android_kernel_xiaomi_sm8350/sound/pci/hda/hda_codec.c
Joseph Chan c577b8a16f [ALSA] hda-codec - Add support for VIA VT1708(A) HD audio codec
This patch is VIA first release for HD audio codec, VT1708(A) and
it provides geneneral HD audio driver features.

Signed-off-by: Joseph Chan <josephchan@via.com.tw>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2007-02-09 09:02:15 +01:00

2345 lines
62 KiB
C

/*
* Universal Interface for Intel High Definition Audio Codec
*
* Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include "hda_codec.h"
#include <sound/asoundef.h>
#include <sound/tlv.h>
#include <sound/initval.h>
#include "hda_local.h"
MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
MODULE_LICENSE("GPL");
/*
* vendor / preset table
*/
struct hda_vendor_id {
unsigned int id;
const char *name;
};
/* codec vendor labels */
static struct hda_vendor_id hda_vendor_ids[] = {
{ 0x10ec, "Realtek" },
{ 0x1057, "Motorola" },
{ 0x1106, "VIA" },
{ 0x11d4, "Analog Devices" },
{ 0x13f6, "C-Media" },
{ 0x14f1, "Conexant" },
{ 0x434d, "C-Media" },
{ 0x8384, "SigmaTel" },
{} /* terminator */
};
/* codec presets */
#include "hda_patch.h"
/**
* snd_hda_codec_read - send a command and get the response
* @codec: the HDA codec
* @nid: NID to send the command
* @direct: direct flag
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command and read the corresponding response.
*
* Returns the obtained response value, or -1 for an error.
*/
unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
unsigned int verb, unsigned int parm)
{
unsigned int res;
mutex_lock(&codec->bus->cmd_mutex);
if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
res = codec->bus->ops.get_response(codec);
else
res = (unsigned int)-1;
mutex_unlock(&codec->bus->cmd_mutex);
return res;
}
EXPORT_SYMBOL(snd_hda_codec_read);
/**
* snd_hda_codec_write - send a single command without waiting for response
* @codec: the HDA codec
* @nid: NID to send the command
* @direct: direct flag
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command without waiting for response.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
unsigned int verb, unsigned int parm)
{
int err;
mutex_lock(&codec->bus->cmd_mutex);
err = codec->bus->ops.command(codec, nid, direct, verb, parm);
mutex_unlock(&codec->bus->cmd_mutex);
return err;
}
EXPORT_SYMBOL(snd_hda_codec_write);
/**
* snd_hda_sequence_write - sequence writes
* @codec: the HDA codec
* @seq: VERB array to send
*
* Send the commands sequentially from the given array.
* The array must be terminated with NID=0.
*/
void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
{
for (; seq->nid; seq++)
snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
}
EXPORT_SYMBOL(snd_hda_sequence_write);
/**
* snd_hda_get_sub_nodes - get the range of sub nodes
* @codec: the HDA codec
* @nid: NID to parse
* @start_id: the pointer to store the start NID
*
* Parse the NID and store the start NID of its sub-nodes.
* Returns the number of sub-nodes.
*/
int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
{
unsigned int parm;
parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
*start_id = (parm >> 16) & 0x7fff;
return (int)(parm & 0x7fff);
}
EXPORT_SYMBOL(snd_hda_get_sub_nodes);
/**
* snd_hda_get_connections - get connection list
* @codec: the HDA codec
* @nid: NID to parse
* @conn_list: connection list array
* @max_conns: max. number of connections to store
*
* Parses the connection list of the given widget and stores the list
* of NIDs.
*
* Returns the number of connections, or a negative error code.
*/
int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
hda_nid_t *conn_list, int max_conns)
{
unsigned int parm;
int i, conn_len, conns;
unsigned int shift, num_elems, mask;
hda_nid_t prev_nid;
snd_assert(conn_list && max_conns > 0, return -EINVAL);
parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
if (parm & AC_CLIST_LONG) {
/* long form */
shift = 16;
num_elems = 2;
} else {
/* short form */
shift = 8;
num_elems = 4;
}
conn_len = parm & AC_CLIST_LENGTH;
mask = (1 << (shift-1)) - 1;
if (! conn_len)
return 0; /* no connection */
if (conn_len == 1) {
/* single connection */
parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
conn_list[0] = parm & mask;
return 1;
}
/* multi connection */
conns = 0;
prev_nid = 0;
for (i = 0; i < conn_len; i++) {
int range_val;
hda_nid_t val, n;
if (i % num_elems == 0)
parm = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_CONNECT_LIST, i);
range_val = !! (parm & (1 << (shift-1))); /* ranges */
val = parm & mask;
parm >>= shift;
if (range_val) {
/* ranges between the previous and this one */
if (! prev_nid || prev_nid >= val) {
snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val);
continue;
}
for (n = prev_nid + 1; n <= val; n++) {
if (conns >= max_conns) {
snd_printk(KERN_ERR "Too many connections\n");
return -EINVAL;
}
conn_list[conns++] = n;
}
} else {
if (conns >= max_conns) {
snd_printk(KERN_ERR "Too many connections\n");
return -EINVAL;
}
conn_list[conns++] = val;
}
prev_nid = val;
}
return conns;
}
/**
* snd_hda_queue_unsol_event - add an unsolicited event to queue
* @bus: the BUS
* @res: unsolicited event (lower 32bit of RIRB entry)
* @res_ex: codec addr and flags (upper 32bit or RIRB entry)
*
* Adds the given event to the queue. The events are processed in
* the workqueue asynchronously. Call this function in the interrupt
* hanlder when RIRB receives an unsolicited event.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
{
struct hda_bus_unsolicited *unsol;
unsigned int wp;
if ((unsol = bus->unsol) == NULL)
return 0;
wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
unsol->wp = wp;
wp <<= 1;
unsol->queue[wp] = res;
unsol->queue[wp + 1] = res_ex;
queue_work(unsol->workq, &unsol->work);
return 0;
}
EXPORT_SYMBOL(snd_hda_queue_unsol_event);
/*
* process queueud unsolicited events
*/
static void process_unsol_events(struct work_struct *work)
