android_kernel_xiaomi_sm8350/sound/drivers/vx/vx_mixer.c
Ingo Molnar ef9f0a42db [ALSA] semaphore -> mutex (driver part)
Semaphore to mutex conversion.

The conversion was generated via scripts, and the result was validated
automatically via a script as well.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2006-03-22 10:24:57 +01:00

1001 lines
28 KiB
C

/*
* Driver for Digigram VX soundcards
*
* Common mixer part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/vx_core.h>
#include "vx_cmd.h"
/*
* write a codec data (24bit)
*/
static void vx_write_codec_reg(struct vx_core *chip, int codec, unsigned int data)
{
unsigned long flags;
snd_assert(chip->ops->write_codec, return);
if (chip->chip_status & VX_STAT_IS_STALE)
return;
spin_lock_irqsave(&chip->lock, flags);
chip->ops->write_codec(chip, codec, data);
spin_unlock_irqrestore(&chip->lock, flags);
}
/*
* Data type used to access the Codec
*/
union vx_codec_data {
u32 l;
#ifdef SNDRV_BIG_ENDIAN
struct w {
u16 h;
u16 l;
} w;
struct b {
u8 hh;
u8 mh;
u8 ml;
u8 ll;
} b;
#else /* LITTLE_ENDIAN */
struct w {
u16 l;
u16 h;
} w;
struct b {
u8 ll;
u8 ml;
u8 mh;
u8 hh;
} b;
#endif
};
#define SET_CDC_DATA_SEL(di,s) ((di).b.mh = (u8) (s))
#define SET_CDC_DATA_REG(di,r) ((di).b.ml = (u8) (r))
#define SET_CDC_DATA_VAL(di,d) ((di).b.ll = (u8) (d))
#define SET_CDC_DATA_INIT(di) ((di).l = 0L, SET_CDC_DATA_SEL(di,XX_CODEC_SELECTOR))
/*
* set up codec register and write the value
* @codec: the codec id, 0 or 1
* @reg: register index
* @val: data value
*/
static void vx_set_codec_reg(struct vx_core *chip, int codec, int reg, int val)
{
union vx_codec_data data;
/* DAC control register */
SET_CDC_DATA_INIT(data);
SET_CDC_DATA_REG(data, reg);
SET_CDC_DATA_VAL(data, val);
vx_write_codec_reg(chip, codec, data.l);
}
/*
* vx_set_analog_output_level - set the output attenuation level
* @codec: the output codec, 0 or 1. (1 for VXP440 only)
* @left: left output level, 0 = mute
* @right: right output level
*/
static void vx_set_analog_output_level(struct vx_core *chip, int codec, int left, int right)
{
left = chip->hw->output_level_max - left;
right = chip->hw->output_level_max - right;
if (chip->ops->akm_write) {
chip->ops->akm_write(chip, XX_CODEC_LEVEL_LEFT_REGISTER, left);
chip->ops->akm_write(chip, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
} else {
/* convert to attenuation level: 0 = 0dB (max), 0xe3 = -113.5 dB (min) */
vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_LEFT_REGISTER, left);
vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
}
}
/*
* vx_toggle_dac_mute - mute/unmute DAC
* @mute: 0 = unmute, 1 = mute
*/
#define DAC_ATTEN_MIN 0x08
#define DAC_ATTEN_MAX 0x38
void vx_toggle_dac_mute(struct vx_core *chip, int mute)
{
unsigned int i;
for (i = 0; i < chip->hw->num_codecs; i++) {
if (chip->ops->akm_write)
chip->ops->akm_write(chip, XX_CODEC_DAC_CONTROL_REGISTER, mute); /* XXX */
else
vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER,
mute ? DAC_ATTEN_MAX : DAC_ATTEN_MIN);
}
}
/*
* vx_reset_codec - reset and initialize the codecs
*/
void vx_reset_codec(struct vx_core *chip, int cold_reset)
{
unsigned int i;
int port = chip->type >= VX_TYPE_VXPOCKET ? 0x75 : 0x65;
chip->ops->reset_codec(chip);
/* AKM codecs should be initialized in reset_codec callback */
if (! chip->ops->akm_write) {
/* initialize old codecs */
for (i = 0; i < chip->hw->num_codecs; i++) {
/* DAC control register (change level when zero crossing + mute) */
vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, DAC_ATTEN_MAX);
/* ADC control register */
vx_set_codec_reg(chip, i, XX_CODEC_ADC_CONTROL_REGISTER, 0x00);
/* Port mode register */
vx_set_codec_reg(chip, i, XX_CODEC_PORT_MODE_REGISTER, port);
/* Clock control register */
vx_set_codec_reg(chip, i, XX_CODEC_CLOCK_CONTROL_REGISTER, 0x00);
}
}
/* mute analog output */
for (i = 0; i < chip->hw->num_codecs; i++) {
chip->output_level[i][0] = 0;
chip->output_level[i][1] = 0;
vx_set_analog_output_level(chip, i, 0, 0);
}
}
/*
* change the audio input source
