android_kernel_xiaomi_sm8350/drivers/media/dvb/frontends/dib7000p.c
Patrick Boettcher 8d99996b09 V4L/DVB (5963): Module parameter description for SFN workaround
Thanks to Matt Doran I found that there the module parameter description 
was not OK.

Signed-off-by: Patrick Boettcher <pb@linuxtv.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2007-10-09 22:04:04 -03:00

1388 lines
40 KiB
C

/*
* Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
*
* Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/i2c.h>
#include "dvb_frontend.h"
#include "dib7000p.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
static int buggy_sfn_workaround;
module_param(buggy_sfn_workaround, int, 0644);
MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
struct dib7000p_state {
struct dvb_frontend demod;
struct dib7000p_config cfg;
u8 i2c_addr;
struct i2c_adapter *i2c_adap;
struct dibx000_i2c_master i2c_master;
u16 wbd_ref;
u8 current_band;
fe_bandwidth_t current_bandwidth;
struct dibx000_agc_config *current_agc;
u32 timf;
u8 div_force_off : 1;
u8 div_state : 1;
u16 div_sync_wait;
u8 agc_state;
u16 gpio_dir;
u16 gpio_val;
u8 sfn_workaround_active :1;
};
enum dib7000p_power_mode {
DIB7000P_POWER_ALL = 0,
DIB7000P_POWER_ANALOG_ADC,
DIB7000P_POWER_INTERFACE_ONLY,
};
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
{
u8 wb[2] = { reg >> 8, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[2] = {
{ .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
};
if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
dprintk("i2c read error on %d",reg);
return (rb[0] << 8) | rb[1];
}
static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
{
u8 b[4] = {
(reg >> 8) & 0xff, reg & 0xff,
(val >> 8) & 0xff, val & 0xff,
};
struct i2c_msg msg = {
.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
};
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}
static void dib7000p_write_tab(struct dib7000p_state *state, u16 *buf)
{
u16 l = 0, r, *n;
n = buf;
l = *n++;
while (l) {
r = *n++;
do {
dib7000p_write_word(state, r, *n++);
r++;
} while (--l);
l = *n++;
}
}
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
{
int ret = 0;
u16 outreg, fifo_threshold, smo_mode;
outreg = 0;
fifo_threshold = 1792;
smo_mode = (dib7000p_read_word(state, 235) & 0x0010) | (1 << 1);
dprintk( "setting output mode for demod %p to %d",
&state->demod, mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
outreg = (1 << 10); /* 0x0400 */
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */
break;
case OUTMODE_DIVERSITY:
if (state->cfg.hostbus_diversity)
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
else
outreg = (1 << 11);
break;
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
smo_mode |= (3 << 1);
fifo_threshold = 512;
outreg = (1 << 10) | (5 << 6);
break;
case OUTMODE_ANALOG_ADC:
outreg = (1 << 10) | (3 << 6);
break;
case OUTMODE_HIGH_Z: // disable
outreg = 0;
break;
default:
dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod);
break;
}
if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5) ;
ret |= dib7000p_write_word(state, 235, smo_mode);
ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */
ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */
return ret;
}
static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
{
struct dib7000p_state *state = demod->demodulator_priv;
if (state->div_force_off) {
dprintk( "diversity combination deactivated - forced by COFDM parameters");
onoff = 0;
}
state->div_state = (u8)onoff;
if (onoff) {
dib7000p_write_word(state, 204, 6);
dib7000p_write_word(state, 205, 16);
/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
} else {
dib7000p_write_word(state, 204, 1);
dib7000p_write_word(state, 205, 0);
dib7000p_write_word(state, 207, 0);
}
return 0;
}
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{
/* by default everything is powered off */
u16 reg_774 = 0xffff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003,
reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
/* now, depending on the requested mode, we power on */
switch (mode) {
/* power up everything in the demod */
case DIB7000P_POWER_ALL:
reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff;
break;
case DIB7000P_POWER_ANALOG_ADC:
/* dem, cfg, iqc, sad, agc */
reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
/* nud */
reg_776 &= ~((1 << 0));
/* Dout */
reg_1280 &= ~((1 << 11));
/* fall through wanted to enable the interfaces */