{
struct hda_bus_unsolicited *unsol =
container_of(work, struct hda_bus_unsolicited, work);
struct hda_bus *bus = unsol->bus;
struct hda_codec *codec;
unsigned int rp, caddr, res;
while (unsol->rp != unsol->wp) {
rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
unsol->rp = rp;
rp <<= 1;
res = unsol->queue[rp];
caddr = unsol->queue[rp + 1];
if (! (caddr & (1 << 4))) /* no unsolicited event? */
continue;
codec = bus->caddr_tbl[caddr & 0x0f];
if (codec && codec->patch_ops.unsol_event)
codec->patch_ops.unsol_event(codec, res);
}
}
/*
* initialize unsolicited queue
*/
static int init_unsol_queue(struct hda_bus *bus)
{
struct hda_bus_unsolicited *unsol;
if (bus->unsol) /* already initialized */
return 0;
unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
if (! unsol) {
snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
return -ENOMEM;
}
unsol->workq = create_singlethread_workqueue("hda_codec");
if (! unsol->workq) {
snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
kfree(unsol);
return -ENOMEM;
}
INIT_WORK(&unsol->work, process_unsol_events);
unsol->bus = bus;
bus->unsol = unsol;
return 0;
}
/*
* destructor
*/
static void snd_hda_codec_free(struct hda_codec *codec);
static int snd_hda_bus_free(struct hda_bus *bus)
{
struct list_head *p, *n;
if (! bus)
return 0;
if (bus->unsol) {
destroy_workqueue(bus->unsol->workq);
kfree(bus->unsol);
}
list_for_each_safe(p, n, &bus->codec_list) {
struct hda_codec *codec = list_entry(p, struct hda_codec, list);
snd_hda_codec_free(codec);
}
if (bus->ops.private_free)
bus->ops.private_free(bus);
kfree(bus);
return 0;
}
static int snd_hda_bus_dev_free(struct snd_device *device)
{
struct hda_bus *bus = device->device_data;
return snd_hda_bus_free(bus);
}
/**
* snd_hda_bus_new - create a HDA bus
* @card: the card entry
* @temp: the template for hda_bus information
* @busp: the pointer to store the created bus instance
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
struct hda_bus **busp)
{
struct hda_bus *bus;
int err;
static struct snd_device_ops dev_ops = {
.dev_free = snd_hda_bus_dev_free,
};
snd_assert(temp, return -EINVAL);
snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
if (busp)
*busp = NULL;
bus = kzalloc(sizeof(*bus), GFP_KERNEL);
if (bus == NULL) {
snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
return -ENOMEM;
}
bus->card = card;
bus->private_data = temp->private_data;
bus->pci = temp->pci;
bus->modelname = temp->modelname;
bus->ops = temp->ops;
mutex_init(&bus->cmd_mutex);
INIT_LIST_HEAD(&bus->codec_list);
if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
snd_hda_bus_free(bus);
return err;
}
if (busp)
*busp = bus;
return 0;
}
EXPORT_SYMBOL(snd_hda_bus_new);
/*
* find a matching codec preset
*/
static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
{
const struct hda_codec_preset **tbl, *preset;
for (tbl = hda_preset_tables; *tbl; tbl++) {
for (preset = *tbl; preset->id; preset++) {
u32 mask = preset->mask;
if (! mask)
mask = ~0;
if (preset->id == (codec->vendor_id & mask) &&
(! preset->rev ||
preset->rev == codec->revision_id))
return preset;
}
}
return NULL;
}
/*
* snd_hda_get_codec_name - store the codec name
*/
void snd_hda_get_codec_name(struct hda_codec *codec,
char *name, int namelen)
{
const struct hda_vendor_id *c;
const char *vendor = NULL;
u16 vendor_id = codec->vendor_id >> 16;
char tmp[16];
for (c = hda_vendor_ids; c->id; c++) {
if (c->id == vendor_id) {
vendor = c->name;
break;
}
}
if (! vendor) {
sprintf(tmp, "Generic %04x", vendor_id);
vendor = tmp;
}
if (codec->preset && codec->preset->name)
snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
else
snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
}
/*
* look for an AFG and MFG nodes
*/
static void setup_fg_nodes(struct hda_codec *codec)
{
int i, total_nodes;
hda_nid_t nid;
total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
for (i = 0; i < total_nodes; i++, nid++) {
switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
case AC_GRP_AUDIO_FUNCTION:
codec->afg = nid;
break;
case AC_GRP_MODEM_FUNCTION:
codec->mfg = nid;
break;
default:
break;
}
}
}
/*
* read widget caps for each widget and store in cache
*/
static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
{
int i;
hda_nid_t nid;
codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
&codec->start_nid);
codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
if (! codec->wcaps)
return -ENOMEM;
nid = codec->start_nid;
for (i = 0; i < codec->num_nodes; i++, nid++)
codec->wcaps[i] = snd_hda_param_read(codec, nid,
AC_PAR_AUDIO_WIDGET_CAP);
return 0;
}
/*
* codec destructor
*/
static void snd_hda_codec_free(struct hda_codec *codec)
{
if (! codec)
return;
list_del(&codec->list);
codec->bus->caddr_tbl[codec->addr] = NULL;
if (codec->patch_ops.free)
codec->patch_ops.free(codec);
kfree(codec->amp_info);
kfree(codec->wcaps);
kfree(codec);
}
static void init_amp_hash(struct hda_codec *codec);
/**
* snd_hda_codec_new - create a HDA codec
* @bus: the bus to assign
* @codec_addr: the codec address
* @codecp: the pointer to store the generated codec
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
struct hda_codec **codecp)
{
struct hda_codec *codec;
char component[13];
int err;
snd_assert(bus, return -EINVAL);
snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
if (bus->caddr_tbl[codec_addr]) {
snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
return -EBUSY;
}
codec = kzalloc(sizeof(*codec), GFP_KERNEL);
if (codec == NULL) {
snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
return -ENOMEM;
}
codec->bus = bus;
codec->addr = codec_addr;
mutex_init(&codec->spdif_mutex);
init_amp_hash(codec);
list_add_tail(&codec->list, &bus->codec_list);
bus->caddr_tbl[codec_addr] = codec;
codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
if (codec->vendor_id == -1)
/* read again, hopefully the access method was corrected
* in the last read...
