc = NULL;
tpd_ring->dma = 0;
rfd_ring->buffer_info = NULL;
rfd_ring->desc = NULL;
rfd_ring->dma = 0;
rrd_ring->desc = NULL;
rrd_ring->dma = 0;
}
s32 atl1_up(struct atl1_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err;
int irq_flags = IRQF_SAMPLE_RANDOM;
/* hardware has been reset, we need to reload some things */
atl1_set_multi(netdev);
atl1_restore_vlan(adapter);
err = atl1_alloc_rx_buffers(adapter);
if (unlikely(!err)) /* no RX BUFFER allocated */
return -ENOMEM;
if (unlikely(atl1_configure(adapter))) {
err = -EIO;
goto err_up;
}
err = pci_enable_msi(adapter->pdev);
if (err) {
dev_info(&adapter->pdev->dev,
"Unable to enable MSI: %d\n", err);
irq_flags |= IRQF_SHARED;
}
err = request_irq(adapter->pdev->irq, &atl1_intr, irq_flags,
netdev->name, netdev);
if (unlikely(err))
goto err_up;
mod_timer(&adapter->watchdog_timer, jiffies);
atl1_irq_enable(adapter);
atl1_check_link(adapter);
return 0;
/* FIXME: unreachable code! -- CHS */
/* free irq disable any interrupt */
iowrite32(0, adapter->hw.hw_addr + REG_IMR);
free_irq(adapter->pdev->irq, netdev);
err_up:
pci_disable_msi(adapter->pdev);
/* free rx_buffers */
atl1_clean_rx_ring(adapter);
return err;
}
void atl1_down(struct atl1_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_config_timer);
adapter->phy_timer_pending = false;
atl1_irq_disable(adapter);
free_irq(adapter->pdev->irq, netdev);
pci_disable_msi(adapter->pdev);
atl1_reset_hw(&adapter->hw);
adapter->cmb.cmb->int_stats = 0;
adapter->link_speed = SPEED_0;
adapter->link_duplex = -1;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
atl1_clean_tx_ring(adapter);
atl1_clean_rx_ring(adapter);
}
/*
* atl1_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
int old_mtu = netdev->mtu;
int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
(max_frame > MAX_JUMBO_FRAME_SIZE)) {
printk(KERN_WARNING "%s: invalid MTU setting\n",
atl1_driver_name);
return -EINVAL;
}
adapter->hw.max_frame_size = max_frame;
adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
adapter->rx_buffer_len = (max_frame + 7) & ~7;
adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
netdev->mtu = new_mtu;
if ((old_mtu != new_mtu) && netif_running(netdev)) {
atl1_down(adapter);
atl1_up(adapter);
}
return 0;
}
/*
* atl1_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int atl1_set_mac(struct net_device *netdev, void *p)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (netif_running(netdev))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
atl1_set_mac_addr(&adapter->hw);
return 0;
}
/*
* atl1_watchdog - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl1_watchdog(unsigned long data)
{
struct atl1_adapter *adapter = (struct atl1_adapter *)data;
/* Reset the timer */
mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
}
static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
u16 result;
atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
return result;
}
static void mdio_write(struct net_device *netdev, int phy_id, int reg_num, int val)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
atl1_write_phy_reg(&adapter->hw, reg_num, val);
}
/*
* atl1_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
unsigned long flags;
int retval;
if (!netif_running(netdev))
return -EINVAL;
spin_lock_irqsave(&adapter->lock, flags);
retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
spin_unlock_irqrestore(&adapter->lock, flags);
return retval;
}
/*
* atl1_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl1_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return atl1_mii_ioctl(netdev, ifr, cmd);
default:
return -EOPNOTSUPP;
}
}
/*
* atl1_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
*/
static void atl1_tx_timeout(struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
schedule_work(&adapter->tx_timeout_task);
}
/*
* atl1_phy_config - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl1_phy_config(unsigned long data)
{
struct atl1_adapter *adapter = (struct atl1_adapter *)data;
struct atl1_hw *hw = &adapter->hw;
unsigned long flags;
spin_lock_irqsave(&adapter->lock, flags);
adapter->phy_timer_pending = false;
atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
atl1_write_phy_reg(hw, MII_AT001_CR, hw->mii_1000t_ctrl_reg);
atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
spin_unlock_irqrestore(&adapter->lock, flags);
}
int atl1_reset(struct atl1_adapter *adapter)
{
int ret;
ret = atl1_reset_hw(&adapter->hw);
if (ret != ATL1_SUCCESS)
return ret;
return atl1_init_hw(&adapter->hw);
}
/*
* atl1_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int atl1_open(struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
int err;
/* allocate transmit descriptors */
err = atl1_setup_ring_resources(adapter);
if (err)
return err;
err = atl1_up(adapter);
if (err)
goto err_up;
return 0;
err_up:
atl1_reset(adapter);
return err;
}
/*
* atl1_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int atl1_close(struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
atl1_down(adapter);
atl1_free_ring_resources(adapter);
return 0;
}
/*
* If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
* will assert. We do soft reset <0x1400=1> according
* with the SPEC. BUT, it seemes that PCIE or DMA
* state-machine will not be reset. DMAR_TO_INT will
* assert again and again.