* @src: the target source (VX_AUDIO_SRC_XXX)
*/
static void vx_change_audio_source(struct vx_core *chip, int src)
{
unsigned long flags;
if (chip->chip_status & VX_STAT_IS_STALE)
return;
spin_lock_irqsave(&chip->lock, flags);
chip->ops->change_audio_source(chip, src);
spin_unlock_irqrestore(&chip->lock, flags);
}
/*
* change the audio source if necessary and possible
* returns 1 if the source is actually changed.
*/
int vx_sync_audio_source(struct vx_core *chip)
{
if (chip->audio_source_target == chip->audio_source ||
chip->pcm_running)
return 0;
vx_change_audio_source(chip, chip->audio_source_target);
chip->audio_source = chip->audio_source_target;
return 1;
}
/*
* audio level, mute, monitoring
*/
struct vx_audio_level {
unsigned int has_level: 1;
unsigned int has_monitor_level: 1;
unsigned int has_mute: 1;
unsigned int has_monitor_mute: 1;
unsigned int mute;
unsigned int monitor_mute;
short level;
short monitor_level;
};
static int vx_adjust_audio_level(struct vx_core *chip, int audio, int capture,
struct vx_audio_level *info)
{
struct vx_rmh rmh;
if (chip->chip_status & VX_STAT_IS_STALE)
return -EBUSY;
vx_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST);
if (capture)
rmh.Cmd[0] |= COMMAND_RECORD_MASK;
/* Add Audio IO mask */
rmh.Cmd[1] = 1 << audio;
rmh.Cmd[2] = 0;
if (info->has_level) {
rmh.Cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL;
rmh.Cmd[2] |= info->level;
}
if (info->has_monitor_level) {
rmh.Cmd[0] |= VALID_AUDIO_IO_MONITORING_LEVEL;
rmh.Cmd[2] |= ((unsigned int)info->monitor_level << 10);
}
if (info->has_mute) {
rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_LEVEL;
if (info->mute)
rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_LEVEL;
}
if (info->has_monitor_mute) {
/* validate flag for M2 at least to unmute it */
rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_MONITORING_1 | VALID_AUDIO_IO_MUTE_MONITORING_2;
if (info->monitor_mute)
rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_MONITORING_1;
}
return vx_send_msg(chip, &rmh);
}
#if 0 // not used
static int vx_read_audio_level(struct vx_core *chip, int audio, int capture,
struct vx_audio_level *info)
{
int err;
struct vx_rmh rmh;
memset(info, 0, sizeof(*info));
vx_init_rmh(&rmh, CMD_GET_AUDIO_LEVELS);
if (capture)
rmh.Cmd[0] |= COMMAND_RECORD_MASK;
/* Add Audio IO mask */
rmh.Cmd[1] = 1 << audio;
err = vx_send_msg(chip, &rmh);
if (err < 0)
return err;
info.level = rmh.Stat[0] & MASK_DSP_WORD_LEVEL;
info.monitor_level = (rmh.Stat[0] >> 10) & MASK_DSP_WORD_LEVEL;
info.mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_LEVEL) ? 1 : 0;
info.monitor_mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_MONITORING_1) ? 1 : 0;
return 0;
}
#endif // not used
/*
* set the monitoring level and mute state of the given audio
* no more static, because must be called from vx_pcm to demute monitoring
*/
int vx_set_monitor_level(struct vx_core *chip, int audio, int level, int active)
{
struct vx_audio_level info;
memset(&info, 0, sizeof(info));
info.has_monitor_level = 1;
info.monitor_level = level;
info.has_monitor_mute = 1;
info.monitor_mute = !active;
chip->audio_monitor[audio] = level;
chip->audio_monitor_active[audio] = active;
return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
}
/*
* set the mute status of the given audio
*/
static int vx_set_audio_switch(struct vx_core *chip, int audio, int active)
{
struct vx_audio_level info;
memset(&info, 0, sizeof(info));
info.has_mute = 1;
info.mute = !active;
chip->audio_active[audio] = active;
return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
}
/*
* set the mute status of the given audio
*/
static int vx_set_audio_gain(struct vx_core *chip, int audio, int capture, int level)
{
struct vx_audio_level info;
memset(&info, 0, sizeof(info));
info.has_level = 1;
info.level = level;
chip->audio_gain[capture][audio] = level;
return vx_adjust_audio_level(chip, audio, capture, &info);
}
/*
* reset all audio levels
*/
static void vx_reset_audio_levels(struct vx_core *chip)
