android_kernel_xiaomi_sm8350/drivers/hwmon/lm80.c
Guenter Roeck c254ffdefc hwmon: (lm80) Rearrange code to avoid forward declarations
Avoid need for forward declarations by rearranging code.

No functional change.

Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2014-05-21 16:02:26 -07:00

675 lines
20 KiB
C

/*
* lm80.c - From lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
* and Philip Edelbrock <phil@netroedge.com>
*
* Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
0x2e, 0x2f, I2C_CLIENT_END };
/* Many LM80 constants specified below */
/* The LM80 registers */
#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
#define LM80_REG_IN(nr) (0x20 + (nr))
#define LM80_REG_FAN1 0x28
#define LM80_REG_FAN2 0x29
#define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
#define LM80_REG_TEMP 0x27
#define LM80_REG_TEMP_HOT_MAX 0x38
#define LM80_REG_TEMP_HOT_HYST 0x39
#define LM80_REG_TEMP_OS_MAX 0x3a
#define LM80_REG_TEMP_OS_HYST 0x3b
#define LM80_REG_CONFIG 0x00
#define LM80_REG_ALARM1 0x01
#define LM80_REG_ALARM2 0x02
#define LM80_REG_MASK1 0x03
#define LM80_REG_MASK2 0x04
#define LM80_REG_FANDIV 0x05
#define LM80_REG_RES 0x06
#define LM96080_REG_CONV_RATE 0x07
#define LM96080_REG_MAN_ID 0x3e
#define LM96080_REG_DEV_ID 0x3f
/*
* Conversions. Rounding and limit checking is only done on the TO_REG
* variants. Note that you should be a bit careful with which arguments
* these macros are called: arguments may be evaluated more than once.
* Fixing this is just not worth it.
*/
#define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255))
#define IN_FROM_REG(val) ((val) * 10)
static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
{
if (rpm == 0)
return 255;
rpm = clamp_val(rpm, 1, 1000000);
return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}
#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
(val) == 255 ? 0 : 1350000/((div) * (val)))
#define TEMP_FROM_REG(reg) ((reg) * 125 / 32)
#define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \
-128000, 127000), 1000) << 8)
#define DIV_FROM_REG(val) (1 << (val))
enum temp_index {
t_input = 0,
t_hot_max,
t_hot_hyst,
t_os_max,
t_os_hyst,
t_num_temp
};
static const u8 temp_regs[t_num_temp] = {
[t_input] = LM80_REG_TEMP,
[t_hot_max] = LM80_REG_TEMP_HOT_MAX,
[t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
[t_os_max] = LM80_REG_TEMP_OS_MAX,
[t_os_hyst] = LM80_REG_TEMP_OS_HYST,
};
enum in_index {
i_input = 0,
i_max,
i_min,
i_num_in
};
enum fan_index {
f_input,
f_min,
f_num_fan
};
/*
* Client data (each client gets its own)
*/
struct lm80_data {
struct i2c_client *client;
struct mutex update_lock;
char error; /* !=0 if error occurred during last update */
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */
u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */
u8 fan_div[2]; /* Register encoding, shifted right */
s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */
u16 alarms; /* Register encoding, combined */
};
static int lm80_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/* Called when we have found a new LM80 and after read errors */
static void lm80_init_client(struct i2c_client *client)
{
/*
* Reset all except Watchdog values and last conversion values
* This sets fan-divs to 2, among others. This makes most other
* initializations unnecessary
*/
lm80_write_value(client, LM80_REG_CONFIG, 0x80);
/* Set 11-bit temperature resolution */
lm80_write_value(client, LM80_REG_RES, 0x08);
/* Start monitoring */
lm80_write_value(client, LM80_REG_CONFIG, 0x01);
}
static struct lm80_data *lm80_update_device(struct device *dev)
{
struct lm80_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int i;
int rv;
int prev_rv;
struct lm80_data *ret = data;
mutex_lock(&data->update_lock);
if (data->error)
lm80_init_client(client);
if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
dev_dbg(dev, "Starting lm80 update\n");
for (i = 0; i <= 6; i++) {
rv = lm80_read_value(client, LM80_REG_IN(i));
if (rv < 0)
goto abort;
data->in[i_input][i] = rv;
rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
if (rv < 0)
goto abort;
data->in[i_min][i] = rv;
rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
if (rv < 0)
goto abort;
data->in[i_max][i] = rv;
}
rv = lm80_read_value(client, LM80_REG_FAN1);
if (rv < 0)
goto abort;
data->fan[f_input][0] = rv;
rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
if (rv < 0)
goto abort;
data->fan[f_min][0] = rv;
rv = lm80_read_value(client, LM80_REG_FAN2);
if (rv < 0)
goto abort;
data->fan[f_input][1] = rv;
rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
if (rv < 0)
goto abort;
data->fan[f_min][1] = rv;
prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
if (rv < 0)
goto abort;
rv = lm80_read_value(client, LM80_REG_RES);
if (rv < 0)
goto abort;
data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);
for (i = t_input + 1; i < t_num_temp; i++) {
rv = lm80_read_value(client, temp_regs[i]);
if (rv < 0)
goto abort;
data->temp[i] = rv << 8;
}
rv = lm80_read_value(client, LM80_REG_FANDIV);
if (rv < 0)
goto abort;
data->fan_div[0] = (rv >> 2) & 0x03;
data->fan_div[1] = (rv >> 4) & 0x03;
prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
if (rv < 0)
goto abort;
rv = lm80_read_value(client, LM80_REG_ALARM2);
if (rv < 0)
goto abort;
data->alarms = prev_rv + (rv << 8);
data->last_updated = jiffies;
data->valid = 1;
data->error = 0;
}
goto done;
abort:
ret = ERR_PTR(rv);
data->valid = 0;
data->error = 1;
done:
mutex_unlock(&data->update_lock);
return ret;
}
/*
* Sysfs stuff
*/
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct lm80_data *data = lm80_update_device(dev);
int index = to_sensor_dev_attr_2(attr)->index;
int nr = to_sensor_dev_attr_2(attr)->nr;
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
}
static ssize_t set_in(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm80_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int index = to_sensor_dev_attr_2(attr)->index;
int nr = to_sensor_dev_attr_2(attr)->nr;
long val;
u8 reg;
int err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);
mutex_lock(&data->update_lock);
data->in[nr][index] = IN_TO_REG(val);
lm80_write_value(client, reg, data->in[nr][index]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
char *buf)
{
int index = to_sensor_dev_attr_2(attr)->index;
int nr = to_sensor_dev_attr_2(attr)->nr;
struct lm80_data *data = lm80_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
DIV_FROM_REG(data->fan_div[index])));
}
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm80_data *data = lm80_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int index = to_sensor_dev_attr_2(attr)->index;
int nr = to_sensor_dev_attr_2(attr)->nr;
struct lm80_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
mutex_lock(&data->update_lock);
data->fan[nr][index] = FAN_TO_REG(val,
DIV_FROM_REG(data->fan_div[index]));
lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
data->fan[nr][index]);
mutex_unlock(&data->update_lock);
return count;
}
/*
* Note: we save and restore the fan minimum here, because its value is
* determined in part by the fan divisor. This follows the principle of
* least surprise; the user doesn't expect the fan minimum to change just
* because the divisor changed.
*/
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm80_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long min, val;
u8 reg;
int err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
/* Save fan_min */
mutex_lock(&data->update_lock);
min = FAN_FROM_REG(data->fan[f_min][nr],
DIV_FROM_REG(data->fan_div[nr]));
switch (val) {
case 1:
data->fan_div[nr] = 0;
break;
case 2:
data->fan_div[nr] = 1;
break;
case 4:
data->fan_div[nr] = 2;
break;
case 8:
data->fan_div[nr] = 3;
break;
default:
dev_err(dev,
"fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
val);
mutex_unlock(&data->update_lock);
return -EINVAL;
}
reg = (lm80_read_value(client, LM80_REG_FANDIV) &
~(3 << (2 * (nr + 1)))) | (data->fan_div[nr] << (2 * (nr + 1)));
lm80_write_value(client, LM80_REG_FANDIV, reg);
/* Restore fan_min */
data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
data->fan[f_min][nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm80_data *data = lm80_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
}
static ssize_t set_temp(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm80_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = attr->index;
long val;
int err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
mutex_lock(&data->update_lock);
data->temp[nr] = TEMP_TO_REG(val);
lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct lm80_data *data = lm80_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%u\n", data->alarms);
}
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct lm80_data *data = lm80_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR_2(in0_min, S_IWUSR | S_IRUGO,
show_in, set_in, i_min, 0);
static SENSOR_DEVICE_ATTR_2(in1_min, S_IWUSR | S_IRUGO,
show_in, set_in, i_min, 1);
static SENSOR_DEVICE_ATTR_2(in2_min, S_IWUSR | S_IRUGO,
show_in, set_in, i_min, 2);
static SENSOR_DEVICE_ATTR_2(in3_min, S_IWUSR | S_IRUGO,
show_in, set_in, i_min, 3);
static SENSOR_DEVICE_ATTR_2(in4_min, S_IWUSR | S_IRUGO,
show_in, set_in, i_min, 4);
static SENSOR_DEVICE_ATTR_2(in5_min, S_IWUSR | S_IRUGO,