*/
static void atl1_tx_timeout_task(struct work_struct *work)
{
struct atl1_adapter *adapter =
container_of(work, struct atl1_adapter, tx_timeout_task);
struct net_device *netdev = adapter->netdev;
netif_device_detach(netdev);
atl1_down(adapter);
atl1_up(adapter);
netif_device_attach(netdev);
}
/*
* atl1_link_chg_task - deal with link change event Out of interrupt context
*/
static void atl1_link_chg_task(struct work_struct *work)
{
struct atl1_adapter *adapter =
container_of(work, struct atl1_adapter, link_chg_task);
unsigned long flags;
spin_lock_irqsave(&adapter->lock, flags);
atl1_check_link(adapter);
spin_unlock_irqrestore(&adapter->lock, flags);
}
/*
* atl1_pcie_patch - Patch for PCIE module
*/
static void atl1_pcie_patch(struct atl1_adapter *adapter)
{
u32 value;
value = 0x6500;
iowrite32(value, adapter->hw.hw_addr + 0x12FC);
/* pcie flow control mode change */
value = ioread32(adapter->hw.hw_addr + 0x1008);
value |= 0x8000;
iowrite32(value, adapter->hw.hw_addr + 0x1008);
}
/*
* When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
* on PCI Command register is disable.
* The function enable this bit.
* Brackett, 2006/03/15
*/
static void atl1_via_workaround(struct atl1_adapter *adapter)
{
unsigned long value;
value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
if (value & PCI_COMMAND_INTX_DISABLE)
value &= ~PCI_COMMAND_INTX_DISABLE;
iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
}
/*
* atl1_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in atl1_pci_tbl
*
* Returns 0 on success, negative on failure
*
* atl1_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int __devinit atl1_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct atl1_adapter *adapter;
static int cards_found = 0;
bool pci_using_64 = true;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
if (err) {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
printk(KERN_DEBUG
"%s: no usable DMA configuration, aborting\n",
atl1_driver_name);
goto err_dma;
}
pci_using_64 = false;
}
/* Mark all PCI regions associated with PCI device
* pdev as being reserved by owner atl1_driver_name
*/
err = pci_request_regions(pdev, atl1_driver_name);
if (err)
goto err_request_regions;
/* Enables bus-mastering on the device and calls
* pcibios_set_master to do the needed arch specific settings
*/
pci_set_master(pdev);
netdev = alloc_etherdev(sizeof(struct atl1_adapter));
if (!netdev) {
err = -ENOMEM;
goto err_alloc_etherdev;
}
SET_MODULE_OWNER(netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->hw.back = adapter;
adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
if (!adapter->hw.hw_addr) {
err = -EIO;
goto err_pci_iomap;
}
/* get device revision number */
adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr + (REG_MASTER_CTRL + 2));
/* set default ring resource counts */
adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
adapter->mii.dev = netdev;
adapter->mii.mdio_read = mdio_read;
adapter->mii.mdio_write = mdio_write;
adapter->mii.phy_id_mask = 0x1f;
adapter->mii.reg_num_mask = 0x1f;
netdev->open = &atl1_open;
netdev->stop = &atl1_close;
netdev->hard_start_xmit = &atl1_xmit_frame;
netdev->get_stats = &atl1_get_stats;
netdev->set_multicast_list = &atl1_set_multi;
netdev->set_mac_address = &atl1_set_mac;
netdev->change_mtu = &atl1_change_mtu;
netdev->do_ioctl = &atl1_ioctl;
netdev->tx_timeout = &atl1_tx_timeout;
netdev->watchdog_timeo = 5 * HZ;
netdev->vlan_rx_register = atl1_vlan_rx_register;
netdev->vlan_rx_add_vid = atl1_vlan_rx_add_vid;
netdev->vlan_rx_kill_vid = atl1_vlan_rx_kill_vid;
netdev->ethtool_ops = &atl1_ethtool_ops;
adapter->bd_number = cards_found;
adapter->pci_using_64 = pci_using_64;
/* setup the private structure */
err = atl1_sw_init(adapter);
if (err)
goto err_common;
netdev->features = NETIF_F_HW_CSUM;
netdev->features |= NETIF_F_SG;
netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
/*
* FIXME - Until tso performance gets fixed, disable the feature.
* Enable it with ethtool -K if desired.