*/
codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
AC_PAR_VENDOR_ID);
codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
setup_fg_nodes(codec);
if (! codec->afg && ! codec->mfg) {
snd_printdd("hda_codec: no AFG or MFG node found\n");
snd_hda_codec_free(codec);
return -ENODEV;
}
if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
snd_hda_codec_free(codec);
return -ENOMEM;
}
if (! codec->subsystem_id) {
hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_SUBSYSTEM_ID,
0);
}
codec->preset = find_codec_preset(codec);
if (! *bus->card->mixername)
snd_hda_get_codec_name(codec, bus->card->mixername,
sizeof(bus->card->mixername));
if (codec->preset && codec->preset->patch)
err = codec->preset->patch(codec);
else
err = snd_hda_parse_generic_codec(codec);
if (err < 0) {
snd_hda_codec_free(codec);
return err;
}
if (codec->patch_ops.unsol_event)
init_unsol_queue(bus);
snd_hda_codec_proc_new(codec);
sprintf(component, "HDA:%08x", codec->vendor_id);
snd_component_add(codec->bus->card, component);
if (codecp)
*codecp = codec;
return 0;
}
EXPORT_SYMBOL(snd_hda_codec_new);
/**
* snd_hda_codec_setup_stream - set up the codec for streaming
* @codec: the CODEC to set up
* @nid: the NID to set up
* @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
* @channel_id: channel id to pass, zero based.
* @format: stream format.
*/
void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
int channel_id, int format)
{
if (! nid)
return;
snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
nid, stream_tag, channel_id, format);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
(stream_tag << 4) | channel_id);
msleep(1);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
}
EXPORT_SYMBOL(snd_hda_codec_setup_stream);
/*
* amp access functions
*/
/* FIXME: more better hash key? */
#define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
#define INFO_AMP_CAPS (1<<0)
#define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
/* initialize the hash table */
static void init_amp_hash(struct hda_codec *codec)
{
memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
codec->num_amp_entries = 0;
codec->amp_info_size = 0;
codec->amp_info = NULL;
}
/* query the hash. allocate an entry if not found. */
static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
{
u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
u16 cur = codec->amp_hash[idx];
struct hda_amp_info *info;
while (cur != 0xffff) {
info = &codec->amp_info[cur];
if (info->key == key)
return info;
cur = info->next;
}
/* add a new hash entry */
if (codec->num_amp_entries >= codec->amp_info_size) {
/* reallocate the array */
int new_size = codec->amp_info_size + 64;
struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
GFP_KERNEL);
if (! new_info) {
snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
return NULL;
}
if (codec->amp_info) {
memcpy(new_info, codec->amp_info,
codec->amp_info_size * sizeof(struct hda_amp_info));
kfree(codec->amp_info);
}
codec->amp_info_size = new_size;
codec->amp_info = new_info;
}
cur = codec->num_amp_entries++;
info = &codec->amp_info[cur];
info->key = key;
info->status = 0; /* not initialized yet */
info->next = codec->amp_hash[idx];
codec->amp_hash[idx] = cur;
return info;
}
/*
* query AMP capabilities for the given widget and direction
*/
static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
{
struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
if (! info)
return 0;
if (! (info->status & INFO_AMP_CAPS)) {
if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
nid = codec->afg;
info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
info->status |= INFO_AMP_CAPS;
}
return info->amp_caps;
}
/*
* read the current volume to info
* if the cache exists, read the cache value.
*/
static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
hda_nid_t nid, int ch, int direction, int index)
{
u32 val, parm;
if (info->status & INFO_AMP_VOL(ch))
return info->vol[ch];
parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
parm |= index;
val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
info->vol[ch] = val & 0xff;
info->status |= INFO_AMP_VOL(ch);
return info->vol[ch];
}
/*
* write the current volume in info to the h/w and update the cache
*/
static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
hda_nid_t nid, int ch, int direction, int index, int val)
{
u32 parm;
parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
parm |= index << AC_AMP_SET_INDEX_SHIFT;
parm |= val;
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
info->vol[ch] = val;
}
/*
* read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
*/
int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int index)
{
struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
if (! info)
return 0;
return get_vol_mute(codec, info, nid, ch, direction, index);
}
/*
* update the AMP value, mask = bit mask to set, val = the value
*/
int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int idx, int mask, int val)
{
struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
if (! info)
return 0;
val &= mask;
val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
if (info->vol[ch] == val && ! codec->in_resume)
return 0;
put_vol_mute(codec, info, nid, ch, direction, idx, val);
return 1;
}
/*
* AMP control callbacks
*/
/* retrieve parameters from private_value */
#define get_amp_nid(kc) ((kc)->private_value & 0xffff)
#define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
#define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
#define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
/* volume */
int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
u16 nid = get_amp_nid(kcontrol);
u8 chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
u32 caps;
caps = query_amp_caps(codec, nid, dir);
caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
if (! caps) {
printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
return -EINVAL;
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = caps;
return 0;
}
int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
if (chs & 1)
*valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
if (chs & 2)
*valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
return 0;
}
int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
int change = 0;
if (chs & 1) {
change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
0x7f, *valp);
valp++;
}
if (chs & 2)
change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
0x7f, *valp);
return change;
}
int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *_tlv)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int dir = get_amp_direction(kcontrol);
u32 caps, val1, val2;
if (size < 4 * sizeof(unsigned int))
return -ENOMEM;
caps = query_amp_caps(codec, nid, dir);
val2 = (((caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT) + 1) * 25;
val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
val1 = ((int)val1) * ((int)val2);
if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
return -EFAULT;
if (put_user(2 * sizeof(unsigned int), _tlv + 1))
return -EFAULT;
if (put_user(val1, _tlv + 2))
return -EFAULT;
if (put_user(val2, _tlv + 3))
return -EFAULT;
return 0;
}
/* switch */
int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
int chs = get_amp_channels(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
if (chs & 1)
*valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
if (chs & 2)
*valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
return 0;
}
int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
int change = 0;
if (chs & 1) {
change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
0x80, *valp ? 0 : 0x80);
valp++;
}
if (chs & 2)
change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
0x80, *valp ? 0 : 0x80);
return change;
}
/*
* bound volume controls
*
* bind multiple volumes (# indices, from 0)
*/
#define AMP_VAL_IDX_SHIFT 19
#define AMP_VAL_IDX_MASK (0x0f<<19)
int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned long pval;
int err;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
pval = kcontrol->private_value;
kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
kcontrol->private_value = pval;
mutex_unlock(&codec->spdif_mutex);
return err;
}
int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned long pval;
int i, indices, err = 0, change = 0;
mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
pval = kcontrol->private_value;
indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
for (i = 0; i < indices; i++) {
kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
if (err < 0)
break;
change |= err;
}
kcontrol->private_value = pval;
mutex_unlock(&codec->spdif_mutex);
return err < 0 ? err : change;
}
/*
* SPDIF out controls
*/
static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_CON_EMPHASIS_5015 |
IEC958_AES0_CON_NOT_COPYRIGHT;
ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
IEC958_AES1_CON_ORIGINAL;
return 0;
}
static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_PRO_EMPHASIS_5015;
return 0;
}
static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
return 0;
}
/* convert from SPDIF status bits to HDA SPDIF bits
* bit 0 (DigEn) is always set zero (to be filled later)
*/
static unsigned short convert_from_spdif_status(unsigned int sbits)
{
unsigned short val = 0;
if (sbits & IEC958_AES0_PROFESSIONAL)
val |= 1 << 6;
if (sbits & IEC958_AES0_NONAUDIO)
val |= 1 << 5;
if (sbits & IEC958_AES0_PROFESSIONAL) {
if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
val |= 1 << 3;
} else {
if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
val |= 1 << 3;
if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
val |= 1 << 4;
if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
val |= 1 << 7;
val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
}
return val;
}
/* convert to SPDIF status bits from HDA SPDIF bits
*/
static unsigned int convert_to_spdif_status(unsigned short val)
{
unsigned int sbits = 0;
if (val & (1 << 5))
sbits |= IEC958_AES0_NONAUDIO;
if (val & (1 << 6))
sbits |= IEC958_AES0_PROFESSIONAL;
if (sbits & IEC958_AES0_PROFESSIONAL) {
if (sbits & (1 << 3))
sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
} else {
if (val & (1 << 3))
sbits |= IEC958_AES0_CON_EMPHASIS_5015;
if (! (val & (1 << 4)))
sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
if (val & (1 << 7))
sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
sbits |= val & (0x7f << 8);
}
return sbits;
}
static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
int change;
mutex_lock(&codec->spdif_mutex);
codec->spdif_status = ucontrol->value.iec958.status[0] |
((unsigned int)ucontrol->value.iec958.status[1] << 8) |
((unsigned int)ucontrol->value.iec958.status[2] << 16) |
((unsigned int)ucontrol->value.iec958.status[3] << 24);
val = convert_from_spdif_status(codec->spdif_status);
val |= codec->spdif_ctls & 1;
change = codec->spdif_ctls != val;
codec->spdif_ctls = val;
if (change || codec->in_resume) {
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
return 0;
}
static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
int change;
mutex_lock(&codec->spdif_mutex);
val = codec->spdif_ctls & ~1;
if (ucontrol->value.integer.value[0])
val |= 1;
change = codec->spdif_ctls != val;
if (change || codec->in_resume) {
codec->spdif_ctls = val;
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
static struct snd_kcontrol_new dig_mixes[] = {
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_cmask_get,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_pmask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_default_get,
.put = snd_hda_spdif_default_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
.info = snd_hda_spdif_out_switch_info,
.get = snd_hda_spdif_out_switch_get,
.put = snd_hda_spdif_out_switch_put,
},
{ } /* end */
};
/**
* snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
* @codec: the HDA codec
* @nid: audio out widget NID
*
* Creates controls related with the SPDIF output.
* Called from each patch supporting the SPDIF out.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
{
int err;
struct snd_kcontrol *kctl;
struct snd_kcontrol_new *dig_mix;
for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
kctl = snd_ctl_new1(dig_mix, codec);
kctl->private_value = nid;
if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
return err;
}
codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
return 0;
}
/*
* SPDIF input
*/
#define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = codec->spdif_in_enable;
return 0;
}
static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned int val = !!ucontrol->value.integer.value[0];
int change;
mutex_lock(&codec->spdif_mutex);
change = codec->spdif_in_enable != val;
if (change || codec->in_resume) {
codec->spdif_in_enable = val;
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
unsigned int sbits;
val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
sbits = convert_to_spdif_status(val);
ucontrol->value.iec958.status[0] = sbits;
ucontrol->value.iec958.status[1] = sbits >> 8;
ucontrol->value.iec958.status[2] = sbits >> 16;
ucontrol->value.iec958.status[3] = sbits >> 24;
return 0;
}
static struct snd_kcontrol_new dig_in_ctls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
.info = snd_hda_spdif_in_switch_info,
.get = snd_hda_spdif_in_switch_get,
.put = snd_hda_spdif_in_switch_put,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_in_status_get,
},
{ } /* end */
};
/**
* snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
* @codec: the HDA codec
* @nid: audio in widget NID
*
* Creates controls related with the SPDIF input.
* Called from each patch supporting the SPDIF in.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
{
int err;
struct snd_kcontrol *kctl;
struct snd_kcontrol_new *dig_mix;
for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
kctl = snd_ctl_new1(dig_mix, codec);
kctl->private_value = nid;
if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
return err;
}
codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
return 0;
}
/*
* set power state of the codec
*/
static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
unsigned int power_state)
{
hda_nid_t nid, nid_start;
int nodes;
snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
power_state);
nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
for (nid = nid_start; nid < nodes + nid_start; nid++) {
if (get_wcaps(codec, nid) & AC_WCAP_POWER)
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_POWER_STATE,
power_state);
}
if (power_state == AC_PWRST_D0)
msleep(10);
}
/**
* snd_hda_build_controls - build mixer controls
* @bus: the BUS
*
* Creates mixer controls for each codec included in the bus.