{
unsigned int i, c;
struct vx_audio_level info;
memset(chip->audio_gain, 0, sizeof(chip->audio_gain));
memset(chip->audio_active, 0, sizeof(chip->audio_active));
memset(chip->audio_monitor, 0, sizeof(chip->audio_monitor));
memset(chip->audio_monitor_active, 0, sizeof(chip->audio_monitor_active));
for (c = 0; c < 2; c++) {
for (i = 0; i < chip->hw->num_ins * 2; i++) {
memset(&info, 0, sizeof(info));
if (c == 0) {
info.has_monitor_level = 1;
info.has_mute = 1;
info.has_monitor_mute = 1;
}
info.has_level = 1;
info.level = CVAL_0DB; /* default: 0dB */
vx_adjust_audio_level(chip, i, c, &info);
chip->audio_gain[c][i] = CVAL_0DB;
chip->audio_monitor[i] = CVAL_0DB;
}
}
}
/*
* VU, peak meter record
*/
#define VU_METER_CHANNELS 2
struct vx_vu_meter {
int saturated;
int vu_level;
int peak_level;
};
/*
* get the VU and peak meter values
* @audio: the audio index
* @capture: 0 = playback, 1 = capture operation
* @info: the array of vx_vu_meter records (size = 2).
*/
static int vx_get_audio_vu_meter(struct vx_core *chip, int audio, int capture, struct vx_vu_meter *info)
{
struct vx_rmh rmh;
int i, err;
if (chip->chip_status & VX_STAT_IS_STALE)
return -EBUSY;
vx_init_rmh(&rmh, CMD_AUDIO_VU_PIC_METER);
rmh.LgStat += 2 * VU_METER_CHANNELS;
if (capture)
rmh.Cmd[0] |= COMMAND_RECORD_MASK;
/* Add Audio IO mask */
rmh.Cmd[1] = 0;
for (i = 0; i < VU_METER_CHANNELS; i++)
rmh.Cmd[1] |= 1 << (audio + i);
err = vx_send_msg(chip, &rmh);
if (err < 0)
return err;
/* Read response */
for (i = 0; i < 2 * VU_METER_CHANNELS; i +=2) {
info->saturated = (rmh.Stat[0] & (1 << (audio + i))) ? 1 : 0;
info->vu_level = rmh.Stat[i + 1];
info->peak_level = rmh.Stat[i + 2];
info++;
}
return 0;
}
/*
* control API entries
*/
/*
* output level control
*/
static int vx_output_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = chip->hw->output_level_max;
return 0;
}
static int vx_output_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->id.index;
mutex_lock(&chip->mixer_mutex);
ucontrol->value.integer.value[0] = chip->output_level[codec][0];
ucontrol->value.integer.value[1] = chip->output_level[codec][1];
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static int vx_output_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->id.index;
mutex_lock(&chip->mixer_mutex);
if (ucontrol->value.integer.value[0] != chip->output_level[codec][0] ||
ucontrol->value.integer.value[1] != chip->output_level[codec][1]) {
vx_set_analog_output_level(chip, codec,
ucontrol->value.integer.value[0],
ucontrol->value.integer.value[1]);
chip->output_level[codec][0] = ucontrol->value.integer.value[0];
chip->output_level[codec][1] = ucontrol->value.integer.value[1];
mutex_unlock(&chip->mixer_mutex);
return 1;
}
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static struct snd_kcontrol_new vx_control_output_level = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Volume",
.info = vx_output_level_info,
.get = vx_output_level_get,
.put = vx_output_level_put,
};
/*
* audio source select
*/
static int vx_audio_src_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
static char *texts_mic[3] = {
"Digital", "Line", "Mic"
};
static char *texts_vx2[2] = {
"Digital", "Analog"
};
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
if (chip->type >= VX_TYPE_VXPOCKET) {
uinfo->value.enumerated.items = 3;
if (uinfo->value.enumerated.item > 2)
uinfo->value.enumerated.item = 2;
strcpy(uinfo->value.enumerated.name,
texts_mic[uinfo->value.enumerated.item]);
} else {
uinfo->value.enumerated.items = 2;
if (uinfo->value.enumerated.item > 1)
uinfo->value.enumerated.item = 1;
strcpy(uinfo->value.enumerated.name,
texts_vx2[uinfo->value.enumerated.item]);
}
return 0;
}
static int vx_audio_src_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.enumerated.item[0] = chip->audio_source_target;
return 0;
}
static int vx_audio_src_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mixer_mutex);
if (chip->audio_source_target != ucontrol->value.enumerated.item[0]) {
chip->audio_source_target = ucontrol->value.enumerated.item[0];
