android_kernel_xiaomi_sm8350/arch/arm/mach-ux500/include/mach/entry-macro.S
Srinidhi Kasagar aa44ef4d43 ARM: 5831/1: ARM: U8500 core machine support
Adds core support for the ST-Ericsson U8500
platform. It supports memory mappings, binds to
the existing modules like GIC, SCU, TWD and
local timers and sets up the infrastructure for
the secondary core.

Reviewed-by: Alessandro Rubini <rubini@unipv.it>
Reviewed-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: srinidhi kasagar <srinidhi.kasagar@stericsson.com>
Acked-by: Andrea Gallo <andrea.gallo@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-11-28 10:22:52 +00:00

90 lines
2.3 KiB
ArmAsm

/*
* Low-level IRQ helper macros for U8500 platforms
*
* Copyright (C) 2009 ST-Ericsson.
*
* This file is a copy of ARM Realview platform.
* -just satisfied checkpatch script.
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <mach/hardware.h>
#include <asm/hardware/gic.h>
.macro disable_fiq
.endm
.macro get_irqnr_preamble, base, tmp
ldr \base, =IO_ADDRESS(U8500_GIC_CPU_BASE)
.endm
.macro arch_ret_to_user, tmp1, tmp2
.endm
/*
* The interrupt numbering scheme is defined in the
* interrupt controller spec. To wit:
*
* Interrupts 0-15 are IPI
* 16-28 are reserved
* 29-31 are local. We allow 30 to be used for the watchdog.
* 32-1020 are global
* 1021-1022 are reserved
* 1023 is "spurious" (no interrupt)
*
* For now, we ignore all local interrupts so only return an
* interrupt if it's between 30 and 1020. The test_for_ipi
* routine below will pick up on IPIs.
*
* A simple read from the controller will tell us the number
* of the highest priority enabled interrupt. We then just
* need to check whether it is in the valid range for an
* IRQ (30-1020 inclusive).
*/
.macro get_irqnr_and_base, irqnr, irqstat, base, tmp
/* bits 12-10 = src CPU, 9-0 = int # */
ldr \irqstat, [\base, #GIC_CPU_INTACK]
ldr \tmp, =1021
bic \irqnr, \irqstat, #0x1c00
cmp \irqnr, #29
cmpcc \irqnr, \irqnr
cmpne \irqnr, \tmp
cmpcs \irqnr, \irqnr
.endm
/* We assume that irqstat (the raw value of the IRQ
* acknowledge register) is preserved from the macro above.
* If there is an IPI, we immediately signal end of
* interrupt on the controller, since this requires the
* original irqstat value which we won't easily be able
* to recreate later.
*/
.macro test_for_ipi, irqnr, irqstat, base, tmp
bic \irqnr, \irqstat, #0x1c00
cmp \irqnr, #16
strcc \irqstat, [\base, #GIC_CPU_EOI]
cmpcs \irqnr, \irqnr
.endm
/* As above, this assumes that irqstat and base
* are preserved..
*/
.macro test_for_ltirq, irqnr, irqstat, base, tmp
bic \irqnr, \irqstat, #0x1c00
mov \tmp, #0
cmp \irqnr, #29
moveq \tmp, #1
streq \irqstat, [\base, #GIC_CPU_EOI]
cmp \tmp, #0
.endm