*
* Returns 0 if successful, otherwise a negative error code.
*/
int snd_hda_build_controls(struct hda_bus *bus)
{
struct list_head *p;
/* build controls */
list_for_each(p, &bus->codec_list) {
struct hda_codec *codec = list_entry(p, struct hda_codec, list);
int err;
if (! codec->patch_ops.build_controls)
continue;
err = codec->patch_ops.build_controls(codec);
if (err < 0)
return err;
}
/* initialize */
list_for_each(p, &bus->codec_list) {
struct hda_codec *codec = list_entry(p, struct hda_codec, list);
int err;
hda_set_power_state(codec,
codec->afg ? codec->afg : codec->mfg,
AC_PWRST_D0);
if (! codec->patch_ops.init)
continue;
err = codec->patch_ops.init(codec);
if (err < 0)
return err;
}
return 0;
}
EXPORT_SYMBOL(snd_hda_build_controls);
/*
* stream formats
*/
struct hda_rate_tbl {
unsigned int hz;
unsigned int alsa_bits;
unsigned int hda_fmt;
};
static struct hda_rate_tbl rate_bits[] = {
/* rate in Hz, ALSA rate bitmask, HDA format value */
/* autodetected value used in snd_hda_query_supported_pcm */
{ 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
{ 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
{ 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
{ 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
{ 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
{ 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
{ 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
{ 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
{ 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
{ 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
{ 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
{ 0 } /* terminator */
};
/**
* snd_hda_calc_stream_format - calculate format bitset
* @rate: the sample rate
* @channels: the number of channels
* @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
* @maxbps: the max. bps
*
* Calculate the format bitset from the given rate, channels and th PCM format.
*
* Return zero if invalid.
*/
unsigned int snd_hda_calc_stream_format(unsigned int rate,
unsigned int channels,
unsigned int format,
unsigned int maxbps)
{
int i;
unsigned int val = 0;
for (i = 0; rate_bits[i].hz; i++)
if (rate_bits[i].hz == rate) {
val = rate_bits[i].hda_fmt;
break;
}
if (! rate_bits[i].hz) {
snd_printdd("invalid rate %d\n", rate);
return 0;
}
if (channels == 0 || channels > 8) {
snd_printdd("invalid channels %d\n", channels);
return 0;
}
val |= channels - 1;
switch (snd_pcm_format_width(format)) {
case 8: val |= 0x00; break;
case 16: val |= 0x10; break;
case 20:
case 24:
case 32:
if (maxbps >= 32)
val |= 0x40;
else if (maxbps >= 24)
val |= 0x30;
else
val |= 0x20;
break;
default:
snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
return 0;
}
return val;
}
EXPORT_SYMBOL(snd_hda_calc_stream_format);
/**
* snd_hda_query_supported_pcm - query the supported PCM rates and formats
* @codec: the HDA codec
* @nid: NID to query
* @ratesp: the pointer to store the detected rate bitflags
* @formatsp: the pointer to store the detected formats
* @bpsp: the pointer to store the detected format widths
*
* Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
* or @bsps argument is ignored.
*
* Returns 0 if successful, otherwise a negative error code.
*/
int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
{
int i;
unsigned int val, streams;
val = 0;
if (nid != codec->afg &&
(get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
if (val == -1)
return -EIO;
}
if (! val)
val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
if (ratesp) {
u32 rates = 0;
for (i = 0; rate_bits[i].hz; i++) {
if (val & (1 << i))
rates |= rate_bits[i].alsa_bits;
}
*ratesp = rates;
}
if (formatsp || bpsp) {
u64 formats = 0;
unsigned int bps;
unsigned int wcaps;
wcaps = get_wcaps(codec, nid);
streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
if (streams == -1)
return -EIO;
if (! streams) {
streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
if (streams == -1)
return -EIO;
}
bps = 0;
if (streams & AC_SUPFMT_PCM) {
if (val & AC_SUPPCM_BITS_8) {
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (val & AC_SUPPCM_BITS_16) {
formats |= SNDRV_PCM_FMTBIT_S16_LE;
bps = 16;
}
if (wcaps & AC_WCAP_DIGITAL) {
if (val & AC_SUPPCM_BITS_32)
formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_32)
bps = 32;
else if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
}
}
else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
bps = 32;
} else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
/* temporary hack: we have still no proper support
* for the direct AC3 stream...
*/
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (formatsp)
*formatsp = formats;
if (bpsp)
*bpsp = bps;
}
return 0;
}
/**
* snd_hda_is_supported_format - check whether the given node supports the format val
*
* Returns 1 if supported, 0 if not.
*/
int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
unsigned int format)
{
int i;
unsigned int val = 0, rate, stream;
if (nid != codec->afg &&
(get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
if (val == -1)
return 0;
}
if (! val) {
val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
if (val == -1)
return 0;
}
rate = format & 0xff00;
for (i = 0; rate_bits[i].hz; i++)
if (rate_bits[i].hda_fmt == rate) {
if (val & (1 << i))
break;
return 0;
}
if (! rate_bits[i].hz)
return 0;
stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
if (stream == -1)
return 0;
if (! stream && nid != codec->afg)
stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
if (! stream || stream == -1)
return 0;
if (stream & AC_SUPFMT_PCM) {
switch (format & 0xf0) {
case 0x00:
if (! (val & AC_SUPPCM_BITS_8))
return 0;
break;
case 0x10:
if (! (val & AC_SUPPCM_BITS_16))
return 0;
break;
case 0x20:
if (! (val & AC_SUPPCM_BITS_20))
return 0;
break;
case 0x30:
if (! (val & AC_SUPPCM_BITS_24))
return 0;
break;
case 0x40:
if (! (val & AC_SUPPCM_BITS_32))
return 0;
break;
default:
return 0;
}
} else {
/* FIXME: check for float32 and AC3? */
}
return 1;
}
/*
* PCM stuff
*/
static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
return 0;
}
static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
return 0;
}
static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
return 0;
}
static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
{
if (info->nid) {
/* query support PCM information from the given NID */
if (! info->rates || ! info->formats)
snd_hda_query_supported_pcm(codec, info->nid,
info->rates ? NULL : &info->rates,
info->formats ? NULL : &info->formats,
info->maxbps ? NULL : &info->maxbps);
}
if (info->ops.open == NULL)
info->ops.open = hda_pcm_default_open_close;
if (info->ops.close == NULL)
info->ops.close = hda_pcm_default_open_close;
if (info->ops.prepare == NULL) {
snd_assert(info->nid, return -EINVAL);
info->ops.prepare = hda_pcm_default_prepare;
}
if (info->ops.cleanup == NULL) {
snd_assert(info->nid, return -EINVAL);
info->ops.cleanup = hda_pcm_default_cleanup;
}
return 0;
}
/**
* snd_hda_build_pcms - build PCM information
* @bus: the BUS
*
* Create PCM information for each codec included in the bus.