vx_sync_audio_source(chip);
mutex_unlock(&chip->mixer_mutex);
return 1;
}
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static struct snd_kcontrol_new vx_control_audio_src = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = vx_audio_src_info,
.get = vx_audio_src_get,
.put = vx_audio_src_put,
};
/*
* clock mode selection
*/
static int vx_clock_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
static char *texts[3] = {
"Auto", "Internal", "External"
};
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 3;
if (uinfo->value.enumerated.item > 2)
uinfo->value.enumerated.item = 2;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0;
}
static int vx_clock_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.enumerated.item[0] = chip->clock_mode;
return 0;
}
static int vx_clock_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mixer_mutex);
if (chip->clock_mode != ucontrol->value.enumerated.item[0]) {
chip->clock_mode = ucontrol->value.enumerated.item[0];
vx_set_clock(chip, chip->freq);
mutex_unlock(&chip->mixer_mutex);
return 1;
}
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static struct snd_kcontrol_new vx_control_clock_mode = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Clock Mode",
.info = vx_clock_mode_info,
.get = vx_clock_mode_get,
.put = vx_clock_mode_put,
};
/*
* Audio Gain
*/
static int vx_audio_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = CVAL_MAX;
return 0;
}
static int vx_audio_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int audio = kcontrol->private_value & 0xff;
int capture = (kcontrol->private_value >> 8) & 1;
mutex_lock(&chip->mixer_mutex);
ucontrol->value.integer.value[0] = chip->audio_gain[capture][audio];
ucontrol->value.integer.value[1] = chip->audio_gain[capture][audio+1];
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static int vx_audio_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int audio = kcontrol->private_value & 0xff;
int capture = (kcontrol->private_value >> 8) & 1;
mutex_lock(&chip->mixer_mutex);
if (ucontrol->value.integer.value[0] != chip->audio_gain[capture][audio] ||
ucontrol->value.integer.value[1] != chip->audio_gain[capture][audio+1]) {
vx_set_audio_gain(chip, audio, capture, ucontrol->value.integer.value[0]);
vx_set_audio_gain(chip, audio+1, capture, ucontrol->value.integer.value[1]);
mutex_unlock(&chip->mixer_mutex);
return 1;
}
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static int vx_audio_monitor_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int audio = kcontrol->private_value & 0xff;
mutex_lock(&chip->mixer_mutex);
ucontrol->value.integer.value[0] = chip->audio_monitor[audio];
ucontrol->value.integer.value[1] = chip->audio_monitor[audio+1];
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static int vx_audio_monitor_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int audio = kcontrol->private_value & 0xff;
mutex_lock(&chip->mixer_mutex);
if (ucontrol->value.integer.value[0] != chip->audio_monitor[audio] ||
ucontrol->value.integer.value[1] != chip->audio_monitor[audio+1]) {
vx_set_monitor_level(chip, audio, ucontrol->value.integer.value[0],
chip->audio_monitor_active[audio]);
vx_set_monitor_level(chip, audio+1, ucontrol->value.integer.value[1],
chip->audio_monitor_active[audio+1]);
mutex_unlock(&chip->mixer_mutex);
return 1;
}
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static int vx_audio_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int vx_audio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int audio = kcontrol->private_value & 0xff;
mutex_lock(&chip->mixer_mutex);
ucontrol->value.integer.value[0] = chip->audio_active[audio];
ucontrol->value.integer.value[1] = chip->audio_active[audio+1];
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static int vx_audio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int audio = kcontrol->private_value & 0xff;
mutex_lock(&chip->mixer_mutex);
if (ucontrol->value.integer.value[0] != chip->audio_active[audio] ||
