android_kernel_xiaomi_sm8350/drivers/video/fbdev/mx3fb.c
Linus Torvalds e6b5be2be4 Driver core patches for 3.19-rc1
Here's the set of driver core patches for 3.19-rc1.
 
 They are dominated by the removal of the .owner field in platform
 drivers.  They touch a lot of files, but they are "simple" changes, just
 removing a line in a structure.
 
 Other than that, a few minor driver core and debugfs changes.  There are
 some ath9k patches coming in through this tree that have been acked by
 the wireless maintainers as they relied on the debugfs changes.
 
 Everything has been in linux-next for a while.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iEYEABECAAYFAlSOD20ACgkQMUfUDdst+ylLPACg2QrW1oHhdTMT9WI8jihlHVRM
 53kAoLeteByQ3iVwWurwwseRPiWa8+MI
 =OVRS
 -----END PGP SIGNATURE-----

Merge tag 'driver-core-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull driver core update from Greg KH:
 "Here's the set of driver core patches for 3.19-rc1.

  They are dominated by the removal of the .owner field in platform
  drivers.  They touch a lot of files, but they are "simple" changes,
  just removing a line in a structure.

  Other than that, a few minor driver core and debugfs changes.  There
  are some ath9k patches coming in through this tree that have been
  acked by the wireless maintainers as they relied on the debugfs
  changes.

  Everything has been in linux-next for a while"

* tag 'driver-core-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (324 commits)
  Revert "ath: ath9k: use debugfs_create_devm_seqfile() helper for seq_file entries"
  fs: debugfs: add forward declaration for struct device type
  firmware class: Deletion of an unnecessary check before the function call "vunmap"
  firmware loader: fix hung task warning dump
  devcoredump: provide a one-way disable function
  device: Add dev_<level>_once variants
  ath: ath9k: use debugfs_create_devm_seqfile() helper for seq_file entries
  ath: use seq_file api for ath9k debugfs files
  debugfs: add helper function to create device related seq_file
  drivers/base: cacheinfo: remove noisy error boot message
  Revert "core: platform: add warning if driver has no owner"
  drivers: base: support cpu cache information interface to userspace via sysfs
  drivers: base: add cpu_device_create to support per-cpu devices
  topology: replace custom attribute macros with standard DEVICE_ATTR*
  cpumask: factor out show_cpumap into separate helper function
  driver core: Fix unbalanced device reference in drivers_probe
  driver core: fix race with userland in device_add()
  sysfs/kernfs: make read requests on pre-alloc files use the buffer.
  sysfs/kernfs: allow attributes to request write buffer be pre-allocated.
  fs: sysfs: return EGBIG on write if offset is larger than file size
  ...
2014-12-14 16:10:09 -08:00

1707 lines
43 KiB
C

/*
* Copyright (C) 2008
* Guennadi Liakhovetski, DENX Software Engineering, <lg@denx.de>
*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/console.h>
#include <linux/clk.h>
#include <linux/mutex.h>
#include <linux/dma/ipu-dma.h>
#include <linux/backlight.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/platform_data/video-mx3fb.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#define MX3FB_NAME "mx3_sdc_fb"
#define MX3FB_REG_OFFSET 0xB4
/* SDC Registers */
#define SDC_COM_CONF (0xB4 - MX3FB_REG_OFFSET)
#define SDC_GW_CTRL (0xB8 - MX3FB_REG_OFFSET)
#define SDC_FG_POS (0xBC - MX3FB_REG_OFFSET)
#define SDC_BG_POS (0xC0 - MX3FB_REG_OFFSET)
#define SDC_CUR_POS (0xC4 - MX3FB_REG_OFFSET)
#define SDC_PWM_CTRL (0xC8 - MX3FB_REG_OFFSET)
#define SDC_CUR_MAP (0xCC - MX3FB_REG_OFFSET)
#define SDC_HOR_CONF (0xD0 - MX3FB_REG_OFFSET)
#define SDC_VER_CONF (0xD4 - MX3FB_REG_OFFSET)
#define SDC_SHARP_CONF_1 (0xD8 - MX3FB_REG_OFFSET)
#define SDC_SHARP_CONF_2 (0xDC - MX3FB_REG_OFFSET)
/* Register bits */
#define SDC_COM_TFT_COLOR 0x00000001UL
#define SDC_COM_FG_EN 0x00000010UL
#define SDC_COM_GWSEL 0x00000020UL
#define SDC_COM_GLB_A 0x00000040UL
#define SDC_COM_KEY_COLOR_G 0x00000080UL
#define SDC_COM_BG_EN 0x00000200UL
#define SDC_COM_SHARP 0x00001000UL
#define SDC_V_SYNC_WIDTH_L 0x00000001UL
/* Display Interface registers */
#define DI_DISP_IF_CONF (0x0124 - MX3FB_REG_OFFSET)
#define DI_DISP_SIG_POL (0x0128 - MX3FB_REG_OFFSET)
#define DI_SER_DISP1_CONF (0x012C - MX3FB_REG_OFFSET)
#define DI_SER_DISP2_CONF (0x0130 - MX3FB_REG_OFFSET)
#define DI_HSP_CLK_PER (0x0134 - MX3FB_REG_OFFSET)
#define DI_DISP0_TIME_CONF_1 (0x0138 - MX3FB_REG_OFFSET)
#define DI_DISP0_TIME_CONF_2 (0x013C - MX3FB_REG_OFFSET)
#define DI_DISP0_TIME_CONF_3 (0x0140 - MX3FB_REG_OFFSET)
#define DI_DISP1_TIME_CONF_1 (0x0144 - MX3FB_REG_OFFSET)
#define DI_DISP1_TIME_CONF_2 (0x0148 - MX3FB_REG_OFFSET)
#define DI_DISP1_TIME_CONF_3 (0x014C - MX3FB_REG_OFFSET)
#define DI_DISP2_TIME_CONF_1 (0x0150 - MX3FB_REG_OFFSET)
#define DI_DISP2_TIME_CONF_2 (0x0154 - MX3FB_REG_OFFSET)
#define DI_DISP2_TIME_CONF_3 (0x0158 - MX3FB_REG_OFFSET)
#define DI_DISP3_TIME_CONF (0x015C - MX3FB_REG_OFFSET)
#define DI_DISP0_DB0_MAP (0x0160 - MX3FB_REG_OFFSET)
#define DI_DISP0_DB1_MAP (0x0164 - MX3FB_REG_OFFSET)
#define DI_DISP0_DB2_MAP (0x0168 - MX3FB_REG_OFFSET)
#define DI_DISP0_CB0_MAP (0x016C - MX3FB_REG_OFFSET)
#define DI_DISP0_CB1_MAP (0x0170 - MX3FB_REG_OFFSET)
#define DI_DISP0_CB2_MAP (0x0174 - MX3FB_REG_OFFSET)
#define DI_DISP1_DB0_MAP (0x0178 - MX3FB_REG_OFFSET)