*
* The build_pcms codec patch is requested to set up codec->num_pcms and
* codec->pcm_info properly. The array is referred by the top-level driver
* to create its PCM instances.
* The allocated codec->pcm_info should be released in codec->patch_ops.free
* callback.
*
* At least, substreams, channels_min and channels_max must be filled for
* each stream. substreams = 0 indicates that the stream doesn't exist.
* When rates and/or formats are zero, the supported values are queried
* from the given nid. The nid is used also by the default ops.prepare
* and ops.cleanup callbacks.
*
* The driver needs to call ops.open in its open callback. Similarly,
* ops.close is supposed to be called in the close callback.
* ops.prepare should be called in the prepare or hw_params callback
* with the proper parameters for set up.
* ops.cleanup should be called in hw_free for clean up of streams.
*
* This function returns 0 if successfull, or a negative error code.
*/
int snd_hda_build_pcms(struct hda_bus *bus)
{
struct list_head *p;
list_for_each(p, &bus->codec_list) {
struct hda_codec *codec = list_entry(p, struct hda_codec, list);
unsigned int pcm, s;
int err;
if (! codec->patch_ops.build_pcms)
continue;
err = codec->patch_ops.build_pcms(codec);
if (err < 0)
return err;
for (pcm = 0; pcm < codec->num_pcms; pcm++) {
for (s = 0; s < 2; s++) {
struct hda_pcm_stream *info;
info = &codec->pcm_info[pcm].stream[s];
if (! info->substreams)
continue;
err = set_pcm_default_values(codec, info);
if (err < 0)
return err;
}
}
}
return 0;
}
EXPORT_SYMBOL(snd_hda_build_pcms);
/**
* snd_hda_check_board_config - compare the current codec with the config table
* @codec: the HDA codec
* @num_configs: number of config enums
* @models: array of model name strings
* @tbl: configuration table, terminated by null entries
*
* Compares the modelname or PCI subsystem id of the current codec with the
* given configuration table. If a matching entry is found, returns its
* config value (supposed to be 0 or positive).
*
* If no entries are matching, the function returns a negative value.
*/
int snd_hda_check_board_config(struct hda_codec *codec,
int num_configs, const char **models,
const struct snd_pci_quirk *tbl)
{
if (codec->bus->modelname && models) {
int i;
for (i = 0; i < num_configs; i++) {
if (models[i] &&
!strcmp(codec->bus->modelname, models[i])) {
snd_printd(KERN_INFO "hda_codec: model '%s' is "
"selected\n", models[i]);
return i;
}
}
}
if (!codec->bus->pci || !tbl)
return -1;
tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
if (!tbl)
return -1;
if (tbl->value >= 0 && tbl->value < num_configs) {
#ifdef CONFIG_SND_DEBUG_DETECT
char tmp[10];
const char *model = NULL;
if (models)
model = models[tbl->value];
if (!model) {
sprintf(tmp, "#%d", tbl->value);
model = tmp;
}
snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
"for config %x:%x (%s)\n",
model, tbl->subvendor, tbl->subdevice,
(tbl->name ? tbl->name : "Unknown device"));
#endif
return tbl->value;
}
return -1;
}
/**
* snd_hda_add_new_ctls - create controls from the array
* @codec: the HDA codec
* @knew: the array of struct snd_kcontrol_new
*
* This helper function creates and add new controls in the given array.
* The array must be terminated with an empty entry as terminator.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
{
int err;
for (; knew->name; knew++) {
struct snd_kcontrol *kctl;
kctl = snd_ctl_new1(knew, codec);
if (! kctl)
return -ENOMEM;
err = snd_ctl_add(codec->bus->card, kctl);
if (err < 0) {
if (! codec->addr)
return err;
kctl = snd_ctl_new1(knew, codec);
if (! kctl)
return -ENOMEM;
kctl->id.device = codec->addr;
if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
return err;
}
}
return 0;
}
/*
* Channel mode helper
*/
int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
const struct hda_channel_mode *chmode, int num_chmodes)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = num_chmodes;
if (uinfo->value.enumerated.item >= num_chmodes)
uinfo->value.enumerated.item = num_chmodes - 1;
sprintf(uinfo->value.enumerated.name, "%dch",
chmode[uinfo->value.enumerated.item].channels);
return 0;
}
int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
const struct hda_channel_mode *chmode, int num_chmodes,
int max_channels)
{
int i;
for (i = 0; i < num_chmodes; i++) {
if (max_channels == chmode[i].channels) {
ucontrol->value.enumerated.item[0] = i;
break;
}
}
return 0;
}
int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
const struct hda_channel_mode *chmode, int num_chmodes,
int *max_channelsp)
{
unsigned int mode;
mode = ucontrol->value.enumerated.item[0];
snd_assert(mode < num_chmodes, return -EINVAL);
if (*max_channelsp == chmode[mode].channels && ! codec->in_resume)
return 0;
/* change the current channel setting */
*max_channelsp = chmode[mode].channels;
if (chmode[mode].sequence)
snd_hda_sequence_write(codec, chmode[mode].sequence);
return 1;
}
/*
* input MUX helper
*/
int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
{
unsigned int index;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = imux->num_items;
index = uinfo->value.enumerated.item;
if (index >= imux->num_items)
index = imux->num_items - 1;
strcpy(uinfo->value.enumerated.name, imux->items[index].label);
return 0;
}
int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
unsigned int *cur_val)
{
unsigned int idx;
idx = ucontrol->value.enumerated.item[0];
if (idx >= imux->num_items)
idx = imux->num_items - 1;
if (*cur_val == idx && ! codec->in_resume)
return 0;
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
imux->items[idx].index);
*cur_val = idx;
return 1;
}
/*
* Multi-channel / digital-out PCM helper functions
*/
/*
* open the digital out in the exclusive mode
*/
int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
{
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_used) {
mutex_unlock(&codec->spdif_mutex);
return -EBUSY; /* already being used */
}
mout->dig_out_used = HDA_DIG_EXCLUSIVE;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/*
* release the digital out
*/
int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
{
mutex_lock(&codec->spdif_mutex);
mout->dig_out_used = 0;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/*
* set up more restrictions for analog out
*/
int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
struct snd_pcm_substream *substream)
{
substream->runtime->hw.channels_max = mout->max_channels;
return snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS, 2);
}
/*
* set up the i/o for analog out
* when the digital out is available, copy the front out to digital out, too.