/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */
reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
break;
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */
}
dib7000p_write_word(state, 774, reg_774);
dib7000p_write_word(state, 775, reg_775);
dib7000p_write_word(state, 776, reg_776);
dib7000p_write_word(state, 899, reg_899);
dib7000p_write_word(state, 1280, reg_1280);
return 0;
}
static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
{
u16 reg_908 = dib7000p_read_word(state, 908),
reg_909 = dib7000p_read_word(state, 909);
switch (no) {
case DIBX000_SLOW_ADC_ON:
reg_909 |= (1 << 1) | (1 << 0);
dib7000p_write_word(state, 909, reg_909);
reg_909 &= ~(1 << 1);
break;
case DIBX000_SLOW_ADC_OFF:
reg_909 |= (1 << 1) | (1 << 0);
break;
case DIBX000_ADC_ON:
reg_908 &= 0x0fff;
reg_909 &= 0x0003;
break;
case DIBX000_ADC_OFF: // leave the VBG voltage on
reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
break;
case DIBX000_VBG_ENABLE:
reg_908 &= ~(1 << 15);
break;
case DIBX000_VBG_DISABLE:
reg_908 |= (1 << 15);
break;
default:
break;
}
// dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
dib7000p_write_word(state, 908, reg_908);
dib7000p_write_word(state, 909, reg_909);
}
static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
{
u32 timf;
// store the current bandwidth for later use
state->current_bandwidth = bw;
if (state->timf == 0) {
dprintk( "using default timf");
timf = state->cfg.bw->timf;
} else {
dprintk( "using updated timf");
timf = state->timf;
}
timf = timf * (bw / 50) / 160;
dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
dib7000p_write_word(state, 24, (u16) ((timf ) & 0xffff));
return 0;
}
static int dib7000p_sad_calib(struct dib7000p_state *state)
{
/* internal */
// dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096
/* do the calibration */
dib7000p_write_word(state, 73, (1 << 0));
dib7000p_write_word(state, 73, (0 << 0));
msleep(1);
return 0;
}
int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
{
struct dib7000p_state *state = demod->demodulator_priv;
if (value > 4095)
value = 4095;
state->wbd_ref = value;
return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
}
EXPORT_SYMBOL(dib7000p_set_wbd_ref);
static void dib7000p_reset_pll(struct dib7000p_state *state)
{
struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
u16 clk_cfg0;
/* force PLL bypass */
clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) |
(bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
dib7000p_write_word(state, 900, clk_cfg0);
/* P_pll_cfg */
dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
dib7000p_write_word(state, 900, clk_cfg0);
dib7000p_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff));
dib7000p_write_word(state, 19, (u16) ( (bw->internal*1000 ) & 0xffff));
dib7000p_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff));
dib7000p_write_word(state, 22, (u16) ( (bw->ifreq ) & 0xffff));
dib7000p_write_word(state, 72, bw->sad_cfg);
}
static int dib7000p_reset_gpio(struct dib7000p_state *st)
{
/* reset the GPIOs */
dprintk( "gpio dir: %x: val: %x, pwm_pos: %x",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos);
dib7000p_write_word(st, 1029, st->gpio_dir);
dib7000p_write_word(st, 1030, st->gpio_val);
/* TODO 1031 is P_gpio_od */
dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);
dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
return 0;
}
static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
{
st->gpio_dir = dib7000p_read_word(st, 1029);
st->gpio_dir &= ~(1 << num); /* reset the direction bit */
st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */
dib7000p_write_word(st, 1029, st->gpio_dir);
st->gpio_val = dib7000p_read_word(st, 1030);
st->gpio_val &= ~(1 << num); /* reset the direction bit */
st->gpio_val |= (val & 0x01) << num; /* set the new value */
dib7000p_write_word(st, 1030, st->gpio_val);
return 0;
}
int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
{
struct dib7000p_state *state = demod->demodulator_priv;
return dib7000p_cfg_gpio(state, num, dir, val);
}
EXPORT_SYMBOL(dib7000p_set_gpio);
static u16 dib7000p_defaults[] =
{
// auto search configuration
3, 2,
0x0004,
0x1000,
0x0814, /* Equal Lock */
12, 6,
0x001b,
0x7740,
0x005b,
0x8d80,
0x01c9,
0xc380,
0x0000,
0x0080,
0x0000,
0x0090,
0x0001,
0xd4c0,
1, 26,
0x6680, // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26
/* set ADC level to -16 */
11, 79,