#define DI_DISP1_DB1_MAP (0x017C - MX3FB_REG_OFFSET)
#define DI_DISP1_DB2_MAP (0x0180 - MX3FB_REG_OFFSET)
#define DI_DISP1_CB0_MAP (0x0184 - MX3FB_REG_OFFSET)
#define DI_DISP1_CB1_MAP (0x0188 - MX3FB_REG_OFFSET)
#define DI_DISP1_CB2_MAP (0x018C - MX3FB_REG_OFFSET)
#define DI_DISP2_DB0_MAP (0x0190 - MX3FB_REG_OFFSET)
#define DI_DISP2_DB1_MAP (0x0194 - MX3FB_REG_OFFSET)
#define DI_DISP2_DB2_MAP (0x0198 - MX3FB_REG_OFFSET)
#define DI_DISP2_CB0_MAP (0x019C - MX3FB_REG_OFFSET)
#define DI_DISP2_CB1_MAP (0x01A0 - MX3FB_REG_OFFSET)
#define DI_DISP2_CB2_MAP (0x01A4 - MX3FB_REG_OFFSET)
#define DI_DISP3_B0_MAP (0x01A8 - MX3FB_REG_OFFSET)
#define DI_DISP3_B1_MAP (0x01AC - MX3FB_REG_OFFSET)
#define DI_DISP3_B2_MAP (0x01B0 - MX3FB_REG_OFFSET)
#define DI_DISP_ACC_CC (0x01B4 - MX3FB_REG_OFFSET)
#define DI_DISP_LLA_CONF (0x01B8 - MX3FB_REG_OFFSET)
#define DI_DISP_LLA_DATA (0x01BC - MX3FB_REG_OFFSET)
/* DI_DISP_SIG_POL bits */
#define DI_D3_VSYNC_POL_SHIFT 28
#define DI_D3_HSYNC_POL_SHIFT 27
#define DI_D3_DRDY_SHARP_POL_SHIFT 26
#define DI_D3_CLK_POL_SHIFT 25
#define DI_D3_DATA_POL_SHIFT 24
/* DI_DISP_IF_CONF bits */
#define DI_D3_CLK_IDLE_SHIFT 26
#define DI_D3_CLK_SEL_SHIFT 25
#define DI_D3_DATAMSK_SHIFT 24
enum ipu_panel {
IPU_PANEL_SHARP_TFT,
IPU_PANEL_TFT,
};
struct ipu_di_signal_cfg {
unsigned datamask_en:1;
unsigned clksel_en:1;
unsigned clkidle_en:1;
unsigned data_pol:1; /* true = inverted */
unsigned clk_pol:1; /* true = rising edge */
unsigned enable_pol:1;
unsigned Hsync_pol:1; /* true = active high */
unsigned Vsync_pol:1;
};
static const struct fb_videomode mx3fb_modedb[] = {
{
/* 240x320 @ 60 Hz */
.name = "Sharp-QVGA",
.refresh = 60,
.xres = 240,
.yres = 320,
.pixclock = 185925,
.left_margin = 9,
.right_margin = 16,
.upper_margin = 7,
.lower_margin = 9,
.hsync_len = 1,
.vsync_len = 1,
.sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_SHARP_MODE |
FB_SYNC_CLK_INVERT | FB_SYNC_DATA_INVERT |
FB_SYNC_CLK_IDLE_EN,
.vmode = FB_VMODE_NONINTERLACED,
.flag = 0,
}, {
/* 240x33 @ 60 Hz */
.name = "Sharp-CLI",
.refresh = 60,
.xres = 240,
.yres = 33,
.pixclock = 185925,
.left_margin = 9,
.right_margin = 16,
.upper_margin = 7,
.lower_margin = 9 + 287,
.hsync_len = 1,
.vsync_len = 1,
.sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_SHARP_MODE |
FB_SYNC_CLK_INVERT | FB_SYNC_DATA_INVERT |
FB_SYNC_CLK_IDLE_EN,
.vmode = FB_VMODE_NONINTERLACED,
.flag = 0,
}, {
/* 640x480 @ 60 Hz */
.name = "NEC-VGA",
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 38255,
.left_margin = 144,
.right_margin = 0,
.upper_margin = 34,
.lower_margin = 40,
.hsync_len = 1,
.vsync_len = 1,
.sync = FB_SYNC_VERT_HIGH_ACT | FB_SYNC_OE_ACT_HIGH,
.vmode = FB_VMODE_NONINTERLACED,
.flag = 0,
}, {
/* NTSC TV output */
.name = "TV-NTSC",
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 37538,
.left_margin = 38,
.right_margin = 858 - 640 - 38 - 3,
.upper_margin = 36,
.lower_margin = 518 - 480 - 36 - 1,
.hsync_len = 3,
.vsync_len = 1,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED,
.flag = 0,
}, {
/* PAL TV output */
.name = "TV-PAL",
.refresh = 50,
.xres = 640,
.yres = 480,
.pixclock = 37538,
.left_margin = 38,
.right_margin = 960 - 640 - 38 - 32,
.upper_margin = 32,
.lower_margin = 555 - 480 - 32 - 3,
.hsync_len = 32,
.vsync_len = 3,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED,
.flag = 0,
}, {
/* TV output VGA mode, 640x480 @ 65 Hz */
.name = "TV-VGA",
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 40574,
.left_margin = 35,
.right_margin = 45,
.upper_margin = 9,
.lower_margin = 1,
.hsync_len = 46,
.vsync_len = 5,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED,
.flag = 0,
},
};
struct mx3fb_data {
struct fb_info *fbi;
int backlight_level;
void __iomem *reg_base;
spinlock_t lock;
struct device *dev;
struct backlight_device *bl;
uint32_t h_start_width;
uint32_t v_start_width;
enum disp_data_mapping disp_data_fmt;
};
struct dma_chan_request {
struct mx3fb_data *mx3fb;
enum ipu_channel id;
};
/* MX3 specific framebuffer information. */
struct mx3fb_info {
int blank;
enum ipu_channel ipu_ch;
uint32_t cur_ipu_buf;
u32 pseudo_palette[16];
struct completion flip_cmpl;
struct mutex mutex; /* Protects fb-ops */
struct mx3fb_data *mx3fb;
struct idmac_channel *idmac_channel;
struct dma_async_tx_descriptor *txd;
dma_cookie_t cookie;
struct scatterlist sg[2];
struct fb_var_screeninfo cur_var; /* current var info */
};
static void sdc_set_brightness(struct mx3fb_data *mx3fb, uint8_t value);
static u32 sdc_get_brightness(struct mx3fb_data *mx3fb);
static int mx3fb_bl_get_brightness(struct backlight_device *bl)
{
struct mx3fb_data *fbd = bl_get_data(bl);
return sdc_get_brightness(fbd);
}
static int mx3fb_bl_update_status(struct backlight_device *bl)
{
struct mx3fb_data *fbd = bl_get_data(bl);
int brightness = bl->props.brightness;
if (bl->props.power != FB_BLANK_UNBLANK)
brightness = 0;
if (bl->props.fb_blank != FB_BLANK_UNBLANK)
brightness = 0;
fbd->backlight_level = (fbd->backlight_level & ~0xFF) | brightness;
sdc_set_brightness(fbd, fbd->backlight_level);
return 0;
}
static const struct backlight_ops mx3fb_lcdc_bl_ops = {
.update_status = mx3fb_bl_update_status,
.get_brightness = mx3fb_bl_get_brightness,
};
static void mx3fb_init_backlight(struct mx3fb_data *fbd)
{
struct backlight_properties props;
struct backlight_device *bl;
if (fbd->bl)
return;
memset(&props, 0, sizeof(struct backlight_properties));