ucontrol->value.integer.value[1] != chip->audio_active[audio+1]) {
vx_set_audio_switch(chip, audio, ucontrol->value.integer.value[0]);
vx_set_audio_switch(chip, audio+1, ucontrol->value.integer.value[1]);
mutex_unlock(&chip->mixer_mutex);
return 1;
}
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static int vx_monitor_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int audio = kcontrol->private_value & 0xff;
mutex_lock(&chip->mixer_mutex);
ucontrol->value.integer.value[0] = chip->audio_monitor_active[audio];
ucontrol->value.integer.value[1] = chip->audio_monitor_active[audio+1];
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static int vx_monitor_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
int audio = kcontrol->private_value & 0xff;
mutex_lock(&chip->mixer_mutex);
if (ucontrol->value.integer.value[0] != chip->audio_monitor_active[audio] ||
ucontrol->value.integer.value[1] != chip->audio_monitor_active[audio+1]) {
vx_set_monitor_level(chip, audio, chip->audio_monitor[audio],
ucontrol->value.integer.value[0]);
vx_set_monitor_level(chip, audio+1, chip->audio_monitor[audio+1],
ucontrol->value.integer.value[1]);
mutex_unlock(&chip->mixer_mutex);
return 1;
}
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static struct snd_kcontrol_new vx_control_audio_gain = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
/* name will be filled later */
.info = vx_audio_gain_info,
.get = vx_audio_gain_get,
.put = vx_audio_gain_put
};
static struct snd_kcontrol_new vx_control_output_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Playback Switch",
.info = vx_audio_sw_info,
.get = vx_audio_sw_get,
.put = vx_audio_sw_put
};
static struct snd_kcontrol_new vx_control_monitor_gain = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Monitoring Volume",
.info = vx_audio_gain_info, /* shared */
.get = vx_audio_monitor_get,
.put = vx_audio_monitor_put
};
static struct snd_kcontrol_new vx_control_monitor_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Monitoring Switch",
.info = vx_audio_sw_info, /* shared */
.get = vx_monitor_sw_get,
.put = vx_monitor_sw_put
};
/*
* IEC958 status bits
*/
static int vx_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int vx_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mixer_mutex);
ucontrol->value.iec958.status[0] = (chip->uer_bits >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (chip->uer_bits >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (chip->uer_bits >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (chip->uer_bits >> 24) & 0xff;
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static int vx_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = 0xff;
return 0;
}
static int vx_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
unsigned int val;
val = (ucontrol->value.iec958.status[0] << 0) |
(ucontrol->value.iec958.status[1] << 8) |
(ucontrol->value.iec958.status[2] << 16) |
(ucontrol->value.iec958.status[3] << 24);
mutex_lock(&chip->mixer_mutex);
if (chip->uer_bits != val) {
chip->uer_bits = val;
vx_set_iec958_status(chip, val);
mutex_unlock(&chip->mixer_mutex);
return 1;
}
mutex_unlock(&chip->mixer_mutex);
return 0;
}
static struct snd_kcontrol_new vx_control_iec958_mask = {
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
.info = vx_iec958_info, /* shared */
.get = vx_iec958_mask_get,
};
static struct snd_kcontrol_new vx_control_iec958 = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = vx_iec958_info,
.get = vx_iec958_get,
.put = vx_iec958_put
};
/*
* VU meter
*/
#define METER_MAX 0xff
#define METER_SHIFT 16
static int vx_vu_meter_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = METER_MAX;
return 0;
}
static int vx_vu_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
struct vx_vu_meter meter[2];
int audio = kcontrol->private_value & 0xff;
int capture = (kcontrol->private_value >> 8) & 1;
vx_get_audio_vu_meter(chip, audio, capture, meter);
ucontrol->value.integer.value[0] = meter[0].vu_level >> METER_SHIFT;