*/
int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
hda_nid_t *nids = mout->dac_nids;
int chs = substream->runtime->channels;
int i;
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
if (chs == 2 &&
snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
mout->dig_out_used = HDA_DIG_ANALOG_DUP;
/* setup digital receiver */
snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
stream_tag, 0, format);
} else {
mout->dig_out_used = 0;
snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
}
}
mutex_unlock(&codec->spdif_mutex);
/* front */
snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
/* headphone out will just decode front left/right (stereo) */
snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
/* extra outputs copied from front */
for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
if (mout->extra_out_nid[i])
snd_hda_codec_setup_stream(codec,
mout->extra_out_nid[i],
stream_tag, 0, format);
/* surrounds */
for (i = 1; i < mout->num_dacs; i++) {
if (chs >= (i + 1) * 2) /* independent out */
snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
format);
else /* copy front */
snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
format);
}
return 0;
}
/*
* clean up the setting for analog out
*/
int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
{
hda_nid_t *nids = mout->dac_nids;
int i;
for (i = 0; i < mout->num_dacs; i++)
snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
if (mout->hp_nid)
snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
if (mout->extra_out_nid[i])
snd_hda_codec_setup_stream(codec,
mout->extra_out_nid[i],
0, 0, 0);
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
mout->dig_out_used = 0;
}
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/*
* Helper for automatic ping configuration
*/
static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
{
for (; *list; list++)
if (*list == nid)
return 1;
return 0;
}
/*
* Parse all pin widgets and store the useful pin nids to cfg
*
* The number of line-outs or any primary output is stored in line_outs,
* and the corresponding output pins are assigned to line_out_pins[],
* in the order of front, rear, CLFE, side, ...
*
* If more extra outputs (speaker and headphone) are found, the pins are
* assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
* is detected, one of speaker of HP pins is assigned as the primary
* output, i.e. to line_out_pins[0]. So, line_outs is always positive
* if any analog output exists.
*
* The analog input pins are assigned to input_pins array.
* The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
* respectively.
*/
int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg,
hda_nid_t *ignore_nids)
{
hda_nid_t nid, nid_start;
int i, j, nodes;
short seq, assoc_line_out, sequences[ARRAY_SIZE(cfg->line_out_pins)];
memset(cfg, 0, sizeof(*cfg));
memset(sequences, 0, sizeof(sequences));
assoc_line_out = 0;
nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
for (nid = nid_start; nid < nodes + nid_start; nid++) {
unsigned int wid_caps = get_wcaps(codec, nid);
unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
unsigned int def_conf;
short assoc, loc;
/* read all default configuration for pin complex */
if (wid_type != AC_WID_PIN)
continue;
/* ignore the given nids (e.g. pc-beep returns error) */
if (ignore_nids && is_in_nid_list(nid, ignore_nids))
continue;
def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
continue;
loc = get_defcfg_location(def_conf);
switch (get_defcfg_device(def_conf)) {
case AC_JACK_LINE_OUT:
seq = get_defcfg_sequence(def_conf);
assoc = get_defcfg_association(def_conf);
if (! assoc)
continue;
if (! assoc_line_out)
assoc_line_out = assoc;
else if (assoc_line_out != assoc)
continue;
if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
continue;
cfg->line_out_pins[cfg->line_outs] = nid;
sequences[cfg->line_outs] = seq;
cfg->line_outs++;
break;
case AC_JACK_SPEAKER:
if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
continue;
cfg->speaker_pins[cfg->speaker_outs] = nid;
cfg->speaker_outs++;
break;
case AC_JACK_HP_OUT:
if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
continue;
cfg->hp_pins[cfg->hp_outs] = nid;
cfg->hp_outs++;
break;
case AC_JACK_MIC_IN: {
int preferred, alt;
if (loc == AC_JACK_LOC_FRONT) {
preferred = AUTO_PIN_FRONT_MIC;
alt = AUTO_PIN_MIC;
} else {
preferred = AUTO_PIN_MIC;
alt = AUTO_PIN_FRONT_MIC;
}
if (!cfg->input_pins[preferred])
cfg->input_pins[preferred] = nid;
else if (!cfg->input_pins[alt])
cfg->input_pins[alt] = nid;
break;
}
case AC_JACK_LINE_IN:
if (loc == AC_JACK_LOC_FRONT)
cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
else
cfg->input_pins[AUTO_PIN_LINE] = nid;
break;
case AC_JACK_CD:
cfg->input_pins[AUTO_PIN_CD] = nid;
break;
case AC_JACK_AUX:
cfg->input_pins[AUTO_PIN_AUX] = nid;
break;
case AC_JACK_SPDIF_OUT:
cfg->dig_out_pin = nid;
break;
case AC_JACK_SPDIF_IN:
cfg->dig_in_pin = nid;
break;
}
}
/* sort by sequence */