props.max_brightness = 0xff;
props.type = BACKLIGHT_RAW;
sdc_set_brightness(fbd, fbd->backlight_level);
bl = backlight_device_register("mx3fb-bl", fbd->dev, fbd,
&mx3fb_lcdc_bl_ops, &props);
if (IS_ERR(bl)) {
dev_err(fbd->dev, "error %ld on backlight register\n",
PTR_ERR(bl));
return;
}
fbd->bl = bl;
bl->props.power = FB_BLANK_UNBLANK;
bl->props.fb_blank = FB_BLANK_UNBLANK;
bl->props.brightness = mx3fb_bl_get_brightness(bl);
}
static void mx3fb_exit_backlight(struct mx3fb_data *fbd)
{
backlight_device_unregister(fbd->bl);
}
static void mx3fb_dma_done(void *);
/* Used fb-mode and bpp. Can be set on kernel command line, therefore file-static. */
static const char *fb_mode;
static unsigned long default_bpp = 16;
static u32 mx3fb_read_reg(struct mx3fb_data *mx3fb, unsigned long reg)
{
return __raw_readl(mx3fb->reg_base + reg);
}
static void mx3fb_write_reg(struct mx3fb_data *mx3fb, u32 value, unsigned long reg)
{
__raw_writel(value, mx3fb->reg_base + reg);
}
struct di_mapping {
uint32_t b0, b1, b2;
};
static const struct di_mapping di_mappings[] = {
[IPU_DISP_DATA_MAPPING_RGB666] = { 0x0005000f, 0x000b000f, 0x0011000f },
[IPU_DISP_DATA_MAPPING_RGB565] = { 0x0004003f, 0x000a000f, 0x000f003f },
[IPU_DISP_DATA_MAPPING_RGB888] = { 0x00070000, 0x000f0000, 0x00170000 },
};
static void sdc_fb_init(struct mx3fb_info *fbi)
{
struct mx3fb_data *mx3fb = fbi->mx3fb;
uint32_t reg;
reg = mx3fb_read_reg(mx3fb, SDC_COM_CONF);
mx3fb_write_reg(mx3fb, reg | SDC_COM_BG_EN, SDC_COM_CONF);
}
/* Returns enabled flag before uninit */
static uint32_t sdc_fb_uninit(struct mx3fb_info *fbi)
{
struct mx3fb_data *mx3fb = fbi->mx3fb;
uint32_t reg;
reg = mx3fb_read_reg(mx3fb, SDC_COM_CONF);
mx3fb_write_reg(mx3fb, reg & ~SDC_COM_BG_EN, SDC_COM_CONF);
return reg & SDC_COM_BG_EN;
}
static void sdc_enable_channel(struct mx3fb_info *mx3_fbi)
{
struct mx3fb_data *mx3fb = mx3_fbi->mx3fb;
struct idmac_channel *ichan = mx3_fbi->idmac_channel;
struct dma_chan *dma_chan = &ichan->dma_chan;
unsigned long flags;
dma_cookie_t cookie;
if (mx3_fbi->txd)
dev_dbg(mx3fb->dev, "mx3fbi %p, desc %p, sg %p\n", mx3_fbi,
to_tx_desc(mx3_fbi->txd), to_tx_desc(mx3_fbi->txd)->sg);
else
dev_dbg(mx3fb->dev, "mx3fbi %p, txd = NULL\n", mx3_fbi);
/* This enables the channel */
if (mx3_fbi->cookie < 0) {
mx3_fbi->txd = dmaengine_prep_slave_sg(dma_chan,
&mx3_fbi->sg[0], 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!mx3_fbi->txd) {
dev_err(mx3fb->dev, "Cannot allocate descriptor on %d\n",
dma_chan->chan_id);
return;
}
mx3_fbi->txd->callback_param = mx3_fbi->txd;
mx3_fbi->txd->callback = mx3fb_dma_done;
cookie = mx3_fbi->txd->tx_submit(mx3_fbi->txd);
dev_dbg(mx3fb->dev, "%d: Submit %p #%d [%c]\n", __LINE__,
mx3_fbi->txd, cookie, list_empty(&ichan->queue) ? '-' : '+');
} else {
if (!mx3_fbi->txd || !mx3_fbi->txd->tx_submit) {
dev_err(mx3fb->dev, "Cannot enable channel %d\n",
dma_chan->chan_id);
return;
}
/* Just re-activate the same buffer */
dma_async_issue_pending(dma_chan);
cookie = mx3_fbi->cookie;
dev_dbg(mx3fb->dev, "%d: Re-submit %p #%d [%c]\n", __LINE__,
mx3_fbi->txd, cookie, list_empty(&ichan->queue) ? '-' : '+');
}
if (cookie >= 0) {
spin_lock_irqsave(&mx3fb->lock, flags);
sdc_fb_init(mx3_fbi);
mx3_fbi->cookie = cookie;
spin_unlock_irqrestore(&mx3fb->lock, flags);
}
/*
* Attention! Without this msleep the channel keeps generating
* interrupts. Next sdc_set_brightness() is going to be called
* from mx3fb_blank().
*/
msleep(2);
}
static void sdc_disable_channel(struct mx3fb_info *mx3_fbi)
{
struct mx3fb_data *mx3fb = mx3_fbi->mx3fb;
uint32_t enabled;
unsigned long flags;
if (mx3_fbi->txd == NULL)
return;
spin_lock_irqsave(&mx3fb->lock, flags);
enabled = sdc_fb_uninit(mx3_fbi);
spin_unlock_irqrestore(&mx3fb->lock, flags);
dmaengine_terminate_all(mx3_fbi->txd->chan);
mx3_fbi->txd = NULL;
mx3_fbi->cookie = -EINVAL;
}
/**
* sdc_set_window_pos() - set window position of the respective plane.
* @mx3fb: mx3fb context.
* @channel: IPU DMAC channel ID.
* @x_pos: X coordinate relative to the top left corner to place window at.
* @y_pos: Y coordinate relative to the top left corner to place window at.
* @return: 0 on success or negative error code on failure.
*/
static int sdc_set_window_pos(struct mx3fb_data *mx3fb, enum ipu_channel channel,
int16_t x_pos, int16_t y_pos)
{
if (channel != IDMAC_SDC_0)
return -EINVAL;
x_pos += mx3fb->h_start_width;
y_pos += mx3fb->v_start_width;
mx3fb_write_reg(mx3fb, (x_pos << 16) | y_pos, SDC_BG_POS);
return 0;
}
/**
* sdc_init_panel() - initialize a synchronous LCD panel.
* @mx3fb: mx3fb context.
* @panel: panel type.
* @pixel_clk: desired pixel clock frequency in Hz.
* @width: width of panel in pixels.
* @height: height of panel in pixels.
* @h_start_width: number of pixel clocks between the HSYNC signal pulse
* and the start of valid data.
* @h_sync_width: width of the HSYNC signal in units of pixel clocks.
* @h_end_width: number of pixel clocks between the end of valid data
* and the HSYNC signal for next line.
* @v_start_width: number of lines between the VSYNC signal pulse and the
* start of valid data.
* @v_sync_width: width of the VSYNC signal in units of lines
* @v_end_width: number of lines between the end of valid data and the
* VSYNC signal for next frame.
* @sig: bitfield of signal polarities for LCD interface.
* @return: 0 on success or negative error code on failure.
