android_kernel_xiaomi_sm8350/init/calibrate.c
Peter De Schrijver e6639117d6 kernel: add calibration_delay_done()
Add calibration_delay_done() call and dummy implementation. This allows
architectures to stop accepting registrations for new timer based delay
functions.

Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
2014-06-16 12:47:39 -06:00

316 lines
8.5 KiB
C

/* calibrate.c: default delay calibration
*
* Excised from init/main.c
* Copyright (C) 1991, 1992 Linus Torvalds
*/
#include <linux/jiffies.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/percpu.h>
unsigned long lpj_fine;
unsigned long preset_lpj;
static int __init lpj_setup(char *str)
{
preset_lpj = simple_strtoul(str,NULL,0);
return 1;
}
__setup("lpj=", lpj_setup);
#ifdef ARCH_HAS_READ_CURRENT_TIMER
/* This routine uses the read_current_timer() routine and gets the
* loops per jiffy directly, instead of guessing it using delay().
* Also, this code tries to handle non-maskable asynchronous events
* (like SMIs)
*/
#define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
#define MAX_DIRECT_CALIBRATION_RETRIES 5
static unsigned long calibrate_delay_direct(void)
{
unsigned long pre_start, start, post_start;
unsigned long pre_end, end, post_end;
unsigned long start_jiffies;
unsigned long timer_rate_min, timer_rate_max;
unsigned long good_timer_sum = 0;
unsigned long good_timer_count = 0;
unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
int max = -1; /* index of measured_times with max/min values or not set */
int min = -1;
int i;
if (read_current_timer(&pre_start) < 0 )
return 0;
/*
* A simple loop like
* while ( jiffies < start_jiffies+1)
* start = read_current_timer();
* will not do. As we don't really know whether jiffy switch
* happened first or timer_value was read first. And some asynchronous
* event can happen between these two events introducing errors in lpj.
*
* So, we do
* 1. pre_start <- When we are sure that jiffy switch hasn't happened
* 2. check jiffy switch
* 3. start <- timer value before or after jiffy switch
* 4. post_start <- When we are sure that jiffy switch has happened
*
* Note, we don't know anything about order of 2 and 3.
* Now, by looking at post_start and pre_start difference, we can
* check whether any asynchronous event happened or not
*/
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
pre_start = 0;
read_current_timer(&start);
start_jiffies = jiffies;
while (time_before_eq(jiffies, start_jiffies + 1)) {
pre_start = start;
read_current_timer(&start);
}
read_current_timer(&post_start);
pre_end = 0;
end = post_start;
while (time_before_eq(jiffies, start_jiffies + 1 +
DELAY_CALIBRATION_TICKS)) {
pre_end = end;
read_current_timer(&end);
}
read_current_timer(&post_end);
timer_rate_max = (post_end - pre_start) /
DELAY_CALIBRATION_TICKS;
timer_rate_min = (pre_end - post_start) /
DELAY_CALIBRATION_TICKS;
/*
* If the upper limit and lower limit of the timer_rate is
* >= 12.5% apart, redo calibration.
*/
if (start >= post_end)
printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
"timer_rate as we had a TSC wrap around"
" start=%lu >=post_end=%lu\n",
start, post_end);
if (start < post_end && pre_start != 0 && pre_end != 0 &&
(timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
good_timer_count++;
good_timer_sum += timer_rate_max;
measured_times[i] = timer_rate_max;
if (max < 0 || timer_rate_max > measured_times[max])
max = i;
if (min < 0 || timer_rate_max < measured_times[min])
min = i;
} else
measured_times[i] = 0;
}
/*
* Find the maximum & minimum - if they differ too much throw out the
* one with the largest difference from the mean and try again...
*/
while (good_timer_count > 1) {
unsigned long estimate;
unsigned long maxdiff;
/* compute the estimate */
estimate = (good_timer_sum/good_timer_count);
maxdiff = estimate >> 3;
/* if range is within 12% let's take it */
if ((measured_times[max] - measured_times[min]) < maxdiff)
return estimate;
/* ok - drop the worse value and try again... */
good_timer_sum = 0;
good_timer_count = 0;
if ((measured_times[max] - estimate) <
(estimate - measured_times[min])) {
printk(KERN_NOTICE "calibrate_delay_direct() dropping "
"min bogoMips estimate %d = %lu\n",
min, measured_times[min]);