show_in, set_in, i_min, 5);
static SENSOR_DEVICE_ATTR_2(in6_min, S_IWUSR | S_IRUGO,
show_in, set_in, i_min, 6);
static SENSOR_DEVICE_ATTR_2(in0_max, S_IWUSR | S_IRUGO,
show_in, set_in, i_max, 0);
static SENSOR_DEVICE_ATTR_2(in1_max, S_IWUSR | S_IRUGO,
show_in, set_in, i_max, 1);
static SENSOR_DEVICE_ATTR_2(in2_max, S_IWUSR | S_IRUGO,
show_in, set_in, i_max, 2);
static SENSOR_DEVICE_ATTR_2(in3_max, S_IWUSR | S_IRUGO,
show_in, set_in, i_max, 3);
static SENSOR_DEVICE_ATTR_2(in4_max, S_IWUSR | S_IRUGO,
show_in, set_in, i_max, 4);
static SENSOR_DEVICE_ATTR_2(in5_max, S_IWUSR | S_IRUGO,
show_in, set_in, i_max, 5);
static SENSOR_DEVICE_ATTR_2(in6_max, S_IWUSR | S_IRUGO,
show_in, set_in, i_max, 6);
static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO, show_in, NULL, i_input, 0);
static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO, show_in, NULL, i_input, 1);
static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO, show_in, NULL, i_input, 2);
static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO, show_in, NULL, i_input, 3);
static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO, show_in, NULL, i_input, 4);
static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO, show_in, NULL, i_input, 5);
static SENSOR_DEVICE_ATTR_2(in6_input, S_IRUGO, show_in, NULL, i_input, 6);
static SENSOR_DEVICE_ATTR_2(fan1_min, S_IWUSR | S_IRUGO,
show_fan, set_fan_min, f_min, 0);
static SENSOR_DEVICE_ATTR_2(fan2_min, S_IWUSR | S_IRUGO,
show_fan, set_fan_min, f_min, 1);
static SENSOR_DEVICE_ATTR_2(fan1_input, S_IRUGO, show_fan, NULL, f_input, 0);
static SENSOR_DEVICE_ATTR_2(fan2_input, S_IRUGO, show_fan, NULL, f_input, 1);
static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO,
show_fan_div, set_fan_div, 0);
static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO,
show_fan_div, set_fan_div, 1);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, t_input);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp,
set_temp, t_hot_max);
static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp,
set_temp, t_hot_hyst);
static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp,
set_temp, t_os_max);
static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp,
set_temp, t_os_hyst);
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13);
/*
* Real code
*/
static struct attribute *lm80_attrs[] = {
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&dev_attr_alarms.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
NULL
};
ATTRIBUTE_GROUPS(lm80);
/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int i, cur, man_id, dev_id;
const char *name = NULL;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* First check for unused bits, common to both chip types */
if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
|| (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
return -ENODEV;
/*
* The LM96080 has manufacturer and stepping/die rev registers so we
* can just check that. The LM80 does not have such registers so we
* have to use a more expensive trick.
*/
man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
if (man_id == 0x01 && dev_id == 0x08) {
/* Check more unused bits for confirmation */
if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
return -ENODEV;
name = "lm96080";
} else {
/* Check 6-bit addressing */
for (i = 0x2a; i <= 0x3d; i++) {
cur = i2c_smbus_read_byte_data(client, i);
if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
|| (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
|| (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
return -ENODEV;
}
name = "lm80";
}
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static int lm80_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device *hwmon_dev;
struct lm80_data *data;
data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
mutex_init(&data->update_lock);
/* Initialize the LM80 chip */
lm80_init_client(client);
/* A few vars need to be filled upon startup */
data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data, lm80_groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
/*
* Driver data (common to all clients)
*/
static const struct i2c_device_id lm80_id[] = {
{ "lm80", 0 },
{ "lm96080", 1 },
{ }
};
MODULE_DEVICE_TABLE(i2c, lm80_id);
static struct i2c_driver lm80_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "lm80",
},
.probe = lm80_probe,
.id_table = lm80_id,
.detect = lm80_detect,
.address_list = normal_i2c,
};
module_i2c_driver(lm80_driver);
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
"Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("LM80 driver");
MODULE_LICENSE("GPL");