*/
static int sdc_init_panel(struct mx3fb_data *mx3fb, enum ipu_panel panel,
uint32_t pixel_clk,
uint16_t width, uint16_t height,
uint16_t h_start_width, uint16_t h_sync_width,
uint16_t h_end_width, uint16_t v_start_width,
uint16_t v_sync_width, uint16_t v_end_width,
struct ipu_di_signal_cfg sig)
{
unsigned long lock_flags;
uint32_t reg;
uint32_t old_conf;
uint32_t div;
struct clk *ipu_clk;
const struct di_mapping *map;
dev_dbg(mx3fb->dev, "panel size = %d x %d", width, height);
if (v_sync_width == 0 || h_sync_width == 0)
return -EINVAL;
/* Init panel size and blanking periods */
reg = ((uint32_t) (h_sync_width - 1) << 26) |
((uint32_t) (width + h_start_width + h_end_width - 1) << 16);
mx3fb_write_reg(mx3fb, reg, SDC_HOR_CONF);
#ifdef DEBUG
printk(KERN_CONT " hor_conf %x,", reg);
#endif
reg = ((uint32_t) (v_sync_width - 1) << 26) | SDC_V_SYNC_WIDTH_L |
((uint32_t) (height + v_start_width + v_end_width - 1) << 16);
mx3fb_write_reg(mx3fb, reg, SDC_VER_CONF);
#ifdef DEBUG
printk(KERN_CONT " ver_conf %x\n", reg);
#endif
mx3fb->h_start_width = h_start_width;
mx3fb->v_start_width = v_start_width;
switch (panel) {
case IPU_PANEL_SHARP_TFT:
mx3fb_write_reg(mx3fb, 0x00FD0102L, SDC_SHARP_CONF_1);
mx3fb_write_reg(mx3fb, 0x00F500F4L, SDC_SHARP_CONF_2);
mx3fb_write_reg(mx3fb, SDC_COM_SHARP | SDC_COM_TFT_COLOR, SDC_COM_CONF);
break;
case IPU_PANEL_TFT:
mx3fb_write_reg(mx3fb, SDC_COM_TFT_COLOR, SDC_COM_CONF);
break;
default:
return -EINVAL;
}
/* Init clocking */
/*
* Calculate divider: fractional part is 4 bits so simply multiple by
* 2^4 to get fractional part, as long as we stay under ~250MHz and on
* i.MX31 it (HSP_CLK) is <= 178MHz. Currently 128.267MHz
*/
ipu_clk = clk_get(mx3fb->dev, NULL);
if (!IS_ERR(ipu_clk)) {
div = clk_get_rate(ipu_clk) * 16 / pixel_clk;
clk_put(ipu_clk);
} else {
div = 0;
}
if (div < 0x40) { /* Divider less than 4 */
dev_dbg(mx3fb->dev,
"InitPanel() - Pixel clock divider less than 4\n");
div = 0x40;
}
dev_dbg(mx3fb->dev, "pixel clk = %u, divider %u.%u\n",
pixel_clk, div >> 4, (div & 7) * 125);
spin_lock_irqsave(&mx3fb->lock, lock_flags);
/*
* DISP3_IF_CLK_DOWN_WR is half the divider value and 2 fraction bits
* fewer. Subtract 1 extra from DISP3_IF_CLK_DOWN_WR based on timing
* debug. DISP3_IF_CLK_UP_WR is 0
*/
mx3fb_write_reg(mx3fb, (((div / 8) - 1) << 22) | div, DI_DISP3_TIME_CONF);
/* DI settings */
old_conf = mx3fb_read_reg(mx3fb, DI_DISP_IF_CONF) & 0x78FFFFFF;
old_conf |= sig.datamask_en << DI_D3_DATAMSK_SHIFT |
sig.clksel_en << DI_D3_CLK_SEL_SHIFT |
sig.clkidle_en << DI_D3_CLK_IDLE_SHIFT;
mx3fb_write_reg(mx3fb, old_conf, DI_DISP_IF_CONF);
old_conf = mx3fb_read_reg(mx3fb, DI_DISP_SIG_POL) & 0xE0FFFFFF;
old_conf |= sig.data_pol << DI_D3_DATA_POL_SHIFT |
sig.clk_pol << DI_D3_CLK_POL_SHIFT |
sig.enable_pol << DI_D3_DRDY_SHARP_POL_SHIFT |
sig.Hsync_pol << DI_D3_HSYNC_POL_SHIFT |
sig.Vsync_pol << DI_D3_VSYNC_POL_SHIFT;
mx3fb_write_reg(mx3fb, old_conf, DI_DISP_SIG_POL);
map = &di_mappings[mx3fb->disp_data_fmt];
mx3fb_write_reg(mx3fb, map->b0, DI_DISP3_B0_MAP);
mx3fb_write_reg(mx3fb, map->b1, DI_DISP3_B1_MAP);
mx3fb_write_reg(mx3fb, map->b2, DI_DISP3_B2_MAP);
spin_unlock_irqrestore(&mx3fb->lock, lock_flags);
dev_dbg(mx3fb->dev, "DI_DISP_IF_CONF = 0x%08X\n",
mx3fb_read_reg(mx3fb, DI_DISP_IF_CONF));
dev_dbg(mx3fb->dev, "DI_DISP_SIG_POL = 0x%08X\n",
mx3fb_read_reg(mx3fb, DI_DISP_SIG_POL));
dev_dbg(mx3fb->dev, "DI_DISP3_TIME_CONF = 0x%08X\n",
mx3fb_read_reg(mx3fb, DI_DISP3_TIME_CONF));
return 0;
}
/**
* sdc_set_color_key() - set the transparent color key for SDC graphic plane.
* @mx3fb: mx3fb context.
* @channel: IPU DMAC channel ID.
* @enable: boolean to enable or disable color keyl.
* @color_key: 24-bit RGB color to use as transparent color key.
* @return: 0 on success or negative error code on failure.
*/
static int sdc_set_color_key(struct mx3fb_data *mx3fb, enum ipu_channel channel,
bool enable, uint32_t color_key)
{
uint32_t reg, sdc_conf;
unsigned long lock_flags;
spin_lock_irqsave(&mx3fb->lock, lock_flags);
sdc_conf = mx3fb_read_reg(mx3fb, SDC_COM_CONF);
if (channel == IDMAC_SDC_0)
sdc_conf &= ~SDC_COM_GWSEL;
else
sdc_conf |= SDC_COM_GWSEL;
if (enable) {
reg = mx3fb_read_reg(mx3fb, SDC_GW_CTRL) & 0xFF000000L;
mx3fb_write_reg(mx3fb, reg | (color_key & 0x00FFFFFFL),
SDC_GW_CTRL);
sdc_conf |= SDC_COM_KEY_COLOR_G;
} else {
sdc_conf &= ~SDC_COM_KEY_COLOR_G;
}
mx3fb_write_reg(mx3fb, sdc_conf, SDC_COM_CONF);
spin_unlock_irqrestore(&mx3fb->lock, lock_flags);
return 0;
}
/**
* sdc_set_global_alpha() - set global alpha blending modes.
* @mx3fb: mx3fb context.
* @enable: boolean to enable or disable global alpha blending. If disabled,
* per pixel blending is used.
* @alpha: global alpha value.
* @return: 0 on success or negative error code on failure.
*/
static int sdc_set_global_alpha(struct mx3fb_data *mx3fb, bool enable, uint8_t alpha)
{
uint32_t reg;
unsigned long lock_flags;
spin_lock_irqsave(&mx3fb->lock, lock_flags);
if (enable) {
reg = mx3fb_read_reg(mx3fb, SDC_GW_CTRL) & 0x00FFFFFFL;
mx3fb_write_reg(mx3fb, reg | ((uint32_t) alpha << 24), SDC_GW_CTRL);
reg = mx3fb_read_reg(mx3fb, SDC_COM_CONF);
mx3fb_write_reg(mx3fb, reg | SDC_COM_GLB_A, SDC_COM_CONF);
} else {
reg = mx3fb_read_reg(mx3fb, SDC_COM_CONF);
mx3fb_write_reg(mx3fb, reg & ~SDC_COM_GLB_A, SDC_COM_CONF);
}
spin_unlock_irqrestore(&mx3fb->lock, lock_flags);
return 0;
}
static u32 sdc_get_brightness(struct mx3fb_data *mx3fb)
{
u32 brightness;
brightness = mx3fb_read_reg(mx3fb, SDC_PWM_CTRL);
brightness = (brightness >> 16) & 0xFF;
return brightness;
}
static void sdc_set_brightness(struct mx3fb_data *mx3fb, uint8_t value)
{
dev_dbg(mx3fb->dev, "%s: value = %d\n", __func__, value);
/* This might be board-specific */
mx3fb_write_reg(mx3fb, 0x03000000UL | value << 16, SDC_PWM_CTRL);
return;
}
static uint32_t bpp_to_pixfmt(int bpp)
{
uint32_t pixfmt = 0;
switch (bpp) {
case 24:
pixfmt = IPU_PIX_FMT_BGR24;
break;
case 32:
pixfmt = IPU_PIX_FMT_BGR32;
break;
case 16:
pixfmt = IPU_PIX_FMT_RGB565;
break;
}
return pixfmt;
}
static int mx3fb_blank(int blank, struct fb_info *fbi);
static int mx3fb_map_video_memory(struct fb_info *fbi, unsigned int mem_len,
bool lock);
static int mx3fb_unmap_video_memory(struct fb_info *fbi);
/**
* mx3fb_set_fix() - set fixed framebuffer parameters from variable settings.
