android_kernel_xiaomi_sm8350/kernel/dma/direct.c
Greg Kroah-Hartman 4bd8a3c04c This is the 5.4.190 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAmJftBAACgkQONu9yGCS
 aT4f7RAA1/eeQcfKsPYN7I2ToM1F6aB51wYt1Xj0ObYcHM/lm2JWzDu2UB+fTpem
 rBKvoeA+/xb++vkxBXHpJTK6TIuYder0rGcgnTmbhQPpAb37T22n5P666STRoZV2
 0AN0pzFVH+LjdZcPvfHCO/xmI3Z6ay3uWwp0G4tNUUdhpl/K/3dludP8yxX4EBaD
 UJOKVRWp16rcSj4NtOKjrEADeKymqnsUnjEB5KU3gEfqaDhwEeZc9rw5zWZvRIZ7
 9zJkQcHAMWi2oA/wPLbiNF+Be20K1hqT8UV8WgrRyLS8JJuACZodDBchftXYwuQq
 IqKMbpj+8XS9Yqxujgc+NVDOi5l4vg9Kol4LiHfax/LtRuc+DyqxZimRzVHi/Joz
 /+lx3urUKzhRPNPR0fUhxwpoOYxilmI0N+ahr40PT+nq0eVOXXwTd8balmhxCpc6
 1ssG+g5R0Ij0CblpzEJXodNDkJ00pxRTGRYUmqBwjVMOHt0RTwHfK4qeluPoyC19
 X8YdAdrmm4BT9KPUJvStzWIZfKBE+cuho5dCB56e/keg0T9Q98zL9mXPnli0UVOW
 oD7DZxOQVaJZV6QqYpkxpeut0zN1Fnyih9lkvgY3Y5dlIGZ5PbIDK4sDmo/5RTZE
 Y1xu87ujBcAbDVN6j8TQmj71iikd4qfGI9vvFiHyK5Zg0rSXyfY=
 =dDvH
 -----END PGP SIGNATURE-----

Merge 5.4.190 into android11-5.4-lts

Changes in 5.4.190
	memory: atmel-ebi: Fix missing of_node_put in atmel_ebi_probe
	net/sched: flower: fix parsing of ethertype following VLAN header
	veth: Ensure eth header is in skb's linear part
	gpiolib: acpi: use correct format characters
	mlxsw: i2c: Fix initialization error flow
	net/sched: fix initialization order when updating chain 0 head
	net: ethernet: stmmac: fix altr_tse_pcs function when using a fixed-link
	net/sched: taprio: Check if socket flags are valid
	cfg80211: hold bss_lock while updating nontrans_list
	drm/msm/dsi: Use connector directly in msm_dsi_manager_connector_init()
	net/smc: Fix NULL pointer dereference in smc_pnet_find_ib()
	sctp: Initialize daddr on peeled off socket
	testing/selftests/mqueue: Fix mq_perf_tests to free the allocated cpu set
	nfc: nci: add flush_workqueue to prevent uaf
	cifs: potential buffer overflow in handling symlinks
	drm/amd: Add USBC connector ID
	drm/amd/display: fix audio format not updated after edid updated
	drm/amd/display: Update VTEM Infopacket definition
	drm/amdkfd: Fix Incorrect VMIDs passed to HWS
	drm/amdkfd: Check for potential null return of kmalloc_array()
	Drivers: hv: vmbus: Prevent load re-ordering when reading ring buffer
	scsi: target: tcmu: Fix possible page UAF
	scsi: ibmvscsis: Increase INITIAL_SRP_LIMIT to 1024
	net: micrel: fix KS8851_MLL Kconfig
	ata: libata-core: Disable READ LOG DMA EXT for Samsung 840 EVOs
	gpu: ipu-v3: Fix dev_dbg frequency output
	regulator: wm8994: Add an off-on delay for WM8994 variant
	arm64: alternatives: mark patch_alternative() as `noinstr`
	tlb: hugetlb: Add more sizes to tlb_remove_huge_tlb_entry
	net: usb: aqc111: Fix out-of-bounds accesses in RX fixup
	drm/amd/display: Fix allocate_mst_payload assert on resume
	powerpc: Fix virt_addr_valid() for 64-bit Book3E & 32-bit
	scsi: mvsas: Add PCI ID of RocketRaid 2640
	scsi: megaraid_sas: Target with invalid LUN ID is deleted during scan
	drivers: net: slip: fix NPD bug in sl_tx_timeout()
	perf/imx_ddr: Fix undefined behavior due to shift overflowing the constant
	mm, page_alloc: fix build_zonerefs_node()
	mm: kmemleak: take a full lowmem check in kmemleak_*_phys()
	gcc-plugins: latent_entropy: use /dev/urandom
	ath9k: Properly clear TX status area before reporting to mac80211
	ath9k: Fix usage of driver-private space in tx_info
	btrfs: remove unused variable in btrfs_{start,write}_dirty_block_groups()
	btrfs: mark resumed async balance as writing
	ALSA: hda/realtek: Add quirk for Clevo PD50PNT
	ALSA: pcm: Test for "silence" field in struct "pcm_format_data"
	ipv6: fix panic when forwarding a pkt with no in6 dev
	drm/amd/display: don't ignore alpha property on pre-multiplied mode
	genirq/affinity: Consider that CPUs on nodes can be unbalanced
	tick/nohz: Use WARN_ON_ONCE() to prevent console saturation
	ARM: davinci: da850-evm: Avoid NULL pointer dereference
	dm integrity: fix memory corruption when tag_size is less than digest size
	smp: Fix offline cpu check in flush_smp_call_function_queue()
	i2c: pasemi: Wait for write xfers to finish
	dma-direct: avoid redundant memory sync for swiotlb
	ax25: add refcount in ax25_dev to avoid UAF bugs
	ax25: fix reference count leaks of ax25_dev
	ax25: fix UAF bugs of net_device caused by rebinding operation
	ax25: Fix refcount leaks caused by ax25_cb_del()
	ax25: fix UAF bug in ax25_send_control()
	ax25: fix NPD bug in ax25_disconnect
	ax25: Fix NULL pointer dereferences in ax25 timers
	ax25: Fix UAF bugs in ax25 timers
	Linux 5.4.190

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I375cb1d55a4a40c1c31b86c87ddb9235cefcb902
2022-04-21 14:13:50 +02:00

425 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Christoph Hellwig.
