android_kernel_xiaomi_sm8350/fs/xfs/xfs_ialloc.c
Dave Chinner 1c1c6ebcf5 xfs: Replace per-ag array with a radix tree
The use of an array for the per-ag structures requires reallocation
of the array when growing the filesystem. This requires locking
access to the array to avoid use after free situations, and the
locking is difficult to get right. To avoid needing to reallocate an
array, change the per-ag structures to an allocated object per ag
and index them using a tree structure.

The AGs are always densely indexed (hence the use of an array), but
the number supported is 2^32 and lookups tend to be random and hence
indexing needs to scale. A simple choice is a radix tree - it works
well with this sort of index.  This change also removes another
large contiguous allocation from the mount/growfs path in XFS.

The growing process now needs to change to only initialise the new
AGs required for the extra space, and as such only needs to
exclusively lock the tree for inserts. The rest of the code only
needs to lock the tree while doing lookups, and hence this will
remove all the deadlocks that currently occur on the m_perag_lock as
it is now an innermost lock. The lock is also changed to a spinlock
from a read/write lock as the hold time is now extremely short.

To complete the picture, the per-ag structures will need to be
reference counted to ensure that we don't free/modify them while
they are still in use.  This will be done in subsequent patch.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-15 15:33:52 -06:00

1556 lines
42 KiB
C

/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_alloc.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_bmap.h"
/*
* Allocation group level functions.
*/
static inline int
xfs_ialloc_cluster_alignment(
xfs_alloc_arg_t *args)
{
if (xfs_sb_version_hasalign(&args->mp->m_sb) &&
args->mp->m_sb.sb_inoalignmt >=
XFS_B_TO_FSBT(args->mp, XFS_INODE_CLUSTER_SIZE(args->mp)))
return args->mp->m_sb.sb_inoalignmt;
return 1;
}
/*
* Lookup a record by ino in the btree given by cur.
*/
int /* error */
xfs_inobt_lookup(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_agino_t ino, /* starting inode of chunk */
xfs_lookup_t dir, /* <=, >=, == */
int *stat) /* success/failure */
{
cur->bc_rec.i.ir_startino = ino;
cur->bc_rec.i.ir_freecount = 0;
cur->bc_rec.i.ir_free = 0;
return xfs_btree_lookup(cur, dir, stat);
}
/*
* Update the record referred to by cur to the value given.
* This either works (return 0) or gets an EFSCORRUPTED error.
*/
STATIC int /* error */
xfs_inobt_update(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_inobt_rec_incore_t *irec) /* btree record */
{
union xfs_btree_rec rec;
rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
return xfs_btree_update(cur, &rec);
}
/*
* Get the data from the pointed-to record.
*/
int /* error */
xfs_inobt_get_rec(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_inobt_rec_incore_t *irec, /* btree record */
int *stat) /* output: success/failure */
{
union xfs_btree_rec *rec;
int error;
error = xfs_btree_get_rec(cur, &rec, stat);
if (!error && *stat == 1) {
irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
}
return error;
}
/*
* Verify that the number of free inodes in the AGI is correct.
*/
#ifdef DEBUG
STATIC int
xfs_check_agi_freecount(
struct xfs_btree_cur *cur,
struct xfs_agi *agi)
{
if (cur->bc_nlevels == 1) {
xfs_inobt_rec_incore_t rec;
int freecount = 0;
int error;
int i;
error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
if (error)
return error;
do {
error = xfs_inobt_get_rec(cur, &rec, &i);
if (error)
return error;
if (i) {
freecount += rec.ir_freecount;
error = xfs_btree_increment(cur, 0, &i);
if (error)
return error;
}
} while (i == 1);
if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
}
return 0;
}
#else
#define xfs_check_agi_freecount(cur, agi) 0
#endif
/*
* Initialise a new set of inodes.
*/
STATIC void
xfs_ialloc_inode_init(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_agblock_t agbno,
xfs_agblock_t length,
unsigned int gen)
{
struct xfs_buf *fbuf;
struct xfs_dinode *free;
int blks_per_cluster, nbufs, ninodes;
int version;
int i, j;
xfs_daddr_t d;
/*
* Loop over the new block(s), filling in the inodes.
* For small block sizes, manipulate the inodes in buffers
* which are multiples of the blocks size.
*/
if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
blks_per_cluster = 1;
nbufs = length;
ninodes = mp->m_sb.sb_inopblock;
} else {
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
mp->m_sb.sb_blocksize;
nbufs = length / blks_per_cluster;
ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
}
/*
* Figure out what version number to use in the inodes we create.
* If the superblock version has caught up to the one that supports
* the new inode format, then use the new inode version. Otherwise
* use the old version so that old kernels will continue to be
* able to use the file system.
*/
if (xfs_sb_version_hasnlink(&mp->m_sb))
version = 2;
else
version = 1;
for (j = 0; j < nbufs; j++) {
/*
* Get the block.
*/
d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
mp->m_bsize * blks_per_cluster,
XFS_BUF_LOCK);
ASSERT(fbuf);
ASSERT(!XFS_BUF_GETERROR(fbuf));
/*
* Initialize all inodes in this buffer and then log them.
*
* XXX: It would be much better if we had just one transaction
* to log a whole cluster of inodes instead of all the
* individual transactions causing a lot of log traffic.