* @info: framebuffer information pointer
* @return: 0 on success or negative error code on failure.
*/
static int mx3fb_set_fix(struct fb_info *fbi)
{
struct fb_fix_screeninfo *fix = &fbi->fix;
struct fb_var_screeninfo *var = &fbi->var;
strncpy(fix->id, "DISP3 BG", 8);
fix->line_length = var->xres_virtual * var->bits_per_pixel / 8;
fix->type = FB_TYPE_PACKED_PIXELS;
fix->accel = FB_ACCEL_NONE;
fix->visual = FB_VISUAL_TRUECOLOR;
fix->xpanstep = 1;
fix->ypanstep = 1;
return 0;
}
static void mx3fb_dma_done(void *arg)
{
struct idmac_tx_desc *tx_desc = to_tx_desc(arg);
struct dma_chan *chan = tx_desc->txd.chan;
struct idmac_channel *ichannel = to_idmac_chan(chan);
struct mx3fb_data *mx3fb = ichannel->client;
struct mx3fb_info *mx3_fbi = mx3fb->fbi->par;
dev_dbg(mx3fb->dev, "irq %d callback\n", ichannel->eof_irq);
/* We only need one interrupt, it will be re-enabled as needed */
disable_irq_nosync(ichannel->eof_irq);
complete(&mx3_fbi->flip_cmpl);
}
static bool mx3fb_must_set_par(struct fb_info *fbi)
{
struct mx3fb_info *mx3_fbi = fbi->par;
struct fb_var_screeninfo old_var = mx3_fbi->cur_var;
struct fb_var_screeninfo new_var = fbi->var;
if ((fbi->var.activate & FB_ACTIVATE_FORCE) &&
(fbi->var.activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
return true;
/*
* Ignore xoffset and yoffset update,
* because pan display handles this case.
*/
old_var.xoffset = new_var.xoffset;
old_var.yoffset = new_var.yoffset;
return !!memcmp(&old_var, &new_var, sizeof(struct fb_var_screeninfo));
}
static int __set_par(struct fb_info *fbi, bool lock)
{
u32 mem_len, cur_xoffset, cur_yoffset;
struct ipu_di_signal_cfg sig_cfg;
enum ipu_panel mode = IPU_PANEL_TFT;
struct mx3fb_info *mx3_fbi = fbi->par;
struct mx3fb_data *mx3fb = mx3_fbi->mx3fb;
struct idmac_channel *ichan = mx3_fbi->idmac_channel;
struct idmac_video_param *video = &ichan->params.video;
struct scatterlist *sg = mx3_fbi->sg;
/* Total cleanup */
if (mx3_fbi->txd)
sdc_disable_channel(mx3_fbi);
mx3fb_set_fix(fbi);
mem_len = fbi->var.yres_virtual * fbi->fix.line_length;
if (mem_len > fbi->fix.smem_len) {
if (fbi->fix.smem_start)
mx3fb_unmap_video_memory(fbi);
if (mx3fb_map_video_memory(fbi, mem_len, lock) < 0)
return -ENOMEM;
}
sg_init_table(&sg[0], 1);
sg_init_table(&sg[1], 1);
sg_dma_address(&sg[0]) = fbi->fix.smem_start;
sg_set_page(&sg[0], virt_to_page(fbi->screen_base),
fbi->fix.smem_len,
offset_in_page(fbi->screen_base));
if (mx3_fbi->ipu_ch == IDMAC_SDC_0) {
memset(&sig_cfg, 0, sizeof(sig_cfg));
if (fbi->var.sync & FB_SYNC_HOR_HIGH_ACT)
sig_cfg.Hsync_pol = true;
if (fbi->var.sync & FB_SYNC_VERT_HIGH_ACT)
sig_cfg.Vsync_pol = true;
if (fbi->var.sync & FB_SYNC_CLK_INVERT)
sig_cfg.clk_pol = true;
if (fbi->var.sync & FB_SYNC_DATA_INVERT)
sig_cfg.data_pol = true;
if (fbi->var.sync & FB_SYNC_OE_ACT_HIGH)
sig_cfg.enable_pol = true;
if (fbi->var.sync & FB_SYNC_CLK_IDLE_EN)
sig_cfg.clkidle_en = true;
if (fbi->var.sync & FB_SYNC_CLK_SEL_EN)
sig_cfg.clksel_en = true;
if (fbi->var.sync & FB_SYNC_SHARP_MODE)
mode = IPU_PANEL_SHARP_TFT;
dev_dbg(fbi->device, "pixclock = %ul Hz\n",
(u32) (PICOS2KHZ(fbi->var.pixclock) * 1000UL));
if (sdc_init_panel(mx3fb, mode,
(PICOS2KHZ(fbi->var.pixclock)) * 1000UL,
fbi->var.xres, fbi->var.yres,
fbi->var.left_margin,
fbi->var.hsync_len,
fbi->var.right_margin +
fbi->var.hsync_len,
fbi->var.upper_margin,
fbi->var.vsync_len,
fbi->var.lower_margin +
fbi->var.vsync_len, sig_cfg) != 0) {
dev_err(fbi->device,
"mx3fb: Error initializing panel.\n");
return -EINVAL;
}
}
sdc_set_window_pos(mx3fb, mx3_fbi->ipu_ch, 0, 0);
mx3_fbi->cur_ipu_buf = 0;
video->out_pixel_fmt = bpp_to_pixfmt(fbi->var.bits_per_pixel);
video->out_width = fbi->var.xres;
video->out_height = fbi->var.yres;
video->out_stride = fbi->var.xres_virtual;
if (mx3_fbi->blank == FB_BLANK_UNBLANK) {
sdc_enable_channel(mx3_fbi);
/*
* sg[0] points to fb smem_start address
* and is actually active in controller.
*/
mx3_fbi->cur_var.xoffset = 0;
mx3_fbi->cur_var.yoffset = 0;
}
/*
* Preserve xoffset and yoffest in case they are
* inactive in controller as fb is blanked.
*/
cur_xoffset = mx3_fbi->cur_var.xoffset;
cur_yoffset = mx3_fbi->cur_var.yoffset;
mx3_fbi->cur_var = fbi->var;
mx3_fbi->cur_var.xoffset = cur_xoffset;
mx3_fbi->cur_var.yoffset = cur_yoffset;
return 0;
}
/**
* mx3fb_set_par() - set framebuffer parameters and change the operating mode.
* @fbi: framebuffer information pointer.
* @return: 0 on success or negative error code on failure.