(1 << 13) - 825 - 117,
(1 << 13) - 837 - 117,
(1 << 13) - 811 - 117,
(1 << 13) - 766 - 117,
(1 << 13) - 737 - 117,
(1 << 13) - 693 - 117,
(1 << 13) - 648 - 117,
(1 << 13) - 619 - 117,
(1 << 13) - 575 - 117,
(1 << 13) - 531 - 117,
(1 << 13) - 501 - 117,
1, 142,
0x0410, // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16
/* disable power smoothing */
8, 145,
0,
0,
0,
0,
0,
0,
0,
0,
1, 154,
1 << 13, // P_fft_freq_dir=1, P_fft_nb_to_cut=0
1, 168,
0x0ccd, // P_pha3_thres, default 0x3000
// 1, 169,
// 0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010
1, 183,
0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005
5, 187,
0x023d, // P_adp_regul_cnt=573, default: 410
0x00a4, // P_adp_noise_cnt=
0x00a4, // P_adp_regul_ext
0x7ff0, // P_adp_noise_ext
0x3ccc, // P_adp_fil
1, 198,
0x800, // P_equal_thres_wgn
1, 222,
0x0010, // P_fec_ber_rs_len=2
1, 235,
0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
2, 901,
0x0006, // P_clk_cfg1
(3 << 10) | (1 << 6), // P_divclksel=3 P_divbitsel=1
1, 905,
0x2c8e, // Tuner IO bank: max drive (14mA) + divout pads max drive
0,
};
static int dib7000p_demod_reset(struct dib7000p_state *state)
{
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);
/* restart all parts */
dib7000p_write_word(state, 770, 0xffff);
dib7000p_write_word(state, 771, 0xffff);
dib7000p_write_word(state, 772, 0x001f);
dib7000p_write_word(state, 898, 0x0003);
/* except i2c, sdio, gpio - control interfaces */
dib7000p_write_word(state, 1280, 0x01fc - ((1 << 7) | (1 << 6) | (1 << 5)) );
dib7000p_write_word(state, 770, 0);
dib7000p_write_word(state, 771, 0);
dib7000p_write_word(state, 772, 0);
dib7000p_write_word(state, 898, 0);
dib7000p_write_word(state, 1280, 0);
/* default */
dib7000p_reset_pll(state);
if (dib7000p_reset_gpio(state) != 0)
dprintk( "GPIO reset was not successful.");
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk( "OUTPUT_MODE could not be reset.");
/* unforce divstr regardless whether i2c enumeration was done or not */
dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) );
dib7000p_set_bandwidth(state, 8000);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
dib7000p_sad_calib(state);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
// P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
if(state->cfg.tuner_is_baseband)
dib7000p_write_word(state, 36,0x0755);
else
dib7000p_write_word(state, 36,0x1f55);
dib7000p_write_tab(state, dib7000p_defaults);
dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
return 0;
}
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{
u16 tmp = 0;
tmp = dib7000p_read_word(state, 903);
dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll
tmp = dib7000p_read_word(state, 900);
dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock
}
static void dib7000p_restart_agc(struct dib7000p_state *state)
{
// P_restart_iqc & P_restart_agc
dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
dib7000p_write_word(state, 770, 0x0000);
}
static int dib7000p_update_lna(struct dib7000p_state *state)
{
u16 dyn_gain;
// when there is no LNA to program return immediatly
if (state->cfg.update_lna) {
// read dyn_gain here (because it is demod-dependent and not fe)
dyn_gain = dib7000p_read_word(state, 394);
if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed
dib7000p_restart_agc(state);
return 1;
}
}
return 0;
}
static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
{
struct dibx000_agc_config *agc = NULL;
int i;
if (state->current_band == band && state->current_agc != NULL)
return 0;
state->current_band = band;
for (i = 0; i < state->cfg.agc_config_count; i++)
if (state->cfg.agc[i].band_caps & band) {
agc = &state->cfg.agc[i];
break;
}
if (agc == NULL) {
dprintk( "no valid AGC configuration found for band 0x%02x",band);
return -EINVAL;
}
state->current_agc = agc;
/* AGC */
dib7000p_write_word(state, 75 , agc->setup );
dib7000p_write_word(state, 76 , agc->inv_gain );
dib7000p_write_word(state, 77 , agc->time_stabiliz );
dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
// Demod AGC loop configuration
dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
/* AGC continued */
dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
if (state->wbd_ref != 0)
dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
else
dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);
dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
dib7000p_write_word(state, 107, agc->agc1_max);