*/
xfs_biozero(fbuf, 0, ninodes << mp->m_sb.sb_inodelog);
for (i = 0; i < ninodes; i++) {
int ioffset = i << mp->m_sb.sb_inodelog;
uint isize = sizeof(struct xfs_dinode);
free = xfs_make_iptr(mp, fbuf, i);
free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
free->di_version = version;
free->di_gen = cpu_to_be32(gen);
free->di_next_unlinked = cpu_to_be32(NULLAGINO);
xfs_trans_log_buf(tp, fbuf, ioffset, ioffset + isize - 1);
}
xfs_trans_inode_alloc_buf(tp, fbuf);
}
}
/*
* Allocate new inodes in the allocation group specified by agbp.
* Return 0 for success, else error code.
*/
STATIC int /* error code or 0 */
xfs_ialloc_ag_alloc(
xfs_trans_t *tp, /* transaction pointer */
xfs_buf_t *agbp, /* alloc group buffer */
int *alloc)
{
xfs_agi_t *agi; /* allocation group header */
xfs_alloc_arg_t args; /* allocation argument structure */
xfs_btree_cur_t *cur; /* inode btree cursor */
xfs_agnumber_t agno;
int error;
int i;
xfs_agino_t newino; /* new first inode's number */
xfs_agino_t newlen; /* new number of inodes */
xfs_agino_t thisino; /* current inode number, for loop */
int isaligned = 0; /* inode allocation at stripe unit */
/* boundary */
struct xfs_perag *pag;
args.tp = tp;
args.mp = tp->t_mountp;
/*
* Locking will ensure that we don't have two callers in here
* at one time.
*/
newlen = XFS_IALLOC_INODES(args.mp);
if (args.mp->m_maxicount &&
args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount)
return XFS_ERROR(ENOSPC);
args.minlen = args.maxlen = XFS_IALLOC_BLOCKS(args.mp);
/*
* First try to allocate inodes contiguous with the last-allocated
* chunk of inodes. If the filesystem is striped, this will fill
* an entire stripe unit with inodes.
*/
agi = XFS_BUF_TO_AGI(agbp);
newino = be32_to_cpu(agi->agi_newino);
agno = be32_to_cpu(agi->agi_seqno);
args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
XFS_IALLOC_BLOCKS(args.mp);
if (likely(newino != NULLAGINO &&
(args.agbno < be32_to_cpu(agi->agi_length)))) {
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
args.type = XFS_ALLOCTYPE_THIS_BNO;
args.mod = args.total = args.wasdel = args.isfl =
args.userdata = args.minalignslop = 0;
args.prod = 1;
/*
* We need to take into account alignment here to ensure that
* we don't modify the free list if we fail to have an exact
* block. If we don't have an exact match, and every oher
* attempt allocation attempt fails, we'll end up cancelling
* a dirty transaction and shutting down.
*
* For an exact allocation, alignment must be 1,
* however we need to take cluster alignment into account when
* fixing up the freelist. Use the minalignslop field to
* indicate that extra blocks might be required for alignment,
* but not to use them in the actual exact allocation.
*/
args.alignment = 1;
args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1;
/* Allow space for the inode btree to split. */
args.minleft = args.mp->m_in_maxlevels - 1;
if ((error = xfs_alloc_vextent(&args)))
return error;
} else
args.fsbno = NULLFSBLOCK;
if (unlikely(args.fsbno == NULLFSBLOCK)) {
/*
* Set the alignment for the allocation.
* If stripe alignment is turned on then align at stripe unit
* boundary.
* If the cluster size is smaller than a filesystem block
* then we're doing I/O for inodes in filesystem block size
* pieces, so don't need alignment anyway.
*/
isaligned = 0;
if (args.mp->m_sinoalign) {
ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
args.alignment = args.mp->m_dalign;
isaligned = 1;
} else
args.alignment = xfs_ialloc_cluster_alignment(&args);
/*
* Need to figure out where to allocate the inode blocks.
* Ideally they should be spaced out through the a.g.
* For now, just allocate blocks up front.
*/
args.agbno = be32_to_cpu(agi->agi_root);
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
/*
* Allocate a fixed-size extent of inodes.
*/
args.type = XFS_ALLOCTYPE_NEAR_BNO;
args.mod = args.total = args.wasdel = args.isfl =
args.userdata = args.minalignslop = 0;
args.prod = 1;
/*
* Allow space for the inode btree to split.
*/
args.minleft = args.mp->m_in_maxlevels - 1;
if ((error = xfs_alloc_vextent(&args)))
return error;
}
/*
* If stripe alignment is turned on, then try again with cluster
* alignment.
*/
if (isaligned && args.fsbno == NULLFSBLOCK) {
args.type = XFS_ALLOCTYPE_NEAR_BNO;
args.agbno = be32_to_cpu(agi->agi_root);
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
args.alignment = xfs_ialloc_cluster_alignment(&args);
if ((error = xfs_alloc_vextent(&args)))
return error;
}
if (args.fsbno == NULLFSBLOCK) {
*alloc = 0;
return 0;
}
ASSERT(args.len == args.minlen);
/*
* Stamp and write the inode buffers.
*
* Seed the new inode cluster with a random generation number. This
* prevents short-term reuse of generation numbers if a chunk is
* freed and then immediately reallocated. We use random numbers
* rather than a linear progression to prevent the next generation
* number from being easily guessable.
*/
xfs_ialloc_inode_init(args.mp, tp, agno, args.agbno, args.len,
random32());
/*
* Convert the results.