*/
static int mx3fb_set_par(struct fb_info *fbi)
{
struct mx3fb_info *mx3_fbi = fbi->par;
struct mx3fb_data *mx3fb = mx3_fbi->mx3fb;
struct idmac_channel *ichan = mx3_fbi->idmac_channel;
int ret;
dev_dbg(mx3fb->dev, "%s [%c]\n", __func__, list_empty(&ichan->queue) ? '-' : '+');
mutex_lock(&mx3_fbi->mutex);
ret = mx3fb_must_set_par(fbi) ? __set_par(fbi, true) : 0;
mutex_unlock(&mx3_fbi->mutex);
return ret;
}
/**
* mx3fb_check_var() - check and adjust framebuffer variable parameters.
* @var: framebuffer variable parameters
* @fbi: framebuffer information pointer
*/
static int mx3fb_check_var(struct fb_var_screeninfo *var, struct fb_info *fbi)
{
struct mx3fb_info *mx3_fbi = fbi->par;
u32 vtotal;
u32 htotal;
dev_dbg(fbi->device, "%s\n", __func__);
if (var->xres_virtual < var->xres)
var->xres_virtual = var->xres;
if (var->yres_virtual < var->yres)
var->yres_virtual = var->yres;
if ((var->bits_per_pixel != 32) && (var->bits_per_pixel != 24) &&
(var->bits_per_pixel != 16))
var->bits_per_pixel = default_bpp;
switch (var->bits_per_pixel) {
case 16:
var->red.length = 5;
var->red.offset = 11;
var->red.msb_right = 0;
var->green.length = 6;
var->green.offset = 5;
var->green.msb_right = 0;
var->blue.length = 5;
var->blue.offset = 0;
var->blue.msb_right = 0;
var->transp.length = 0;
var->transp.offset = 0;
var->transp.msb_right = 0;
break;
case 24:
var->red.length = 8;
var->red.offset = 16;
var->red.msb_right = 0;
var->green.length = 8;
var->green.offset = 8;
var->green.msb_right = 0;
var->blue.length = 8;
var->blue.offset = 0;
var->blue.msb_right = 0;
var->transp.length = 0;
var->transp.offset = 0;
var->transp.msb_right = 0;
break;
case 32:
var->red.length = 8;
var->red.offset = 16;
var->red.msb_right = 0;
var->green.length = 8;
var->green.offset = 8;
var->green.msb_right = 0;
var->blue.length = 8;
var->blue.offset = 0;
var->blue.msb_right = 0;
var->transp.length = 8;
var->transp.offset = 24;
var->transp.msb_right = 0;
break;
}
if (var->pixclock < 1000) {
htotal = var->xres + var->right_margin + var->hsync_len +
var->left_margin;
vtotal = var->yres + var->lower_margin + var->vsync_len +
var->upper_margin;
var->pixclock = (vtotal * htotal * 6UL) / 100UL;
var->pixclock = KHZ2PICOS(var->pixclock);
dev_dbg(fbi->device, "pixclock set for 60Hz refresh = %u ps\n",
var->pixclock);
}
var->height = -1;
var->width = -1;
var->grayscale = 0;
/* Preserve sync flags */
var->sync |= mx3_fbi->cur_var.sync;
mx3_fbi->cur_var.sync |= var->sync;
return 0;
}
static u32 chan_to_field(unsigned int chan, struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
static int mx3fb_setcolreg(unsigned int regno, unsigned int red,
unsigned int green, unsigned int blue,
unsigned int trans, struct fb_info *fbi)
{
struct mx3fb_info *mx3_fbi = fbi->par;
u32 val;
int ret = 1;
dev_dbg(fbi->device, "%s, regno = %u\n", __func__, regno);
mutex_lock(&mx3_fbi->mutex);
/*
* If greyscale is true, then we convert the RGB value
* to greyscale no matter what visual we are using.
*/
if (fbi->var.grayscale)
red = green = blue = (19595 * red + 38470 * green +
7471 * blue) >> 16;
switch (fbi->fix.visual) {
case FB_VISUAL_TRUECOLOR:
/*
* 16-bit True Colour. We encode the RGB value
* according to the RGB bitfield information.
*/
if (regno < 16) {
u32 *pal = fbi->pseudo_palette;
val = chan_to_field(red, &fbi->var.red);
val |= chan_to_field(green, &fbi->var.green);
val |= chan_to_field(blue, &fbi->var.blue);
pal[regno] = val;
ret = 0;
}
break;
case FB_VISUAL_STATIC_PSEUDOCOLOR:
case FB_VISUAL_PSEUDOCOLOR:
break;
}
mutex_unlock(&mx3_fbi->mutex);
return ret;
}
static void __blank(int blank, struct fb_info *fbi)
{
struct mx3fb_info *mx3_fbi = fbi->par;
struct mx3fb_data *mx3fb = mx3_fbi->mx3fb;
int was_blank = mx3_fbi->blank;
mx3_fbi->blank = blank;
/* Attention!
* Do not call sdc_disable_channel() for a channel that is disabled
* already! This will result in a kernel NULL pointer dereference
* (mx3_fbi->txd is NULL). Hide the fact, that all blank modes are
* handled equally by this driver.
*/
if (blank > FB_BLANK_UNBLANK && was_blank > FB_BLANK_UNBLANK)
return;
switch (blank) {
case FB_BLANK_POWERDOWN:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_NORMAL:
sdc_set_brightness(mx3fb, 0);
memset((char *)fbi->screen_base, 0, fbi->fix.smem_len);
/* Give LCD time to update - enough for 50 and 60 Hz */
msleep(25);
sdc_disable_channel(mx3_fbi);
break;
case FB_BLANK_UNBLANK:
sdc_enable_channel(mx3_fbi);
sdc_set_brightness(mx3fb, mx3fb->backlight_level);
break;
}
}
/**
* mx3fb_blank() - blank the display.
*/
static int mx3fb_blank(int blank, struct fb_info *fbi)
{
struct mx3fb_info *mx3_fbi = fbi->par;
dev_dbg(fbi->device, "%s, blank = %d, base %p, len %u\n", __func__,
blank, fbi->screen_base, fbi->fix.smem_len);
if (mx3_fbi->blank == blank)
return 0;
mutex_lock(&mx3_fbi->mutex);
__blank(blank, fbi);
mutex_unlock(&mx3_fbi->mutex);
return 0;
}
/**
* mx3fb_pan_display() - pan or wrap the display
* @var: variable screen buffer information.
* @info: framebuffer information pointer.
*
* We look only at xoffset, yoffset and the FB_VMODE_YWRAP flag
*/
static int mx3fb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *fbi)
{
struct mx3fb_info *mx3_fbi = fbi->par;
u32 y_bottom;
unsigned long base;
off_t offset;
dma_cookie_t cookie;
struct scatterlist *sg = mx3_fbi->sg;
struct dma_chan *dma_chan = &mx3_fbi->idmac_channel->dma_chan;
struct dma_async_tx_descriptor *txd;
int ret;
dev_dbg(fbi->device, "%s [%c]\n", __func__,
list_empty(&mx3_fbi->idmac_channel->queue) ? '-' : '+');
if (var->xoffset > 0) {
dev_dbg(fbi->device, "x panning not supported\n");
return -EINVAL;
}
if (mx3_fbi->cur_var.xoffset == var->xoffset &&
mx3_fbi->cur_var.yoffset == var->yoffset)
return 0; /* No change, do nothing */
y_bottom = var->yoffset;
if (!(var->vmode & FB_VMODE_YWRAP))
y_bottom += fbi->var.yres;
if (y_bottom > fbi->var.yres_virtual)
return -EINVAL;
mutex_lock(&mx3_fbi->mutex);
offset = var->yoffset * fbi->fix.line_length
+ var->xoffset * (fbi->var.bits_per_pixel / 8);
base = fbi->fix.smem_start + offset;
dev_dbg(fbi->device, "Updating SDC BG buf %d address=0x%08lX\n",
mx3_fbi->cur_ipu_buf, base);
/*
* We enable the End of Frame interrupt, which will free a tx-descriptor,
* which we will need for the next dmaengine_prep_slave_sg(). The
* IRQ-handler will disable the IRQ again.