dib7000p_write_word(state, 108, agc->agc1_min);
dib7000p_write_word(state, 109, agc->agc2_max);
dib7000p_write_word(state, 110, agc->agc2_min);
dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
dib7000p_write_word(state, 112, agc->agc1_pt3);
dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
return 0;
}
static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{
struct dib7000p_state *state = demod->demodulator_priv;
int ret = -1;
u8 *agc_state = &state->agc_state;
u8 agc_split;
switch (state->agc_state) {
case 0:
// set power-up level: interf+analog+AGC
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_ADC_ON);
dib7000p_pll_clk_cfg(state);
if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0)
return -1;
ret = 7;
(*agc_state)++;
break;
case 1:
// AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
dib7000p_write_word(state, 78, 32768);
if (!state->current_agc->perform_agc_softsplit) {
/* we are using the wbd - so slow AGC startup */
/* force 0 split on WBD and restart AGC */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
(*agc_state)++;
ret = 5;
} else {
/* default AGC startup */
(*agc_state) = 4;
/* wait AGC rough lock time */
ret = 7;
}
dib7000p_restart_agc(state);
break;
case 2: /* fast split search path after 5sec */
dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */
(*agc_state)++;
ret = 14;
break;
case 3: /* split search ended */
agc_split = (u8)dib7000p_read_word(state, 396); /* store the split value for the next time */
dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */
dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */
dib7000p_restart_agc(state);
dprintk( "SPLIT %p: %hd", demod, agc_split);
(*agc_state)++;
ret = 5;
break;
case 4: /* LNA startup */
// wait AGC accurate lock time
ret = 7;
if (dib7000p_update_lna(state))
// wait only AGC rough lock time
ret = 5;
else // nothing was done, go to the next state
(*agc_state)++;
break;
case 5:
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 0);
(*agc_state)++;
break;
default:
break;
}
return ret;
}
static void dib7000p_update_timf(struct dib7000p_state *state)
{
u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
state->timf = timf * 160 / (state->current_bandwidth / 50);
dib7000p_write_word(state, 23, (u16) (timf >> 16));
dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->cfg.bw->timf);
}
static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq)
{
u16 value, est[4];
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
/* nfft, guard, qam, alpha */
value = 0;
switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
case /* 4K MODE */ 255: value |= (2 << 7); break;
default:
case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
}
switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
default:
case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
}
switch (ch->u.ofdm.constellation) {
case QPSK: value |= (0 << 3); break;
case QAM_16: value |= (1 << 3); break;
default:
case QAM_64: value |= (2 << 3); break;
}
switch (HIERARCHY_1) {
case HIERARCHY_2: value |= 2; break;
case HIERARCHY_4: value |= 4; break;
default:
case HIERARCHY_1: value |= 1; break;
}
dib7000p_write_word(state, 0, value);
dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */
/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
value = 0;
if (1 != 0)
value |= (1 << 6);
if (ch->u.ofdm.hierarchy_information == 1)
value |= (1 << 4);
if (1 == 1)
value |= 1;
switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
case FEC_2_3: value |= (2 << 1); break;
case FEC_3_4: value |= (3 << 1); break;
case FEC_5_6: value |= (5 << 1); break;
case FEC_7_8: value |= (7 << 1); break;
default:
case FEC_1_2: value |= (1 << 1); break;
}
dib7000p_write_word(state, 208, value);
/* offset loop parameters */
dib7000p_write_word(state, 26, 0x6680); // timf(6xxx)
dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3)
dib7000p_write_word(state, 29, 0x1273); // isi
dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5)
/* P_dvsy_sync_wait */
switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_8K: value = 256; break;
case /* 4K MODE */ 255: value = 128; break;
case TRANSMISSION_MODE_2K:
default: value = 64; break;
}
switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_16: value *= 2; break;
case GUARD_INTERVAL_1_8: value *= 4; break;
case GUARD_INTERVAL_1_4: value *= 8; break;
default:
case GUARD_INTERVAL_1_32: value *= 1; break;
}