*/
newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
be32_add_cpu(&agi->agi_count, newlen);
be32_add_cpu(&agi->agi_freecount, newlen);
pag = xfs_perag_get(args.mp, agno);
pag->pagi_freecount += newlen;
xfs_perag_put(pag);
agi->agi_newino = cpu_to_be32(newino);
/*
* Insert records describing the new inode chunk into the btree.
*/
cur = xfs_inobt_init_cursor(args.mp, tp, agbp, agno);
for (thisino = newino;
thisino < newino + newlen;
thisino += XFS_INODES_PER_CHUNK) {
cur->bc_rec.i.ir_startino = thisino;
cur->bc_rec.i.ir_freecount = XFS_INODES_PER_CHUNK;
cur->bc_rec.i.ir_free = XFS_INOBT_ALL_FREE;
error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, &i);
if (error) {
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
return error;
}
ASSERT(i == 0);
error = xfs_btree_insert(cur, &i);
if (error) {
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
return error;
}
ASSERT(i == 1);
}
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
/*
* Log allocation group header fields
*/
xfs_ialloc_log_agi(tp, agbp,
XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
/*
* Modify/log superblock values for inode count and inode free count.
*/
xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
*alloc = 1;
return 0;
}
STATIC xfs_agnumber_t
xfs_ialloc_next_ag(
xfs_mount_t *mp)
{
xfs_agnumber_t agno;
spin_lock(&mp->m_agirotor_lock);
agno = mp->m_agirotor;
if (++mp->m_agirotor == mp->m_maxagi)
mp->m_agirotor = 0;
spin_unlock(&mp->m_agirotor_lock);
return agno;
}
/*
* Select an allocation group to look for a free inode in, based on the parent
* inode and then mode. Return the allocation group buffer.
*/
STATIC xfs_buf_t * /* allocation group buffer */
xfs_ialloc_ag_select(
xfs_trans_t *tp, /* transaction pointer */
xfs_ino_t parent, /* parent directory inode number */
mode_t mode, /* bits set to indicate file type */
int okalloc) /* ok to allocate more space */
{
xfs_buf_t *agbp; /* allocation group header buffer */
xfs_agnumber_t agcount; /* number of ag's in the filesystem */
xfs_agnumber_t agno; /* current ag number */
int flags; /* alloc buffer locking flags */
xfs_extlen_t ineed; /* blocks needed for inode allocation */
xfs_extlen_t longest = 0; /* longest extent available */
xfs_mount_t *mp; /* mount point structure */
int needspace; /* file mode implies space allocated */
xfs_perag_t *pag; /* per allocation group data */
xfs_agnumber_t pagno; /* parent (starting) ag number */
/*
* Files of these types need at least one block if length > 0
* (and they won't fit in the inode, but that's hard to figure out).
*/
needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
mp = tp->t_mountp;
agcount = mp->m_maxagi;
if (S_ISDIR(mode))
pagno = xfs_ialloc_next_ag(mp);
else {
pagno = XFS_INO_TO_AGNO(mp, parent);
if (pagno >= agcount)
pagno = 0;
}
ASSERT(pagno < agcount);
/*
* Loop through allocation groups, looking for one with a little
* free space in it. Note we don't look for free inodes, exactly.
* Instead, we include whether there is a need to allocate inodes
* to mean that blocks must be allocated for them,
* if none are currently free.
*/
agno = pagno;
flags = XFS_ALLOC_FLAG_TRYLOCK;
for (;;) {
pag = xfs_perag_get(mp, agno);
if (!pag->pagi_init) {
if (xfs_ialloc_read_agi(mp, tp, agno, &agbp)) {
agbp = NULL;
goto nextag;
}
} else
agbp = NULL;
if (!pag->pagi_inodeok) {
xfs_ialloc_next_ag(mp);
goto unlock_nextag;
}
/*
* Is there enough free space for the file plus a block
* of inodes (if we need to allocate some)?
*/
ineed = pag->pagi_freecount ? 0 : XFS_IALLOC_BLOCKS(mp);
if (ineed && !pag->pagf_init) {
if (agbp == NULL &&
xfs_ialloc_read_agi(mp, tp, agno, &agbp)) {
agbp = NULL;
goto nextag;
}
(void)xfs_alloc_pagf_init(mp, tp, agno, flags);
}
if (!ineed || pag->pagf_init) {
if (ineed && !(longest = pag->pagf_longest))
longest = pag->pagf_flcount > 0;
if (!ineed ||
(pag->pagf_freeblks >= needspace + ineed &&
longest >= ineed &&
okalloc)) {
if (agbp == NULL &&
xfs_ialloc_read_agi(mp, tp, agno, &agbp)) {
agbp = NULL;
goto nextag;
}
xfs_perag_put(pag);
return agbp;
}
}
unlock_nextag:
if (agbp)
xfs_trans_brelse(tp, agbp);
nextag:
xfs_perag_put(pag);
/*
* No point in iterating over the rest, if we're shutting
* down.
*/
if (XFS_FORCED_SHUTDOWN(mp))
return NULL;
agno++;
if (agno >= agcount)
agno = 0;
if (agno == pagno) {
if (flags == 0)
return NULL;
flags = 0;
}
}
}
/*
* Try to retrieve the next record to the left/right from the current one.