*/
init_completion(&mx3_fbi->flip_cmpl);
enable_irq(mx3_fbi->idmac_channel->eof_irq);
ret = wait_for_completion_timeout(&mx3_fbi->flip_cmpl, HZ / 10);
if (ret <= 0) {
mutex_unlock(&mx3_fbi->mutex);
dev_info(fbi->device, "Panning failed due to %s\n", ret < 0 ?
"user interrupt" : "timeout");
disable_irq(mx3_fbi->idmac_channel->eof_irq);
return ret ? : -ETIMEDOUT;
}
mx3_fbi->cur_ipu_buf = !mx3_fbi->cur_ipu_buf;
sg_dma_address(&sg[mx3_fbi->cur_ipu_buf]) = base;
sg_set_page(&sg[mx3_fbi->cur_ipu_buf],
virt_to_page(fbi->screen_base + offset), fbi->fix.smem_len,
offset_in_page(fbi->screen_base + offset));
if (mx3_fbi->txd)
async_tx_ack(mx3_fbi->txd);
txd = dmaengine_prep_slave_sg(dma_chan, sg +
mx3_fbi->cur_ipu_buf, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!txd) {
dev_err(fbi->device,
"Error preparing a DMA transaction descriptor.\n");
mutex_unlock(&mx3_fbi->mutex);
return -EIO;
}
txd->callback_param = txd;
txd->callback = mx3fb_dma_done;
/*
* Emulate original mx3fb behaviour: each new call to idmac_tx_submit()
* should switch to another buffer
*/
cookie = txd->tx_submit(txd);
dev_dbg(fbi->device, "%d: Submit %p #%d\n", __LINE__, txd, cookie);
if (cookie < 0) {
dev_err(fbi->device,
"Error updating SDC buf %d to address=0x%08lX\n",
mx3_fbi->cur_ipu_buf, base);
mutex_unlock(&mx3_fbi->mutex);
return -EIO;
}
mx3_fbi->txd = txd;
fbi->var.xoffset = var->xoffset;
fbi->var.yoffset = var->yoffset;
if (var->vmode & FB_VMODE_YWRAP)
fbi->var.vmode |= FB_VMODE_YWRAP;
else
fbi->var.vmode &= ~FB_VMODE_YWRAP;
mx3_fbi->cur_var = fbi->var;
mutex_unlock(&mx3_fbi->mutex);
dev_dbg(fbi->device, "Update complete\n");
return 0;
}
/*
* This structure contains the pointers to the control functions that are
* invoked by the core framebuffer driver to perform operations like
* blitting, rectangle filling, copy regions and cursor definition.
*/
static struct fb_ops mx3fb_ops = {
.owner = THIS_MODULE,
.fb_set_par = mx3fb_set_par,
.fb_check_var = mx3fb_check_var,
.fb_setcolreg = mx3fb_setcolreg,
.fb_pan_display = mx3fb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = mx3fb_blank,
};
#ifdef CONFIG_PM
/*
* Power management hooks. Note that we won't be called from IRQ context,
* unlike the blank functions above, so we may sleep.
*/
/*
* Suspends the framebuffer and blanks the screen. Power management support
*/
static int mx3fb_suspend(struct platform_device *pdev, pm_message_t state)
{
struct mx3fb_data *mx3fb = platform_get_drvdata(pdev);
struct mx3fb_info *mx3_fbi = mx3fb->fbi->par;
console_lock();
fb_set_suspend(mx3fb->fbi, 1);
console_unlock();
if (mx3_fbi->blank == FB_BLANK_UNBLANK) {
sdc_disable_channel(mx3_fbi);
sdc_set_brightness(mx3fb, 0);
}
return 0;
}
/*
* Resumes the framebuffer and unblanks the screen. Power management support
*/
static int mx3fb_resume(struct platform_device *pdev)
{
struct mx3fb_data *mx3fb = platform_get_drvdata(pdev);
struct mx3fb_info *mx3_fbi = mx3fb->fbi->par;
if (mx3_fbi->blank == FB_BLANK_UNBLANK) {
sdc_enable_channel(mx3_fbi);
sdc_set_brightness(mx3fb, mx3fb->backlight_level);
}
console_lock();
fb_set_suspend(mx3fb->fbi, 0);
console_unlock();
return 0;
}
#else
#define mx3fb_suspend NULL
#define mx3fb_resume NULL
#endif
/*
* Main framebuffer functions
*/
/**
* mx3fb_map_video_memory() - allocates the DRAM memory for the frame buffer.
* @fbi: framebuffer information pointer
* @mem_len: length of mapped memory
* @lock: do not lock during initialisation
* @return: Error code indicating success or failure
*
* This buffer is remapped into a non-cached, non-buffered, memory region to
* allow palette and pixel writes to occur without flushing the cache. Once this
* area is remapped, all virtual memory access to the video memory should occur
* at the new region.
*/
static int mx3fb_map_video_memory(struct fb_info *fbi, unsigned int mem_len,
bool lock)
{
int retval = 0;
dma_addr_t addr;
fbi->screen_base = dma_alloc_writecombine(fbi->device,
mem_len,
&addr, GFP_DMA | GFP_KERNEL);
if (!fbi->screen_base) {
dev_err(fbi->device, "Cannot allocate %u bytes framebuffer memory\n",
mem_len);
retval = -EBUSY;
goto err0;
}
if (lock)
mutex_lock(&fbi->mm_lock);
fbi->fix.smem_start = addr;
fbi->fix.smem_len = mem_len;
if (lock)
mutex_unlock(&fbi->mm_lock);
dev_dbg(fbi->device, "allocated fb @ p=0x%08x, v=0x%p, size=%d.\n",
(uint32_t) fbi->fix.smem_start, fbi->screen_base, fbi->fix.smem_len);
fbi->screen_size = fbi->fix.smem_len;
/* Clear the screen */
memset((char *)fbi->screen_base, 0, fbi->fix.smem_len);
return 0;
err0:
fbi->fix.smem_len = 0;
fbi->fix.smem_start = 0;
fbi->screen_base = NULL;
return retval;
}
/**
* mx3fb_unmap_video_memory() - de-allocate frame buffer memory.
* @fbi: framebuffer information pointer
* @return: error code indicating success or failure
*/
static int mx3fb_unmap_video_memory(struct fb_info *fbi)
{
dma_free_writecombine(fbi->device, fbi->fix.smem_len,
fbi->screen_base, fbi->fix.smem_start);
fbi->screen_base = NULL;
mutex_lock(&fbi->mm_lock);
fbi->fix.smem_start = 0;
fbi->fix.smem_len = 0;
mutex_unlock(&fbi->mm_lock);
return 0;
}
/**
* mx3fb_init_fbinfo() - initialize framebuffer information object.
* @return: initialized framebuffer structure.