state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO
/* deactive the possibility of diversity reception if extended interleaver */
state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K;
dib7000p_set_diversity_in(&state->demod, state->div_state);
/* channel estimation fine configuration */
switch (ch->u.ofdm.constellation) {
case QAM_64:
est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
break;
case QAM_16:
est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
break;
default:
est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
est[2] = 0x0333; /* P_adp_regul_ext 0.1 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
break;
}
for (value = 0; value < 4; value++)
dib7000p_write_word(state, 187 + value, est[value]);
}
static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{
struct dib7000p_state *state = demod->demodulator_priv;
struct dvb_frontend_parameters schan;
u32 value, factor;
schan = *ch;
schan.u.ofdm.constellation = QAM_64;
schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
schan.u.ofdm.code_rate_HP = FEC_2_3;
schan.u.ofdm.code_rate_LP = FEC_3_4;
schan.u.ofdm.hierarchy_information = 0;
dib7000p_set_channel(state, &schan, 7);
factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth);
if (factor >= 5000)
factor = 1;
else
factor = 6;
// always use the setting for 8MHz here lock_time for 7,6 MHz are longer
value = 30 * state->cfg.bw->internal * factor;
dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
value = 100 * state->cfg.bw->internal * factor;
dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
value = 500 * state->cfg.bw->internal * factor;
dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
value = dib7000p_read_word(state, 0);
dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
dib7000p_read_word(state, 1284);
dib7000p_write_word(state, 0, (u16) value);
return 0;
}
static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
{
struct dib7000p_state *state = demod->demodulator_priv;
u16 irq_pending = dib7000p_read_word(state, 1284);
if (irq_pending & 0x1) // failed
return 1;
if (irq_pending & 0x2) // succeeded
return 2;
return 0; // still pending
}
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
{
static s16 notch[]={16143, 14402, 12238, 9713, 6902, 3888, 759, -2392};
static u8 sine [] ={0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255};
u32 xtal = state->cfg.bw->xtal_hz / 1000;
int f_rel = ( (rf_khz + xtal/2) / xtal) * xtal - rf_khz;
int k;
int coef_re[8],coef_im[8];
int bw_khz = bw;
u32 pha;
dprintk( "relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
if (f_rel < -bw_khz/2 || f_rel > bw_khz/2)
return;
bw_khz /= 100;
dib7000p_write_word(state, 142 ,0x0610);
for (k = 0; k < 8; k++) {
pha = ((f_rel * (k+1) * 112 * 80/bw_khz) /1000) & 0x3ff;
if (pha==0) {
coef_re[k] = 256;
coef_im[k] = 0;
} else if(pha < 256) {
coef_re[k] = sine[256-(pha&0xff)];
coef_im[k] = sine[pha&0xff];
} else if (pha == 256) {
coef_re[k] = 0;
coef_im[k] = 256;
} else if (pha < 512) {
coef_re[k] = -sine[pha&0xff];
coef_im[k] = sine[256 - (pha&0xff)];
} else if (pha == 512) {
coef_re[k] = -256;
coef_im[k] = 0;
} else if (pha < 768) {
coef_re[k] = -sine[256-(pha&0xff)];
coef_im[k] = -sine[pha&0xff];
} else if (pha == 768) {
coef_re[k] = 0;
coef_im[k] = -256;
} else {
coef_re[k] = sine[pha&0xff];
coef_im[k] = -sine[256 - (pha&0xff)];
}
coef_re[k] *= notch[k];
coef_re[k] += (1<<14);
if (coef_re[k] >= (1<<24))
coef_re[k] = (1<<24) - 1;
coef_re[k] /= (1<<15);
coef_im[k] *= notch[k];
coef_im[k] += (1<<14);
if (coef_im[k] >= (1<<24))
coef_im[k] = (1<<24)-1;
coef_im[k] /= (1<<15);
dprintk( "PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
}
dib7000p_write_word(state,143 ,0);
}
static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{
struct dib7000p_state *state = demod->demodulator_priv;
u16 tmp = 0;
if (ch != NULL)
dib7000p_set_channel(state, ch, 0);
else
return -EINVAL;
// restart demod
dib7000p_write_word(state, 770, 0x4000);
dib7000p_write_word(state, 770, 0x0000);
msleep(45);
/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
if (state->sfn_workaround_active) {
dprintk( "SFN workaround is active");
tmp |= (1 << 9);
dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift
} else {
dib7000p_write_word(state, 166, 0x0000); // P_pha3_force_pha_shift
}
dib7000p_write_word(state, 29, tmp);
// never achieved a lock with that bandwidth so far - wait for osc-freq to update