*/
STATIC int
xfs_ialloc_next_rec(
struct xfs_btree_cur *cur,
xfs_inobt_rec_incore_t *rec,
int *done,
int left)
{
int error;
int i;
if (left)
error = xfs_btree_decrement(cur, 0, &i);
else
error = xfs_btree_increment(cur, 0, &i);
if (error)
return error;
*done = !i;
if (i) {
error = xfs_inobt_get_rec(cur, rec, &i);
if (error)
return error;
XFS_WANT_CORRUPTED_RETURN(i == 1);
}
return 0;
}
STATIC int
xfs_ialloc_get_rec(
struct xfs_btree_cur *cur,
xfs_agino_t agino,
xfs_inobt_rec_incore_t *rec,
int *done,
int left)
{
int error;
int i;
error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
if (error)
return error;
*done = !i;
if (i) {
error = xfs_inobt_get_rec(cur, rec, &i);
if (error)
return error;
XFS_WANT_CORRUPTED_RETURN(i == 1);
}
return 0;
}
/*
* Visible inode allocation functions.
*/
/*
* Allocate an inode on disk.
* Mode is used to tell whether the new inode will need space, and whether
* it is a directory.
*
* The arguments IO_agbp and alloc_done are defined to work within
* the constraint of one allocation per transaction.
* xfs_dialloc() is designed to be called twice if it has to do an
* allocation to make more free inodes. On the first call,
* IO_agbp should be set to NULL. If an inode is available,
* i.e., xfs_dialloc() did not need to do an allocation, an inode
* number is returned. In this case, IO_agbp would be set to the
* current ag_buf and alloc_done set to false.
* If an allocation needed to be done, xfs_dialloc would return
* the current ag_buf in IO_agbp and set alloc_done to true.
* The caller should then commit the current transaction, allocate a new
* transaction, and call xfs_dialloc() again, passing in the previous
* value of IO_agbp. IO_agbp should be held across the transactions.
* Since the agbp is locked across the two calls, the second call is
* guaranteed to have a free inode available.
*
* Once we successfully pick an inode its number is returned and the
* on-disk data structures are updated. The inode itself is not read
* in, since doing so would break ordering constraints with xfs_reclaim.
*/
int
xfs_dialloc(
xfs_trans_t *tp, /* transaction pointer */
xfs_ino_t parent, /* parent inode (directory) */
mode_t mode, /* mode bits for new inode */
int okalloc, /* ok to allocate more space */
xfs_buf_t **IO_agbp, /* in/out ag header's buffer */
boolean_t *alloc_done, /* true if we needed to replenish
inode freelist */
xfs_ino_t *inop) /* inode number allocated */
{
xfs_agnumber_t agcount; /* number of allocation groups */
xfs_buf_t *agbp; /* allocation group header's buffer */
xfs_agnumber_t agno; /* allocation group number */
xfs_agi_t *agi; /* allocation group header structure */
xfs_btree_cur_t *cur; /* inode allocation btree cursor */
int error; /* error return value */
int i; /* result code */
int ialloced; /* inode allocation status */
int noroom = 0; /* no space for inode blk allocation */
xfs_ino_t ino; /* fs-relative inode to be returned */
/* REFERENCED */
int j; /* result code */
xfs_mount_t *mp; /* file system mount structure */
int offset; /* index of inode in chunk */
xfs_agino_t pagino; /* parent's AG relative inode # */
xfs_agnumber_t pagno; /* parent's AG number */
xfs_inobt_rec_incore_t rec; /* inode allocation record */
xfs_agnumber_t tagno; /* testing allocation group number */
xfs_btree_cur_t *tcur; /* temp cursor */
xfs_inobt_rec_incore_t trec; /* temp inode allocation record */
struct xfs_perag *pag;
if (*IO_agbp == NULL) {
/*
* We do not have an agbp, so select an initial allocation
* group for inode allocation.
*/
agbp = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
/*
* Couldn't find an allocation group satisfying the
* criteria, give up.
*/
if (!agbp) {
*inop = NULLFSINO;
return 0;
}
agi = XFS_BUF_TO_AGI(agbp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
} else {
/*
* Continue where we left off before. In this case, we
* know that the allocation group has free inodes.
*/
agbp = *IO_agbp;
agi = XFS_BUF_TO_AGI(agbp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
}
mp = tp->t_mountp;
agcount = mp->m_sb.sb_agcount;
agno = be32_to_cpu(agi->agi_seqno);
tagno = agno;
pagno = XFS_INO_TO_AGNO(mp, parent);
pagino = XFS_INO_TO_AGINO(mp, parent);
/*
* If we have already hit the ceiling of inode blocks then clear
* okalloc so we scan all available agi structures for a free
* inode.
*/
if (mp->m_maxicount &&
mp->m_sb.sb_icount + XFS_IALLOC_INODES(mp) > mp->m_maxicount) {
noroom = 1;
okalloc = 0;
}
/*
* Loop until we find an allocation group that either has free inodes
* or in which we can allocate some inodes. Iterate through the
* allocation groups upward, wrapping at the end.
*/
*alloc_done = B_FALSE;
while (!agi->agi_freecount) {
/*
* Don't do anything if we're not supposed to allocate
* any blocks, just go on to the next ag.
*/
if (okalloc) {
/*
* Try to allocate some new inodes in the allocation
* group.