*/
/* netdev->features |= NETIF_F_TSO; */
if (pci_using_64)
netdev->features |= NETIF_F_HIGHDMA;
netdev->features |= NETIF_F_LLTX;
/*
* patch for some L1 of old version,
* the final version of L1 may not need these
* patches
*/
/* atl1_pcie_patch(adapter); */
/* really reset GPHY core */
iowrite16(0, adapter->hw.hw_addr + REG_GPHY_ENABLE);
/*
* reset the controller to
* put the device in a known good starting state
*/
if (atl1_reset_hw(&adapter->hw)) {
err = -EIO;
goto err_common;
}
/* copy the MAC address out of the EEPROM */
atl1_read_mac_addr(&adapter->hw);
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->dev_addr)) {
err = -EIO;
goto err_common;
}
atl1_check_options(adapter);
/* pre-init the MAC, and setup link */
err = atl1_init_hw(&adapter->hw);
if (err) {
err = -EIO;
goto err_common;
}
atl1_pcie_patch(adapter);
/* assume we have no link for now */
netif_carrier_off(netdev);
netif_stop_queue(netdev);
init_timer(&adapter->watchdog_timer);
adapter->watchdog_timer.function = &atl1_watchdog;
adapter->watchdog_timer.data = (unsigned long)adapter;
init_timer(&adapter->phy_config_timer);
adapter->phy_config_timer.function = &atl1_phy_config;
adapter->phy_config_timer.data = (unsigned long)adapter;
adapter->phy_timer_pending = false;
INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
INIT_WORK(&adapter->link_chg_task, atl1_link_chg_task);
INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
err = register_netdev(netdev);
if (err)
goto err_common;
cards_found++;
atl1_via_workaround(adapter);
return 0;
err_common:
pci_iounmap(pdev, adapter->hw.hw_addr);
err_pci_iomap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_dma:
err_request_regions:
pci_disable_device(pdev);
return err;
}
/*
* atl1_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* atl1_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
*/
static void __devexit atl1_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1_adapter *adapter;
/* Device not available. Return. */
if (!netdev)
return;
adapter = netdev_priv(netdev);
iowrite16(0, adapter->hw.hw_addr + REG_GPHY_ENABLE);
unregister_netdev(netdev);
pci_iounmap(pdev, adapter->hw.hw_addr);
pci_release_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
#ifdef CONFIG_PM
static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_hw *hw = &adapter->hw;
u32 ctrl = 0;
u32 wufc = adapter->wol;
netif_device_detach(netdev);
if (netif_running(netdev))
atl1_down(adapter);
atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
if (ctrl & BMSR_LSTATUS)
wufc &= ~ATL1_WUFC_LNKC;
/* reduce speed to 10/100M */
if (wufc) {
atl1_phy_enter_power_saving(hw);
/* if resume, let driver to re- setup link */
hw->phy_configured = false;
atl1_set_mac_addr(hw);
atl1_set_multi(netdev);
ctrl = 0;
/* turn on magic packet wol */
if (wufc & ATL1_WUFC_MAG)
ctrl = WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
/* turn on Link change WOL */
if (wufc & ATL1_WUFC_LNKC)
ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
/* turn on all-multi mode if wake on multicast is enabled */
ctrl = ioread32(hw->hw_addr + REG_MAC_CTRL);
ctrl &= ~MAC_CTRL_DBG;
ctrl &= ~MAC_CTRL_PROMIS_EN;
if (wufc & ATL1_WUFC_MC)
ctrl |= MAC_CTRL_MC_ALL_EN;
else
ctrl &= ~MAC_CTRL_MC_ALL_EN;
/* turn on broadcast mode if wake on-BC is enabled */
if (wufc & ATL1_WUFC_BC)
ctrl |= MAC_CTRL_BC_EN;
else
ctrl &= ~MAC_CTRL_BC_EN;
/* enable RX */
ctrl |= MAC_CTRL_RX_EN;
iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
pci_enable_wake(pdev, PCI_D3hot, 1);
pci_enable_wake(pdev, PCI_D3cold, 1); /* 4 == D3 cold */
} else {
iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0); /* 4 == D3 cold */
}
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
static int atl1_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1_adapter *adapter = netdev_priv(netdev);
u32 ret_val;
pci_set_power_state(pdev, 0);
pci_restore_state(pdev);
ret_val = pci_enable_device(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
atl1_reset(adapter);
if (netif_running(netdev))
atl1_up(adapter);
netif_device_attach(netdev);
atl1_via_workaround(adapter);
return 0;
}
#else
#define atl1_suspend NULL
#define atl1_resume NULL
#endif
static struct pci_driver atl1_driver = {
.name = atl1_driver_name,
.id_table = atl1_pci_tbl,
.probe = atl1_probe,
.remove = __devexit_p(atl1_remove),
/* Power Managment Hooks */
/* probably broken right now -- CHS */
.suspend = atl1_suspend,
.resume = atl1_resume
};
/*
* atl1_exit_module - Driver Exit Cleanup Routine
*
* atl1_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit atl1_exit_module(void)
{
pci_unregister_driver(&atl1_driver);
}
/*
* atl1_init_module - Driver Registration Routine
*
* atl1_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init atl1_init_module(void)
{
printk(KERN_INFO "%s - version %s\n", atl1_driver_string, DRIVER_VERSION);
printk(KERN_INFO "%s\n", atl1_copyright);
return pci_register_driver(&atl1_driver);
}
module_init(atl1_init_module);
module_exit(atl1_exit_module);