if (state->timf == 0)
msleep(200);
/* offset loop parameters */
/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
tmp = (6 << 8) | 0x80;
switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: tmp |= (7 << 12); break;
case /* 4K MODE */ 255: tmp |= (8 << 12); break;
default:
case TRANSMISSION_MODE_8K: tmp |= (9 << 12); break;
}
dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */
/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
tmp = (0 << 4);
switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: tmp |= 0x6; break;
case /* 4K MODE */ 255: tmp |= 0x7; break;
default:
case TRANSMISSION_MODE_8K: tmp |= 0x8; break;
}
dib7000p_write_word(state, 32, tmp);
/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
tmp = (0 << 4);
switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: tmp |= 0x6; break;
case /* 4K MODE */ 255: tmp |= 0x7; break;
default:
case TRANSMISSION_MODE_8K: tmp |= 0x8; break;
}
dib7000p_write_word(state, 33, tmp);
tmp = dib7000p_read_word(state,509);
if (!((tmp >> 6) & 0x1)) {
/* restart the fec */
tmp = dib7000p_read_word(state,771);
dib7000p_write_word(state, 771, tmp | (1 << 1));
dib7000p_write_word(state, 771, tmp);
msleep(10);
tmp = dib7000p_read_word(state,509);
}
// we achieved a lock - it's time to update the osc freq
if ((tmp >> 6) & 0x1)
dib7000p_update_timf(state);
if (state->cfg.spur_protect)
dib7000p_spur_protect(state, ch->frequency/1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
return 0;
}
static int dib7000p_wakeup(struct dvb_frontend *demod)
{
struct dib7000p_state *state = demod->demodulator_priv;
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
return 0;
}
static int dib7000p_sleep(struct dvb_frontend *demod)
{
struct dib7000p_state *state = demod->demodulator_priv;
return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
}
static int dib7000p_identify(struct dib7000p_state *st)
{
u16 value;
dprintk( "checking demod on I2C address: %d (%x)",
st->i2c_addr, st->i2c_addr);
if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
dprintk( "wrong Vendor ID (read=0x%x)",value);
return -EREMOTEIO;
}
if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
dprintk( "wrong Device ID (%x)",value);
return -EREMOTEIO;
}
return 0;
}
static int dib7000p_get_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 tps = dib7000p_read_word(state,463);
fep->inversion = INVERSION_AUTO;
fep->u.ofdm.bandwidth = state->current_bandwidth;
switch ((tps >> 8) & 0x3) {
case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
/* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
}
switch (tps & 0x3) {
case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
}
switch ((tps >> 14) & 0x3) {
case 0: fep->u.ofdm.constellation = QPSK; break;
case 1: fep->u.ofdm.constellation = QAM_16; break;
case 2:
default: fep->u.ofdm.constellation = QAM_64; break;
}
/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */
fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
switch ((tps >> 5) & 0x7) {
case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
case 7:
default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
}
switch ((tps >> 2) & 0x7) {
case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
case 7:
default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
}
/* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */
return 0;
}
static int dib7000p_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{
struct dib7000p_state *state = fe->demodulator_priv;
int time;
state->current_bandwidth = fep->u.ofdm.bandwidth;
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth));
/* maybe the parameter has been changed */
state->sfn_workaround_active = buggy_sfn_workaround;
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe, fep);
/* start up the AGC */
state->agc_state = 0;
do {
time = dib7000p_agc_startup(fe, fep);
if (time != -1)
msleep(time);
} while (time != -1);
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
fep->u.ofdm.constellation == QAM_AUTO ||
fep->u.ofdm.code_rate_HP == FEC_AUTO) {
int i = 800, found;
dib7000p_autosearch_start(fe, fep);
do {
msleep(1);
found = dib7000p_autosearch_is_irq(fe);
} while (found == 0 && i--);
dprintk("autosearch returns: %d",found);
if (found == 0 || found == 1)
return 0; // no channel found
dib7000p_get_frontend(fe, fep);
}
/* make this a config parameter */
dib7000p_set_output_mode(state, OUTMODE_MPEG2_FIFO);
return dib7000p_tune(fe, fep);