*/
if ((error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced))) {
xfs_trans_brelse(tp, agbp);
if (error == ENOSPC) {
*inop = NULLFSINO;
return 0;
} else
return error;
}
if (ialloced) {
/*
* We successfully allocated some inodes, return
* the current context to the caller so that it
* can commit the current transaction and call
* us again where we left off.
*/
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
*alloc_done = B_TRUE;
*IO_agbp = agbp;
*inop = NULLFSINO;
return 0;
}
}
/*
* If it failed, give up on this ag.
*/
xfs_trans_brelse(tp, agbp);
/*
* Go on to the next ag: get its ag header.
*/
nextag:
if (++tagno == agcount)
tagno = 0;
if (tagno == agno) {
*inop = NULLFSINO;
return noroom ? ENOSPC : 0;
}
pag = xfs_perag_get(mp, tagno);
if (pag->pagi_inodeok == 0) {
xfs_perag_put(pag);
goto nextag;
}
error = xfs_ialloc_read_agi(mp, tp, tagno, &agbp);
xfs_perag_put(pag);
if (error)
goto nextag;
agi = XFS_BUF_TO_AGI(agbp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
}
/*
* Here with an allocation group that has a free inode.
* Reset agno since we may have chosen a new ag in the
* loop above.
*/
agno = tagno;
*IO_agbp = NULL;
pag = xfs_perag_get(mp, agno);
restart_pagno:
cur = xfs_inobt_init_cursor(mp, tp, agbp, be32_to_cpu(agi->agi_seqno));
/*
* If pagino is 0 (this is the root inode allocation) use newino.
* This must work because we've just allocated some.
*/
if (!pagino)
pagino = be32_to_cpu(agi->agi_newino);
error = xfs_check_agi_freecount(cur, agi);
if (error)
goto error0;
/*
* If in the same AG as the parent, try to get near the parent.
*/
if (pagno == agno) {
int doneleft; /* done, to the left */
int doneright; /* done, to the right */
int searchdistance = 10;
error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
error = xfs_inobt_get_rec(cur, &rec, &j);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
if (rec.ir_freecount > 0) {
/*
* Found a free inode in the same chunk
* as the parent, done.
*/
goto alloc_inode;
}
/*
* In the same AG as parent, but parent's chunk is full.
*/
/* duplicate the cursor, search left & right simultaneously */
error = xfs_btree_dup_cursor(cur, &tcur);
if (error)
goto error0;
/*
* Skip to last blocks looked up if same parent inode.
*/
if (pagino != NULLAGINO &&
pag->pagl_pagino == pagino &&
pag->pagl_leftrec != NULLAGINO &&
pag->pagl_rightrec != NULLAGINO) {
error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
&trec, &doneleft, 1);
if (error)
goto error1;
error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
&rec, &doneright, 0);
if (error)
goto error1;
} else {
/* search left with tcur, back up 1 record */
error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
if (error)
goto error1;
/* search right with cur, go forward 1 record. */
error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
if (error)
goto error1;
}
/*
* Loop until we find an inode chunk with a free inode.
*/
while (!doneleft || !doneright) {
int useleft; /* using left inode chunk this time */
if (!--searchdistance) {
/*
* Not in range - save last search
* location and allocate a new inode
*/
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
pag->pagl_leftrec = trec.ir_startino;
pag->pagl_rightrec = rec.ir_startino;
pag->pagl_pagino = pagino;
goto newino;
}
/* figure out the closer block if both are valid. */
if (!doneleft && !doneright) {
useleft = pagino -
(trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
rec.ir_startino - pagino;
} else {
useleft = !doneleft;
}
/* free inodes to the left? */
if (useleft && trec.ir_freecount) {
rec = trec;
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
cur = tcur;
pag->pagl_leftrec = trec.ir_startino;
pag->pagl_rightrec = rec.ir_startino;
pag->pagl_pagino = pagino;
goto alloc_inode;
}
/* free inodes to the right? */
if (!useleft && rec.ir_freecount) {
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
pag->pagl_leftrec = trec.ir_startino;
pag->pagl_rightrec = rec.ir_startino;
pag->pagl_pagino = pagino;
goto alloc_inode;
}
/* get next record to check */
if (useleft) {
error = xfs_ialloc_next_rec(tcur, &trec,
&doneleft, 1);
} else {
error = xfs_ialloc_next_rec(cur, &rec,
&doneright, 0);
}
if (error)
goto error1;
}
/*
* We've reached the end of the btree. because
* we are only searching a small chunk of the
* btree each search, there is obviously free
* inodes closer to the parent inode than we
* are now. restart the search again.
*/
pag->pagl_pagino = NULLAGINO;
pag->pagl_leftrec = NULLAGINO;
pag->pagl_rightrec = NULLAGINO;
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
goto restart_pagno;
}
/*
* In a different AG from the parent.
* See if the most recently allocated block has any free.
*/
newino:
if (be32_to_cpu(agi->agi_newino) != NULLAGINO) {
error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
XFS_LOOKUP_EQ, &i);
if (error)
goto error0;
if (i == 1) {
error = xfs_inobt_get_rec(cur, &rec, &j);
if (error)
goto error0;
if (j == 1 && rec.ir_freecount > 0) {
/*
* The last chunk allocated in the group
* still has a free inode.