*
* DMA operations that map physical memory directly without using an IOMMU.
*/
#include <linux/memblock.h> /* for max_pfn */
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/dma-direct.h>
#include <linux/scatterlist.h>
#include <linux/dma-contiguous.h>
#include <linux/dma-noncoherent.h>
#include <linux/pfn.h>
#include <linux/set_memory.h>
#include <linux/swiotlb.h>
/*
* Most architectures use ZONE_DMA for the first 16 Megabytes, but
* some use it for entirely different regions:
*/
#ifndef ARCH_ZONE_DMA_BITS
#define ARCH_ZONE_DMA_BITS 24
#endif
static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
{
if (!dev->dma_mask) {
dev_err_once(dev, "DMA map on device without dma_mask\n");
} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
dev_err_once(dev,
"overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
&dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
}
WARN_ON_ONCE(1);
}
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
phys_addr_t phys)
{
if (force_dma_unencrypted(dev))
return __phys_to_dma(dev, phys);
return phys_to_dma(dev, phys);
}
u64 dma_direct_get_required_mask(struct device *dev)
{
phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
u64 max_dma = phys_to_dma_direct(dev, phys);
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
}
EXPORT_SYMBOL_GPL(dma_direct_get_required_mask);
static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
u64 *phys_mask)
{
if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
dma_mask = dev->bus_dma_mask;
if (force_dma_unencrypted(dev))
*phys_mask = __dma_to_phys(dev, dma_mask);
else
*phys_mask = dma_to_phys(dev, dma_mask);
/*
* Optimistically try the zone that the physical address mask falls
* into first. If that returns memory that isn't actually addressable
* we will fallback to the next lower zone and try again.
*
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
* zones.
*/
if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
return GFP_DMA;
if (*phys_mask <= DMA_BIT_MASK(32))
return GFP_DMA32;
return 0;
}
static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
{
return phys_to_dma_direct(dev, phys) + size - 1 <=
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
}
struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
size_t alloc_size = PAGE_ALIGN(size);
int node = dev_to_node(dev);
struct page *page = NULL;
u64 phys_mask;
if (attrs & DMA_ATTR_NO_WARN)
gfp |= __GFP_NOWARN;
/* we always manually zero the memory once we are done: */
gfp &= ~__GFP_ZERO;
gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_mask);
page = dma_alloc_contiguous(dev, alloc_size, gfp);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_free_contiguous(dev, page, alloc_size);
page = NULL;
}
again:
if (!page)
page = alloc_pages_node(node, gfp, get_order(alloc_size));
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_free_contiguous(dev, page, size);
page = NULL;
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
phys_mask < DMA_BIT_MASK(64) &&
!(gfp & (GFP_DMA32 | GFP_DMA))) {
gfp |= GFP_DMA32;
goto again;
}
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
goto again;
}
}
return page;
}
void *dma_direct_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
struct page *page;
void *ret;
page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
if (!page)
return NULL;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev)) {
/* remove any dirty cache lines on the kernel alias */
if (!PageHighMem(page))
arch_dma_prep_coherent(page, size);
*dma_handle = phys_to_dma(dev, page_to_phys(page));
/* return the page pointer as the opaque cookie */
return page;
}
if (PageHighMem(page)) {
/*
* Depending on the cma= arguments and per-arch setup
* dma_alloc_contiguous could return highmem pages.
* Without remapping there is no way to return them here,
* so log an error and fail.