ucontrol->value.integer.value[1] = meter[1].vu_level >> METER_SHIFT;
return 0;
}
static int vx_peak_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
struct vx_vu_meter meter[2];
int audio = kcontrol->private_value & 0xff;
int capture = (kcontrol->private_value >> 8) & 1;
vx_get_audio_vu_meter(chip, audio, capture, meter);
ucontrol->value.integer.value[0] = meter[0].peak_level >> METER_SHIFT;
ucontrol->value.integer.value[1] = meter[1].peak_level >> METER_SHIFT;
return 0;
}
static int vx_saturation_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int vx_saturation_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
struct vx_vu_meter meter[2];
int audio = kcontrol->private_value & 0xff;
vx_get_audio_vu_meter(chip, audio, 1, meter); /* capture only */
ucontrol->value.integer.value[0] = meter[0].saturated;
ucontrol->value.integer.value[1] = meter[1].saturated;
return 0;
}
static struct snd_kcontrol_new vx_control_vu_meter = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
/* name will be filled later */
.info = vx_vu_meter_info,
.get = vx_vu_meter_get,
};
static struct snd_kcontrol_new vx_control_peak_meter = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
/* name will be filled later */
.info = vx_vu_meter_info, /* shared */
.get = vx_peak_meter_get,
};
static struct snd_kcontrol_new vx_control_saturation = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Input Saturation",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = vx_saturation_info,
.get = vx_saturation_get,
};
/*
*
*/
int snd_vx_mixer_new(struct vx_core *chip)
{
unsigned int i, c;
int err;
struct snd_kcontrol_new temp;
struct snd_card *card = chip->card;
char name[32];
strcpy(card->mixername, card->driver);
/* output level controls */
for (i = 0; i < chip->hw->num_outs; i++) {
temp = vx_control_output_level;
temp.index = i;
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
return err;
}
/* PCM volumes, switches, monitoring */
for (i = 0; i < chip->hw->num_outs; i++) {
int val = i * 2;
temp = vx_control_audio_gain;
temp.index = i;
temp.name = "PCM Playback Volume";
temp.private_value = val;
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
return err;
temp = vx_control_output_switch;
temp.index = i;
temp.private_value = val;
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
return err;
temp = vx_control_monitor_gain;
temp.index = i;
temp.private_value = val;
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
return err;
temp = vx_control_monitor_switch;
temp.index = i;
temp.private_value = val;
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
return err;
}
for (i = 0; i < chip->hw->num_outs; i++) {
temp = vx_control_audio_gain;
temp.index = i;
temp.name = "PCM Capture Volume";
temp.private_value = (i * 2) | (1 << 8);
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
return err;
}
/* Audio source */
if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_audio_src, chip))) < 0)
return err;
/* clock mode */
if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_clock_mode, chip))) < 0)
return err;
/* IEC958 controls */
if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958_mask, chip))) < 0)
return err;
if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958, chip))) < 0)
return err;
/* VU, peak, saturation meters */
for (c = 0; c < 2; c++) {
static char *dir[2] = { "Output", "Input" };
for (i = 0; i < chip->hw->num_ins; i++) {
int val = (i * 2) | (c << 8);
if (c == 1) {
temp = vx_control_saturation;
temp.index = i;
temp.private_value = val;
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
return err;
}
sprintf(name, "%s VU Meter", dir[c]);
temp = vx_control_vu_meter;
temp.index = i;
temp.name = name;
temp.private_value = val;
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
return err;
sprintf(name, "%s Peak Meter", dir[c]);
temp = vx_control_peak_meter;
temp.index = i;
temp.name = name;
temp.private_value = val;
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
return err;
}
}
vx_reset_audio_levels(chip);
return 0;
}