*/
goto alloc_inode;
}
}
}
/*
* None left in the last group, search the whole AG
*/
error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
for (;;) {
error = xfs_inobt_get_rec(cur, &rec, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
if (rec.ir_freecount > 0)
break;
error = xfs_btree_increment(cur, 0, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
}
alloc_inode:
offset = xfs_ialloc_find_free(&rec.ir_free);
ASSERT(offset >= 0);
ASSERT(offset < XFS_INODES_PER_CHUNK);
ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
XFS_INODES_PER_CHUNK) == 0);
ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
rec.ir_free &= ~XFS_INOBT_MASK(offset);
rec.ir_freecount--;
error = xfs_inobt_update(cur, &rec);
if (error)
goto error0;
be32_add_cpu(&agi->agi_freecount, -1);
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
pag->pagi_freecount--;
error = xfs_check_agi_freecount(cur, agi);
if (error)
goto error0;
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
xfs_perag_put(pag);
*inop = ino;
return 0;
error1:
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
error0:
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
xfs_perag_put(pag);
return error;
}
/*
* Free disk inode. Carefully avoids touching the incore inode, all
* manipulations incore are the caller's responsibility.
* The on-disk inode is not changed by this operation, only the
* btree (free inode mask) is changed.
*/
int
xfs_difree(
xfs_trans_t *tp, /* transaction pointer */
xfs_ino_t inode, /* inode to be freed */
xfs_bmap_free_t *flist, /* extents to free */
int *delete, /* set if inode cluster was deleted */
xfs_ino_t *first_ino) /* first inode in deleted cluster */
{
/* REFERENCED */
xfs_agblock_t agbno; /* block number containing inode */
xfs_buf_t *agbp; /* buffer containing allocation group header */
xfs_agino_t agino; /* inode number relative to allocation group */
xfs_agnumber_t agno; /* allocation group number */
xfs_agi_t *agi; /* allocation group header */
xfs_btree_cur_t *cur; /* inode btree cursor */
int error; /* error return value */
int i; /* result code */
int ilen; /* inodes in an inode cluster */
xfs_mount_t *mp; /* mount structure for filesystem */
int off; /* offset of inode in inode chunk */
xfs_inobt_rec_incore_t rec; /* btree record */
struct xfs_perag *pag;
mp = tp->t_mountp;
/*
* Break up inode number into its components.
*/
agno = XFS_INO_TO_AGNO(mp, inode);
if (agno >= mp->m_sb.sb_agcount) {
cmn_err(CE_WARN,
"xfs_difree: agno >= mp->m_sb.sb_agcount (%d >= %d) on %s. Returning EINVAL.",
agno, mp->m_sb.sb_agcount, mp->m_fsname);
ASSERT(0);
return XFS_ERROR(EINVAL);
}
agino = XFS_INO_TO_AGINO(mp, inode);
if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
cmn_err(CE_WARN,
"xfs_difree: inode != XFS_AGINO_TO_INO() "
"(%llu != %llu) on %s. Returning EINVAL.",
(unsigned long long)inode,
(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino),
mp->m_fsname);
ASSERT(0);
return XFS_ERROR(EINVAL);
}
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
if (agbno >= mp->m_sb.sb_agblocks) {
cmn_err(CE_WARN,
"xfs_difree: agbno >= mp->m_sb.sb_agblocks (%d >= %d) on %s. Returning EINVAL.",
agbno, mp->m_sb.sb_agblocks, mp->m_fsname);
ASSERT(0);
return XFS_ERROR(EINVAL);
}
/*
* Get the allocation group header.
*/
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
if (error) {
cmn_err(CE_WARN,
"xfs_difree: xfs_ialloc_read_agi() returned an error %d on %s. Returning error.",
error, mp->m_fsname);
return error;
}
agi = XFS_BUF_TO_AGI(agbp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
ASSERT(agbno < be32_to_cpu(agi->agi_length));
/*
* Initialize the cursor.
*/
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
error = xfs_check_agi_freecount(cur, agi);
if (error)
goto error0;
/*
* Look for the entry describing this inode.
*/
if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
cmn_err(CE_WARN,
"xfs_difree: xfs_inobt_lookup returned() an error %d on %s. Returning error.",
error, mp->m_fsname);
goto error0;
}
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
error = xfs_inobt_get_rec(cur, &rec, &i);
if (error) {
cmn_err(CE_WARN,
"xfs_difree: xfs_inobt_get_rec() returned an error %d on %s. Returning error.",
error, mp->m_fsname);
goto error0;
}
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
/*
* Get the offset in the inode chunk.
*/
off = agino - rec.ir_startino;
ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
/*
* Mark the inode free & increment the count.
*/
rec.ir_free |= XFS_INOBT_MASK(off);
rec.ir_freecount++;
/*
* When an inode cluster is free, it becomes eligible for removal
*/
if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
(rec.ir_freecount == XFS_IALLOC_INODES(mp))) {
*delete = 1;
*first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
/*
* Remove the inode cluster from the AGI B+Tree, adjust the
* AGI and Superblock inode counts, and mark the disk space
* to be freed when the transaction is committed.