*/
dev_info(dev, "Rejecting highmem page from CMA.\n");
__dma_direct_free_pages(dev, size, page);
return NULL;
}
ret = page_address(page);
if (force_dma_unencrypted(dev)) {
set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
*dma_handle = __phys_to_dma(dev, page_to_phys(page));
} else {
*dma_handle = phys_to_dma(dev, page_to_phys(page));
}
memset(ret, 0, size);
if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
dma_alloc_need_uncached(dev, attrs)) {
arch_dma_prep_coherent(page, size);
ret = uncached_kernel_address(ret);
}
return ret;
}
void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
{
dma_free_contiguous(dev, page, size);
}
void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_addr, unsigned long attrs)
{
unsigned int page_order = get_order(size);
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev)) {
/* cpu_addr is a struct page cookie, not a kernel address */
__dma_direct_free_pages(dev, size, cpu_addr);
return;
}
if (force_dma_unencrypted(dev))
set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
dma_alloc_need_uncached(dev, attrs))
cpu_addr = cached_kernel_address(cpu_addr);
__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
}
void *dma_direct_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
dma_alloc_need_uncached(dev, attrs))
return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
}
EXPORT_SYMBOL_GPL(dma_direct_alloc);
void dma_direct_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
{
if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
dma_alloc_need_uncached(dev, attrs))
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
else
dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
}
EXPORT_SYMBOL_GPL(dma_direct_free);
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_single_for_device(struct device *dev,
dma_addr_t addr, size_t size, enum dma_data_direction dir)
{
phys_addr_t paddr = dma_to_phys(dev, addr);
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(dev, paddr, size, dir);
}
EXPORT_SYMBOL(dma_direct_sync_single_for_device);
void dma_direct_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, sg->length,
dir, SYNC_FOR_DEVICE);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(dev, paddr, sg->length,
dir);
}
}
EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
#endif
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_single_for_cpu(struct device *dev,
dma_addr_t addr, size_t size, enum dma_data_direction dir)
{
phys_addr_t paddr = dma_to_phys(dev, addr);
if (!dev_is_dma_coherent(dev)) {
arch_sync_dma_for_cpu(dev, paddr, size, dir);
arch_sync_dma_for_cpu_all(dev);
}
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
void dma_direct_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
SYNC_FOR_CPU);
}
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu_all(dev);
}
EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
phys_addr_t phys = dma_to_phys(dev, addr);
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
dma_direct_sync_single_for_cpu(dev, addr, size, dir);
if (unlikely(is_swiotlb_buffer(phys)))
swiotlb_tbl_unmap_single(dev, phys, size, size, dir,
attrs | DMA_ATTR_SKIP_CPU_SYNC);
}
EXPORT_SYMBOL(dma_direct_unmap_page);
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
attrs);
}
EXPORT_SYMBOL(dma_direct_unmap_sg);
#endif
static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
size_t size)
{
return swiotlb_force != SWIOTLB_FORCE &&
dma_capable(dev, dma_addr, size);
}
dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t phys = page_to_phys(page) + offset;
dma_addr_t dma_addr = phys_to_dma(dev, phys);
if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
!swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
report_addr(dev, dma_addr, size);
return DMA_MAPPING_ERROR;
}
if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
arch_sync_dma_for_device(dev, phys, size, dir);
return dma_addr;
}
EXPORT_SYMBOL(dma_direct_map_page);
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
int i;
struct scatterlist *sg;
for_each_sg(sgl, sg, nents, i) {
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
sg->offset, sg->length, dir, attrs);
if (sg->dma_address == DMA_MAPPING_ERROR)
goto out_unmap;
sg_dma_len(sg) = sg->length;
}
return nents;
out_unmap:
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
return 0;
}
EXPORT_SYMBOL(dma_direct_map_sg);
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t dma_addr = paddr;
if (unlikely(!dma_capable(dev, dma_addr, size))) {
report_addr(dev, dma_addr, size);
return DMA_MAPPING_ERROR;
}
return dma_addr;
}
EXPORT_SYMBOL(dma_direct_map_resource);
/*
* Because 32-bit DMA masks are so common we expect every architecture to be
* able to satisfy them - either by not supporting more physical memory, or by
* providing a ZONE_DMA32. If neither is the case, the architecture needs to
* use an IOMMU instead of the direct mapping.
*/
int dma_direct_supported(struct device *dev, u64 mask)
{
u64 min_mask;
if (IS_ENABLED(CONFIG_ZONE_DMA))
min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
else
min_mask = DMA_BIT_MASK(32);
min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
/*
* This check needs to be against the actual bit mask value, so
* use __phys_to_dma() here so that the SME encryption mask isn't
* part of the check.
*/
return mask >= __phys_to_dma(dev, min_mask);
}
size_t dma_direct_max_mapping_size(struct device *dev)
{
/* If SWIOTLB is active, use its maximum mapping size */
if (is_swiotlb_active() &&
(dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
return swiotlb_max_mapping_size(dev);
return SIZE_MAX;
}