measured_times[min] = 0;
min = max;
} else {
printk(KERN_NOTICE "calibrate_delay_direct() dropping "
"max bogoMips estimate %d = %lu\n",
max, measured_times[max]);
measured_times[max] = 0;
max = min;
}
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
if (measured_times[i] == 0)
continue;
good_timer_count++;
good_timer_sum += measured_times[i];
if (measured_times[i] < measured_times[min])
min = i;
if (measured_times[i] > measured_times[max])
max = i;
}
}
printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
"estimate for loops_per_jiffy.\nProbably due to long platform "
"interrupts. Consider using \"lpj=\" boot option.\n");
return 0;
}
#else
static unsigned long calibrate_delay_direct(void)
{
return 0;
}
#endif
/*
* This is the number of bits of precision for the loops_per_jiffy. Each
* time we refine our estimate after the first takes 1.5/HZ seconds, so try
* to start with a good estimate.
* For the boot cpu we can skip the delay calibration and assign it a value
* calculated based on the timer frequency.
* For the rest of the CPUs we cannot assume that the timer frequency is same as
* the cpu frequency, hence do the calibration for those.
*/
#define LPS_PREC 8
static unsigned long calibrate_delay_converge(void)
{
/* First stage - slowly accelerate to find initial bounds */
unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
int trials = 0, band = 0, trial_in_band = 0;
lpj = (1<<12);
/* wait for "start of" clock tick */
ticks = jiffies;
while (ticks == jiffies)
; /* nothing */
/* Go .. */
ticks = jiffies;
do {
if (++trial_in_band == (1<<band)) {
++band;
trial_in_band = 0;
}
__delay(lpj * band);
trials += band;
} while (ticks == jiffies);
/*
* We overshot, so retreat to a clear underestimate. Then estimate
* the largest likely undershoot. This defines our chop bounds.
*/
trials -= band;
loopadd_base = lpj * band;
lpj_base = lpj * trials;
recalibrate:
lpj = lpj_base;
loopadd = loopadd_base;
/*
* Do a binary approximation to get lpj set to
* equal one clock (up to LPS_PREC bits)
*/
chop_limit = lpj >> LPS_PREC;
while (loopadd > chop_limit) {
lpj += loopadd;
ticks = jiffies;
while (ticks == jiffies)
; /* nothing */
ticks = jiffies;
__delay(lpj);
if (jiffies != ticks) /* longer than 1 tick */
lpj -= loopadd;
loopadd >>= 1;
}
/*
* If we incremented every single time possible, presume we've
* massively underestimated initially, and retry with a higher
* start, and larger range. (Only seen on x86_64, due to SMIs)
*/
if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
lpj_base = lpj;
loopadd_base <<= 2;
goto recalibrate;
}
return lpj;
}
static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
/*
* Check if cpu calibration delay is already known. For example,
* some processors with multi-core sockets may have all cores
* with the same calibration delay.
*
* Architectures should override this function if a faster calibration
* method is available.
*/
unsigned long __attribute__((weak)) calibrate_delay_is_known(void)
{
return 0;
}
/*
* Indicate the cpu delay calibration is done. This can be used by
* architectures to stop accepting delay timer registrations after this point.
*/
void __attribute__((weak)) calibration_delay_done(void)
{
}
void calibrate_delay(void)
{
unsigned long lpj;
static bool printed;
int this_cpu = smp_processor_id();
if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
if (!printed)
pr_info("Calibrating delay loop (skipped) "
"already calibrated this CPU");
} else if (preset_lpj) {
lpj = preset_lpj;
if (!printed)
pr_info("Calibrating delay loop (skipped) "
"preset value.. ");
} else if ((!printed) && lpj_fine) {
lpj = lpj_fine;
pr_info("Calibrating delay loop (skipped), "
"value calculated using timer frequency.. ");
} else if ((lpj = calibrate_delay_is_known())) {
;
} else if ((lpj = calibrate_delay_direct()) != 0) {
if (!printed)
pr_info("Calibrating delay using timer "
"specific routine.. ");
} else {
if (!printed)
pr_info("Calibrating delay loop... ");
lpj = calibrate_delay_converge();
}
per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
if (!printed)
pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
lpj/(500000/HZ),
(lpj/(5000/HZ)) % 100, lpj);
loops_per_jiffy = lpj;
printed = true;
calibration_delay_done();
}