*/
ilen = XFS_IALLOC_INODES(mp);
be32_add_cpu(&agi->agi_count, -ilen);
be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
pag = xfs_perag_get(mp, agno);
pag->pagi_freecount -= ilen - 1;
xfs_perag_put(pag);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
if ((error = xfs_btree_delete(cur, &i))) {
cmn_err(CE_WARN, "xfs_difree: xfs_btree_delete returned an error %d on %s.\n",
error, mp->m_fsname);
goto error0;
}
xfs_bmap_add_free(XFS_AGB_TO_FSB(mp,
agno, XFS_INO_TO_AGBNO(mp,rec.ir_startino)),
XFS_IALLOC_BLOCKS(mp), flist, mp);
} else {
*delete = 0;
error = xfs_inobt_update(cur, &rec);
if (error) {
cmn_err(CE_WARN,
"xfs_difree: xfs_inobt_update returned an error %d on %s.",
error, mp->m_fsname);
goto error0;
}
/*
* Change the inode free counts and log the ag/sb changes.
*/
be32_add_cpu(&agi->agi_freecount, 1);
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
pag = xfs_perag_get(mp, agno);
pag->pagi_freecount++;
xfs_perag_put(pag);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
}
error = xfs_check_agi_freecount(cur, agi);
if (error)
goto error0;
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
return 0;
error0:
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
return error;
}
/*
* Return the location of the inode in imap, for mapping it into a buffer.
*/
int
xfs_imap(
xfs_mount_t *mp, /* file system mount structure */
xfs_trans_t *tp, /* transaction pointer */
xfs_ino_t ino, /* inode to locate */
struct xfs_imap *imap, /* location map structure */
uint flags) /* flags for inode btree lookup */
{
xfs_agblock_t agbno; /* block number of inode in the alloc group */
xfs_agino_t agino; /* inode number within alloc group */
xfs_agnumber_t agno; /* allocation group number */
int blks_per_cluster; /* num blocks per inode cluster */
xfs_agblock_t chunk_agbno; /* first block in inode chunk */
xfs_agblock_t cluster_agbno; /* first block in inode cluster */
int error; /* error code */
int offset; /* index of inode in its buffer */
int offset_agbno; /* blks from chunk start to inode */
ASSERT(ino != NULLFSINO);
/*
* Split up the inode number into its parts.
*/
agno = XFS_INO_TO_AGNO(mp, ino);
agino = XFS_INO_TO_AGINO(mp, ino);
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
#ifdef DEBUG
/* no diagnostics for bulkstat, ino comes from userspace */
if (flags & XFS_IGET_BULKSTAT)
return XFS_ERROR(EINVAL);
if (agno >= mp->m_sb.sb_agcount) {
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_imap: agno (%d) >= "
"mp->m_sb.sb_agcount (%d)",
agno, mp->m_sb.sb_agcount);
}
if (agbno >= mp->m_sb.sb_agblocks) {
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_imap: agbno (0x%llx) >= "
"mp->m_sb.sb_agblocks (0x%lx)",
(unsigned long long) agbno,
(unsigned long) mp->m_sb.sb_agblocks);
}
if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_imap: ino (0x%llx) != "
"XFS_AGINO_TO_INO(mp, agno, agino) "
"(0x%llx)",
ino, XFS_AGINO_TO_INO(mp, agno, agino));
}
xfs_stack_trace();
#endif /* DEBUG */
return XFS_ERROR(EINVAL);
}
/*
* If the inode cluster size is the same as the blocksize or
* smaller we get to the buffer by simple arithmetics.
*/
if (XFS_INODE_CLUSTER_SIZE(mp) <= mp->m_sb.sb_blocksize) {
offset = XFS_INO_TO_OFFSET(mp, ino);
ASSERT(offset < mp->m_sb.sb_inopblock);
imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
imap->im_len = XFS_FSB_TO_BB(mp, 1);
imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
return 0;
}
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_blocklog;
/*
* If we get a block number passed from bulkstat we can use it to
* find the buffer easily.
*/
if (imap->im_blkno) {
offset = XFS_INO_TO_OFFSET(mp, ino);
ASSERT(offset < mp->m_sb.sb_inopblock);
cluster_agbno = xfs_daddr_to_agbno(mp, imap->im_blkno);
offset += (agbno - cluster_agbno) * mp->m_sb.sb_inopblock;
imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
return 0;
}
/*
* If the inode chunks are aligned then use simple maths to
* find the location. Otherwise we have to do a btree
* lookup to find the location.
*/
if (mp->m_inoalign_mask) {
offset_agbno = agbno & mp->m_inoalign_mask;
chunk_agbno = agbno - offset_agbno;
} else {
xfs_btree_cur_t *cur; /* inode btree cursor */
xfs_inobt_rec_incore_t chunk_rec;
xfs_buf_t *agbp; /* agi buffer */
int i; /* temp state */
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
if (error) {
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
"xfs_ialloc_read_agi() returned "
"error %d, agno %d",
error, agno);
return error;
}
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
if (error) {
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
"xfs_inobt_lookup() failed");
goto error0;
}
error = xfs_inobt_get_rec(cur, &chunk_rec, &i);
if (error) {
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
"xfs_inobt_get_rec() failed");
goto error0;
}
if (i == 0) {
#ifdef DEBUG
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
"xfs_inobt_get_rec() failed");
#endif /* DEBUG */
error = XFS_ERROR(EINVAL);
}
error0:
xfs_trans_brelse(tp, agbp);
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
if (error)
return error;
chunk_agbno = XFS_AGINO_TO_AGBNO(mp, chunk_rec.ir_startino);
offset_agbno = agbno - chunk_agbno;
}
ASSERT(agbno >= chunk_agbno);
cluster_agbno = chunk_agbno +
((offset_agbno / blks_per_cluster) * blks_per_cluster);
offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
XFS_INO_TO_OFFSET(mp, ino);
imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
/*
* If the inode number maps to a block outside the bounds
* of the file system then return NULL rather than calling
* read_buf and panicing when we get an error from the
* driver.