*/
static struct fb_info *mx3fb_init_fbinfo(struct device *dev, struct fb_ops *ops)
{
struct fb_info *fbi;
struct mx3fb_info *mx3fbi;
int ret;
/* Allocate sufficient memory for the fb structure */
fbi = framebuffer_alloc(sizeof(struct mx3fb_info), dev);
if (!fbi)
return NULL;
mx3fbi = fbi->par;
mx3fbi->cookie = -EINVAL;
mx3fbi->cur_ipu_buf = 0;
fbi->var.activate = FB_ACTIVATE_NOW;
fbi->fbops = ops;
fbi->flags = FBINFO_FLAG_DEFAULT;
fbi->pseudo_palette = mx3fbi->pseudo_palette;
mutex_init(&mx3fbi->mutex);
/* Allocate colormap */
ret = fb_alloc_cmap(&fbi->cmap, 16, 0);
if (ret < 0) {
framebuffer_release(fbi);
return NULL;
}
return fbi;
}
static int init_fb_chan(struct mx3fb_data *mx3fb, struct idmac_channel *ichan)
{
struct device *dev = mx3fb->dev;
struct mx3fb_platform_data *mx3fb_pdata = dev_get_platdata(dev);
const char *name = mx3fb_pdata->name;
unsigned int irq;
struct fb_info *fbi;
struct mx3fb_info *mx3fbi;
const struct fb_videomode *mode;
int ret, num_modes;
if (mx3fb_pdata->disp_data_fmt >= ARRAY_SIZE(di_mappings)) {
dev_err(dev, "Illegal display data format %d\n",
mx3fb_pdata->disp_data_fmt);
return -EINVAL;
}
ichan->client = mx3fb;
irq = ichan->eof_irq;
if (ichan->dma_chan.chan_id != IDMAC_SDC_0)
return -EINVAL;
fbi = mx3fb_init_fbinfo(dev, &mx3fb_ops);
if (!fbi)
return -ENOMEM;
if (!fb_mode)
fb_mode = name;
if (!fb_mode) {
ret = -EINVAL;
goto emode;
}
if (mx3fb_pdata->mode && mx3fb_pdata->num_modes) {
mode = mx3fb_pdata->mode;
num_modes = mx3fb_pdata->num_modes;
} else {
mode = mx3fb_modedb;
num_modes = ARRAY_SIZE(mx3fb_modedb);
}
if (!fb_find_mode(&fbi->var, fbi, fb_mode, mode,
num_modes, NULL, default_bpp)) {
ret = -EBUSY;
goto emode;
}
fb_videomode_to_modelist(mode, num_modes, &fbi->modelist);
/* Default Y virtual size is 2x panel size */
fbi->var.yres_virtual = fbi->var.yres * 2;
mx3fb->fbi = fbi;
/* set Display Interface clock period */
mx3fb_write_reg(mx3fb, 0x00100010L, DI_HSP_CLK_PER);
/* Might need to trigger HSP clock change - see 44.3.3.8.5 */
sdc_set_brightness(mx3fb, 255);
sdc_set_global_alpha(mx3fb, true, 0xFF);
sdc_set_color_key(mx3fb, IDMAC_SDC_0, false, 0);
mx3fbi = fbi->par;
mx3fbi->idmac_channel = ichan;
mx3fbi->ipu_ch = ichan->dma_chan.chan_id;
mx3fbi->mx3fb = mx3fb;
mx3fbi->blank = FB_BLANK_NORMAL;
mx3fb->disp_data_fmt = mx3fb_pdata->disp_data_fmt;
init_completion(&mx3fbi->flip_cmpl);
disable_irq(ichan->eof_irq);
dev_dbg(mx3fb->dev, "disabling irq %d\n", ichan->eof_irq);
ret = __set_par(fbi, false);
if (ret < 0)
goto esetpar;
__blank(FB_BLANK_UNBLANK, fbi);
dev_info(dev, "registered, using mode %s\n", fb_mode);
ret = register_framebuffer(fbi);
if (ret < 0)
goto erfb;
return 0;
erfb:
esetpar:
emode:
fb_dealloc_cmap(&fbi->cmap);
framebuffer_release(fbi);
return ret;
}
static bool chan_filter(struct dma_chan *chan, void *arg)
{
struct dma_chan_request *rq = arg;
struct device *dev;
struct mx3fb_platform_data *mx3fb_pdata;
if (!imx_dma_is_ipu(chan))
return false;
if (!rq)
return false;
dev = rq->mx3fb->dev;
mx3fb_pdata = dev_get_platdata(dev);
return rq->id == chan->chan_id &&
mx3fb_pdata->dma_dev == chan->device->dev;
}
static void release_fbi(struct fb_info *fbi)
{
mx3fb_unmap_video_memory(fbi);
fb_dealloc_cmap(&fbi->cmap);
unregister_framebuffer(fbi);
framebuffer_release(fbi);
}
static int mx3fb_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
int ret;
struct resource *sdc_reg;
struct mx3fb_data *mx3fb;
dma_cap_mask_t mask;
struct dma_chan *chan;
struct dma_chan_request rq;
/*
* Display Interface (DI) and Synchronous Display Controller (SDC)
* registers
*/
sdc_reg = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!sdc_reg)
return -EINVAL;
mx3fb = devm_kzalloc(&pdev->dev, sizeof(*mx3fb), GFP_KERNEL);
if (!mx3fb)
return -ENOMEM;
spin_lock_init(&mx3fb->lock);
mx3fb->reg_base = ioremap(sdc_reg->start, resource_size(sdc_reg));
if (!mx3fb->reg_base) {
ret = -ENOMEM;
goto eremap;
}
pr_debug("Remapped %pR at %p\n", sdc_reg, mx3fb->reg_base);
/* IDMAC interface */
dmaengine_get();
mx3fb->dev = dev;
platform_set_drvdata(pdev, mx3fb);
rq.mx3fb = mx3fb;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
dma_cap_set(DMA_PRIVATE, mask);
rq.id = IDMAC_SDC_0;
chan = dma_request_channel(mask, chan_filter, &rq);
if (!chan) {
ret = -EBUSY;
goto ersdc0;
}
mx3fb->backlight_level = 255;
ret = init_fb_chan(mx3fb, to_idmac_chan(chan));
if (ret < 0)
goto eisdc0;
mx3fb_init_backlight(mx3fb);
return 0;
eisdc0:
dma_release_channel(chan);
ersdc0:
dmaengine_put();
iounmap(mx3fb->reg_base);
eremap:
dev_err(dev, "mx3fb: failed to register fb\n");
return ret;
}
static int mx3fb_remove(struct platform_device *dev)
{
struct mx3fb_data *mx3fb = platform_get_drvdata(dev);
struct fb_info *fbi = mx3fb->fbi;
struct mx3fb_info *mx3_fbi = fbi->par;
struct dma_chan *chan;
chan = &mx3_fbi->idmac_channel->dma_chan;
release_fbi(fbi);
mx3fb_exit_backlight(mx3fb);
dma_release_channel(chan);
dmaengine_put();
iounmap(mx3fb->reg_base);
return 0;
}
static struct platform_driver mx3fb_driver = {
.driver = {
.name = MX3FB_NAME,
},
.probe = mx3fb_probe,
.remove = mx3fb_remove,
.suspend = mx3fb_suspend,
.resume = mx3fb_resume,
};
/*
* Parse user specified options (`video=mx3fb:')
* example:
* video=mx3fb:bpp=16
*/
static int __init mx3fb_setup(void)
{
#ifndef MODULE
char *opt, *options = NULL;
if (fb_get_options("mx3fb", &options))
return -ENODEV;
if (!options || !*options)
return 0;
while ((opt = strsep(&options, ",")) != NULL) {
if (!*opt)
continue;
if (!strncmp(opt, "bpp=", 4))
default_bpp = simple_strtoul(opt + 4, NULL, 0);
else
fb_mode = opt;
}
#endif
return 0;
}
static int __init mx3fb_init(void)
{
int ret = mx3fb_setup();
if (ret < 0)
return ret;
ret = platform_driver_register(&mx3fb_driver);
return ret;
}
static void __exit mx3fb_exit(void)
{
platform_driver_unregister(&mx3fb_driver);
}
module_init(mx3fb_init);
module_exit(mx3fb_exit);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MX3 framebuffer driver");
MODULE_ALIAS("platform:" MX3FB_NAME);
MODULE_LICENSE("GPL v2");