for (i = 0; i < cfg->line_outs; i++)
for (j = i + 1; j < cfg->line_outs; j++)
if (sequences[i] > sequences[j]) {
seq = sequences[i];
sequences[i] = sequences[j];
sequences[j] = seq;
nid = cfg->line_out_pins[i];
cfg->line_out_pins[i] = cfg->line_out_pins[j];
cfg->line_out_pins[j] = nid;
}
/* Reorder the surround channels
* ALSA sequence is front/surr/clfe/side
* HDA sequence is:
* 4-ch: front/surr => OK as it is
* 6-ch: front/clfe/surr
* 8-ch: front/clfe/side/surr
*/
switch (cfg->line_outs) {
case 3:
nid = cfg->line_out_pins[1];
cfg->line_out_pins[1] = cfg->line_out_pins[2];
cfg->line_out_pins[2] = nid;
break;
case 4:
nid = cfg->line_out_pins[1];
cfg->line_out_pins[1] = cfg->line_out_pins[3];
cfg->line_out_pins[3] = cfg->line_out_pins[2];
cfg->line_out_pins[2] = nid;
break;
}
/*
* debug prints of the parsed results
*/
snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
cfg->line_out_pins[2], cfg->line_out_pins[3],
cfg->line_out_pins[4]);
snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
cfg->speaker_outs, cfg->speaker_pins[0],
cfg->speaker_pins[1], cfg->speaker_pins[2],
cfg->speaker_pins[3], cfg->speaker_pins[4]);
snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
cfg->hp_outs, cfg->hp_pins[0],
cfg->hp_pins[1], cfg->hp_pins[2],
cfg->hp_pins[3], cfg->hp_pins[4]);
snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
" cd=0x%x, aux=0x%x\n",
cfg->input_pins[AUTO_PIN_MIC],
cfg->input_pins[AUTO_PIN_FRONT_MIC],
cfg->input_pins[AUTO_PIN_LINE],
cfg->input_pins[AUTO_PIN_FRONT_LINE],
cfg->input_pins[AUTO_PIN_CD],
cfg->input_pins[AUTO_PIN_AUX]);
/*
* FIX-UP: if no line-outs are detected, try to use speaker or HP pin
* as a primary output
*/
if (! cfg->line_outs) {
if (cfg->speaker_outs) {
cfg->line_outs = cfg->speaker_outs;
memcpy(cfg->line_out_pins, cfg->speaker_pins,
sizeof(cfg->speaker_pins));
cfg->speaker_outs = 0;
memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
} else if (cfg->hp_outs) {
cfg->line_outs = cfg->hp_outs;
memcpy(cfg->line_out_pins, cfg->hp_pins,
sizeof(cfg->hp_pins));
cfg->hp_outs = 0;
memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
}
}
return 0;
}
/* labels for input pins */
const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
"Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
};
#ifdef CONFIG_PM
/*
* power management
*/
/**
* snd_hda_suspend - suspend the codecs
* @bus: the HDA bus
* @state: suspsend state
*
* Returns 0 if successful.
*/
int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
{
struct list_head *p;
/* FIXME: should handle power widget capabilities */
list_for_each(p, &bus->codec_list) {
struct hda_codec *codec = list_entry(p, struct hda_codec, list);
if (codec->patch_ops.suspend)
codec->patch_ops.suspend(codec, state);
hda_set_power_state(codec,
codec->afg ? codec->afg : codec->mfg,
AC_PWRST_D3);
}
return 0;
}
EXPORT_SYMBOL(snd_hda_suspend);
/**
* snd_hda_resume - resume the codecs
* @bus: the HDA bus
* @state: resume state
*
* Returns 0 if successful.
*/
int snd_hda_resume(struct hda_bus *bus)
{
struct list_head *p;
list_for_each(p, &bus->codec_list) {
struct hda_codec *codec = list_entry(p, struct hda_codec, list);
hda_set_power_state(codec,
codec->afg ? codec->afg : codec->mfg,
AC_PWRST_D0);
if (codec->patch_ops.resume)
codec->patch_ops.resume(codec);
}
return 0;
}
EXPORT_SYMBOL(snd_hda_resume);
/**
* snd_hda_resume_ctls - resume controls in the new control list
* @codec: the HDA codec
* @knew: the array of struct snd_kcontrol_new
*
* This function resumes the mixer controls in the struct snd_kcontrol_new array,
* originally for snd_hda_add_new_ctls().
* The array must be terminated with an empty entry as terminator.
*/
int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
{
struct snd_ctl_elem_value *val;
val = kmalloc(sizeof(*val), GFP_KERNEL);
if (! val)
return -ENOMEM;
codec->in_resume = 1;
for (; knew->name; knew++) {
int i, count;
count = knew->count ? knew->count : 1;
for (i = 0; i < count; i++) {
memset(val, 0, sizeof(*val));
val->id.iface = knew->iface;
val->id.device = knew->device;
val->id.subdevice = knew->subdevice;
strcpy(val->id.name, knew->name);
val->id.index = knew->index ? knew->index : i;
/* Assume that get callback reads only from cache,
* not accessing to the real hardware
*/
if (snd_ctl_elem_read(codec->bus->card, val) < 0)
continue;
snd_ctl_elem_write(codec->bus->card, NULL, val);
}
}
codec->in_resume = 0;
kfree(val);
return 0;
}
/**
* snd_hda_resume_spdif_out - resume the digital out
* @codec: the HDA codec
*/
int snd_hda_resume_spdif_out(struct hda_codec *codec)
{
return snd_hda_resume_ctls(codec, dig_mixes);
}
/**
* snd_hda_resume_spdif_in - resume the digital in
* @codec: the HDA codec
*/
int snd_hda_resume_spdif_in(struct hda_codec *codec)
{
return snd_hda_resume_ctls(codec, dig_in_ctls);
}
#endif
/*
* INIT part
*/
static int __init alsa_hda_init(void)
{
return 0;
}
static void __exit alsa_hda_exit(void)
{
}
module_init(alsa_hda_init)
module_exit(alsa_hda_exit)