*/
if ((imap->im_blkno + imap->im_len) >
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
"(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
" XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
(unsigned long long) imap->im_blkno,
(unsigned long long) imap->im_len,
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
return XFS_ERROR(EINVAL);
}
return 0;
}
/*
* Compute and fill in value of m_in_maxlevels.
*/
void
xfs_ialloc_compute_maxlevels(
xfs_mount_t *mp) /* file system mount structure */
{
int level;
uint maxblocks;
uint maxleafents;
int minleafrecs;
int minnoderecs;
maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
XFS_INODES_PER_CHUNK_LOG;
minleafrecs = mp->m_alloc_mnr[0];
minnoderecs = mp->m_alloc_mnr[1];
maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
for (level = 1; maxblocks > 1; level++)
maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
mp->m_in_maxlevels = level;
}
/*
* Log specified fields for the ag hdr (inode section)
*/
void
xfs_ialloc_log_agi(
xfs_trans_t *tp, /* transaction pointer */
xfs_buf_t *bp, /* allocation group header buffer */
int fields) /* bitmask of fields to log */
{
int first; /* first byte number */
int last; /* last byte number */
static const short offsets[] = { /* field starting offsets */
/* keep in sync with bit definitions */
offsetof(xfs_agi_t, agi_magicnum),
offsetof(xfs_agi_t, agi_versionnum),
offsetof(xfs_agi_t, agi_seqno),
offsetof(xfs_agi_t, agi_length),
offsetof(xfs_agi_t, agi_count),
offsetof(xfs_agi_t, agi_root),
offsetof(xfs_agi_t, agi_level),
offsetof(xfs_agi_t, agi_freecount),
offsetof(xfs_agi_t, agi_newino),
offsetof(xfs_agi_t, agi_dirino),
offsetof(xfs_agi_t, agi_unlinked),
sizeof(xfs_agi_t)
};
#ifdef DEBUG
xfs_agi_t *agi; /* allocation group header */
agi = XFS_BUF_TO_AGI(bp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
#endif
/*
* Compute byte offsets for the first and last fields.
*/
xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS, &first, &last);
/*
* Log the allocation group inode header buffer.
*/
xfs_trans_log_buf(tp, bp, first, last);
}
#ifdef DEBUG
STATIC void
xfs_check_agi_unlinked(
struct xfs_agi *agi)
{
int i;
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
ASSERT(agi->agi_unlinked[i]);
}
#else
#define xfs_check_agi_unlinked(agi)
#endif
/*
* Read in the allocation group header (inode allocation section)
*/
int
xfs_read_agi(
struct xfs_mount *mp, /* file system mount structure */
struct xfs_trans *tp, /* transaction pointer */
xfs_agnumber_t agno, /* allocation group number */
struct xfs_buf **bpp) /* allocation group hdr buf */
{
struct xfs_agi *agi; /* allocation group header */
int agi_ok; /* agi is consistent */
int error;
ASSERT(agno != NULLAGNUMBER);
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, bpp);
if (error)
return error;
ASSERT(*bpp && !XFS_BUF_GETERROR(*bpp));
agi = XFS_BUF_TO_AGI(*bpp);
/*
* Validate the magic number of the agi block.
*/
agi_ok = be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)) &&
be32_to_cpu(agi->agi_seqno) == agno;
if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IALLOC_READ_AGI,
XFS_RANDOM_IALLOC_READ_AGI))) {
XFS_CORRUPTION_ERROR("xfs_read_agi", XFS_ERRLEVEL_LOW,
mp, agi);
xfs_trans_brelse(tp, *bpp);
return XFS_ERROR(EFSCORRUPTED);
}
XFS_BUF_SET_VTYPE_REF(*bpp, B_FS_AGI, XFS_AGI_REF);
xfs_check_agi_unlinked(agi);
return 0;
}
int
xfs_ialloc_read_agi(
struct xfs_mount *mp, /* file system mount structure */
struct xfs_trans *tp, /* transaction pointer */
xfs_agnumber_t agno, /* allocation group number */
struct xfs_buf **bpp) /* allocation group hdr buf */
{
struct xfs_agi *agi; /* allocation group header */
struct xfs_perag *pag; /* per allocation group data */
int error;
error = xfs_read_agi(mp, tp, agno, bpp);
if (error)
return error;
agi = XFS_BUF_TO_AGI(*bpp);
pag = xfs_perag_get(mp, agno);
if (!pag->pagi_init) {
pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
pag->pagi_count = be32_to_cpu(agi->agi_count);
pag->pagi_init = 1;
}
/*
* It's possible for these to be out of sync if
* we are in the middle of a forced shutdown.
*/
ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
XFS_FORCED_SHUTDOWN(mp));
xfs_perag_put(pag);
return 0;
}
/*
* Read in the agi to initialise the per-ag data in the mount structure
*/
int
xfs_ialloc_pagi_init(
xfs_mount_t *mp, /* file system mount structure */
xfs_trans_t *tp, /* transaction pointer */
xfs_agnumber_t agno) /* allocation group number */
{
xfs_buf_t *bp = NULL;
int error;
error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
if (error)
return error;
if (bp)
xfs_trans_brelse(tp, bp);
return 0;
}