}
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 lock = dib7000p_read_word(state, 509);
*stat = 0;
if (lock & 0x8000)
*stat |= FE_HAS_SIGNAL;
if (lock & 0x3000)
*stat |= FE_HAS_CARRIER;
if (lock & 0x0100)
*stat |= FE_HAS_VITERBI;
if (lock & 0x0010)
*stat |= FE_HAS_SYNC;
if (lock & 0x0008)
*stat |= FE_HAS_LOCK;
return 0;
}
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct dib7000p_state *state = fe->demodulator_priv;
*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
return 0;
}
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
{
struct dib7000p_state *state = fe->demodulator_priv;
*unc = dib7000p_read_word(state, 506);
return 0;
}
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 val = dib7000p_read_word(state, 394);
*strength = 65535 - val;
return 0;
}
static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr)
{
*snr = 0x0000;
return 0;
}
static int dib7000p_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void dib7000p_release(struct dvb_frontend *demod)
{
struct dib7000p_state *st = demod->demodulator_priv;
dibx000_exit_i2c_master(&st->i2c_master);
kfree(st);
}
int dib7000pc_detection(struct i2c_adapter *i2c_adap)
{
u8 tx[2], rx[2];
struct i2c_msg msg[2] = {
{ .addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2 },
{ .addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2 },
};
tx[0] = 0x03;
tx[1] = 0x00;
if (i2c_transfer(i2c_adap, msg, 2) == 2)
if (rx[0] == 0x01 && rx[1] == 0xb3) {
dprintk("-D- DiB7000PC detected");
return 1;
}
msg[0].addr = msg[1].addr = 0x40;
if (i2c_transfer(i2c_adap, msg, 2) == 2)
if (rx[0] == 0x01 && rx[1] == 0xb3) {
dprintk("-D- DiB7000PC detected");
return 1;
}
dprintk("-D- DiB7000PC not detected");
return 0;
}
EXPORT_SYMBOL(dib7000pc_detection);
struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
{
struct dib7000p_state *st = demod->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
EXPORT_SYMBOL(dib7000p_get_i2c_master);
int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
{
struct dib7000p_state st = { .i2c_adap = i2c };
int k = 0;
u8 new_addr = 0;
for (k = no_of_demods-1; k >= 0; k--) {
st.cfg = cfg[k];
/* designated i2c address */
new_addr = (0x40 + k) << 1;
st.i2c_addr = new_addr;
if (dib7000p_identify(&st) != 0) {
st.i2c_addr = default_addr;
if (dib7000p_identify(&st) != 0) {
dprintk("DiB7000P #%d: not identified\n", k);
return -EIO;
}
}
/* start diversity to pull_down div_str - just for i2c-enumeration */
dib7000p_set_output_mode(&st, OUTMODE_DIVERSITY);
/* set new i2c address and force divstart */
dib7000p_write_word(&st, 1285, (new_addr << 2) | 0x2);
dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
}
for (k = 0; k < no_of_demods; k++) {
st.cfg = cfg[k];
st.i2c_addr = (0x40 + k) << 1;
// unforce divstr
dib7000p_write_word(&st, 1285, st.i2c_addr << 2);
/* deactivate div - it was just for i2c-enumeration */
dib7000p_set_output_mode(&st, OUTMODE_HIGH_Z);
}
return 0;
}
EXPORT_SYMBOL(dib7000p_i2c_enumeration);
static struct dvb_frontend_ops dib7000p_ops;
struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
{
struct dvb_frontend *demod;
struct dib7000p_state *st;
st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
if (st == NULL)
return NULL;
memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
st->i2c_adap = i2c_adap;
st->i2c_addr = i2c_addr;
st->gpio_val = cfg->gpio_val;
st->gpio_dir = cfg->gpio_dir;
demod = &st->demod;
demod->demodulator_priv = st;
memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));
if (dib7000p_identify(st) != 0)
goto error;
dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);
dib7000p_demod_reset(st);
return demod;
error:
kfree(st);
return NULL;
}
EXPORT_SYMBOL(dib7000p_attach);
static struct dvb_frontend_ops dib7000p_ops = {
.info = {
.name = "DiBcom 7000PC",
.type = FE_OFDM,
.frequency_min = 44250000,
.frequency_max = 867250000,
.frequency_stepsize = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
},
.release = dib7000p_release,
.init = dib7000p_wakeup,
.sleep = dib7000p_sleep,
.set_frontend = dib7000p_set_frontend,
.get_tune_settings = dib7000p_fe_get_tune_settings,
.get_frontend = dib7000p_get_frontend,
.read_status = dib7000p_read_status,
.read_ber = dib7000p_read_ber,
.read_signal_strength = dib7000p_read_signal_strength,
.read_snr = dib7000p_read_snr,
.read_ucblocks = dib7000p_read_unc_blocks,
};
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
MODULE_LICENSE("GPL");